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Abstract

We present an architecture for a peer-to-peer (P2P) file
system which supports semantics-based access. Central to
this work is to provide semantic indexing and retrieval ca-
pabilities. Our semantic indexing and locating approach
is based on distributed hash tables (DHTs) where the in-
dices of semantically close files are clustered to the same
peers with high probability (nearly 100%) by the use of lo-
cality sensitive hash functions. A query for finding semanti-
cally close files can be answered by consulting only a small
number of peer nodes which are most responsible for such
a query, instead of by query flooding. Our approach only
adds index information to peer nodes, thus imposing only
a small storage overhead. This paper constitutes an initial
step to integrate semantics-based access mechanisms into a
P2P file system.

1. Introduction

Human brains normally remember objects based on their
contents or features, while the hierarchical structure of ex-
isting file systems solely supports name-based access. To
bridge the gap between the human memory and the simple
hierarchical namespace, semantic file systems such as SFS
[5] and HAC [6] have been designed to support content-
based access to file objects in addition to name-based ac-
cess. They allow users to organize their files by content and
present them with alternative views of data through the con-
cept of semantic directories. In such systems, semantics-
based access is provided by queries, and queries are mapped
into semantic directories, each pointing to files that satisfy
a query.

The work reported in this paper differs from that of SFS
[5] and HAC [6], in that we strive to support semantics-
based access over P2P file systems. Recent P2P file sys-
tems such as CFS [4] and PAST [17] are layered on top of a
Distributed Hash Table (DHT) [19, 16, 14]. Table 1 summa-

rizes the software layering of a P2P file system. In these sys-
tems, each file is assigned a unique identifier called fileID
as a DHT key, e.g., produced by SHA-1 hash of its content
or name. The capabilities of storing and retrieving a file are
provided by their DHTs. In spite of significant implemen-
tation differences between these DHTs, they all implement
a hash-table interface of put(fileID, file), which stores the
file in the DHT by mapping from the fileID to a peer node,
and get(fileID) which retrieves the file corresponding to the
fileID. However, DHTs support only exact-match lookups.
They do not directly support text search or content search.
This is fine for the simple hierarchical namespace of these
P2P file systems, from the name-based access perspective.
But for a P2P file system targeting for supporting not only
name-based access but also semantics-based access, it is far
from enough.

Layer Responsibility
FS Stores/retrieves file objects into/from the DHT;

presents a file system interface to applications
/users

DHT Supports a hash-table interface of get(fileID)
and put(fileID,file)

Table 1. Software layering in a P2P file system

One of the biggest challenges to current P2P file systems
is to provide convenient access to vast amount of informa-
tion. By “convenience” we mean not only the ability to
quickly transfer information from one place to another, but
the ability to find the “right” information and deal with it
[6]. We therefore argue that semantics-based access mech-
anisms should be integrated into a P2P file system itself.
This not only provides semantics-based retrieval capabili-
ties to locate semantically close files, but also allows users
to cluster semantically close files through semantic direc-
tories for the purposes of browsing relevant materials and
purging, if the files stored in the system are already indexed
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according to their semantics or content.
What kind of application can be addressed by such a P2P

file system which provides semantics-based access capabil-
ities? To illustrate our vision, we describe an imaginary
scenario below.

Bob, a P2P file system user, wants to locate those files
semantically close to a file f among enormous documents
stored in the system. He submits a query “locate files sim-
ilar to f” to the system and then waits for the query result.
If the query result is not empty, he now can browse all these
semantically close files related to f . If Bob has proper per-
missions on these files, he can even modify or remove these
files.

Some time later, if another user Alice submits the same
query “locate files similar to f” to the system, she can get
all those semantically close files from the previous query
submitted by Bob, thus saving the expensive cost of query
processing. Note that the system automatically generates
materialized views of query results and reuses previous
query results when possible.

Leveraging the state-of-the-art information retrieval (IR)
algorithms such as vector space model (VSM) and latent
semantic indexing (LSI) [1], files and queries can be rep-
resented as semantic vectors (SVs). In the above example,
the query “locate files similar to f” can be represented as
a SV derived from f by using VSM or LSI. All the files
retrieved and the query have similar SVs — that is, seman-
tically closes files are considered to have similar SVs. Fur-
ther, as described above, semantic searches in our system
are expressed in natural language, instead of simple keyword
match.

In this paper, we focus on exploring the issue of how
to integrate semantics-based access mechanisms into a P2P
file system. Central to this work is to provide semantic in-
dexing and retrieval capabilities. In a centralized system
the SVs of all files are at one location, and the problem of
finding semantically close files can be solved by building an
index over all the files. Such an approach, however, results
in a single point of failure and a performance bottleneck at
the indexing server. In a P2P system, all files are distributed
across peer nodes, the problem of finding semantically close
files becomes more complicated because we need to locate
peers which are responsible for those files without global
knowledge. We can simply flood the query over a P2P net-
work, but such a query-flooding approach consumes huge
amount of network bandwidth and processing power, pos-
ing a scalability issue.

Hence we address this problem by trying to develop tech-
niques that use semantic information (i.e., SVs) to index
files (without altering their physical locations) and retrieve
files. Our semantic indexing and locating approach is based
on DHTs where the indices of semantically close files are
clustered to the same peers with high probability (nearly

100%) by the use of locality sensitive hash functions (LSH)
[9, 11]. A query for finding semantically close files can be
answered by consulting only a small number (e.g., 20) of
peer nodes which are most responsible for such a query, in-
stead of by query flooding. Furthermore, The query results
are also indexed in DHTs according to their corresponding
SVs by using LSH, thereby allowing the query results to be
reused even without knowing their corresponding semantic
directories.

Our approach is based on LSH, and thus provides ap-
proximate answers to queries. The main motivation for this
is that approximate answers are normally expected because
from user’s perspectives “semantically-close” is not a pre-
cise concept anyway. The second motivation is that the
query is just a quick first step to obtain more or less the
information users are looking for and that the result of a
query can be automatically or manually modified and re-
fined later [6]. The third motivation is that few query sys-
tems are perfect, and currently most are not even close, in
terms of either partial results or expensive cost of querying
processing. The last motivation for our approach is that P2P
users often ask broad queries even when they are only inter-
ested in a few results and therefore do not expect perfect
answers [8]. This paper exhibits an initial step to integrate
semantics-based access mechanisms into P2P file systems.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of related work. Section 3 presents
a system architecture for supporting semantics-based ac-
cess, and Section 4 discusses our semantic indexing and
locating approach. Section 5 describes our experimental re-
sults. We finally conclude on Section 6.

2. Related Work

Recently, a new generation of P2P systems [19, 16, 14],
offering distributed hash table (DHT) functionality, have
been proposed. In spite of significant implementation dif-
ferences, these systems all implement a hash-table inter-
face of put(key,object), which stores the object with the key
in the DHT, and get(key) which retrieves the object corre-
sponding to the key. A number of recent P2P file systems
[4, 17, 10] are designed by layering file system functional-
ities on top of DHTs, while the capabilities of storing and
retrieving an object are provided by their underlying DHTs.
However, all these DHTs support only exact-match lookups.
Therefore these file systems currently are unable to provide
semantics-based access capabilities.

There have been recent proposals for P2P text search
[8, 12, 20, 15] over DHTs. Harren et al. [8] propose tra-
ditional relational database operators on top of DHTs to re-
solve queries. Reynolds et al. [15] discuss a search infras-
tructure using distributed inverted indexing, which is simi-
lar to our “naive” approach described in [21]. Mahalingam

Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P’03) 

0-7695-2023-5/03 $17.00 © 2003 IEEE



et al. [12, 20] have proposed to integrate semantic storage
and retrieval capabilities into a file system based on CAN
[14], where a document index is stored by using its vector
representation as the coordinates as a result of vector-CAN
Cartesian space transformation. However, our approach
to supporting semantics-based access is different, which is
based on locality sensitive hash functions (LSH) [9, 11] and
can be applied to all DHTs [19, 16, 14].

Semantic file systems such as SFS [5] and HAC [6] have
been proposed to support both name-based and content-
based access to file objects, allowing users to organize their
files by content and presenting them with alternative views
of data through the concept of semantic directories. How-
ever, these systems are based on traditional file systems.
Therefore, the techniques used in these systems for support-
ing content-based access cannot be simply adopted in a P2P
file system to support semantics-based access. Further, SFS
and HAC provide support only for simple keyword-based
queries while in our system queries are expressed in natural
language instead of simple keyword match.

The research work on Information Retrieval (IR) algo-
rithms such as the Vector Space Model (VSM) and Latent
Semantic Indexing (LSI) [1] is orthogonal to our study. Our
system can employ these techniques to represent files and
queries as semantic vectors on which our semantic index-
ing and locating approach relies.

Linial et al. [11] first showed the existence of locality
sensitive hash functions. And Indyk et al. [9] introduced
LSH for the nearest neighbor problem. Recently, Gupta et
al. [7] have proposed to use LSH to locate data partitions
of relations relevant to a SQL query in a P2P system that
shares data in the form of database relations. Our system
instead strives to support semantics-based access in P2P file
systems by leveraging the state-of-the-art IR algorithms and
using LSH.

3. System Architecture

Our design starts with a P2P file system and extends it
to support semantics-based access. Figure 1 illustrates the
architecture of our design. In the rest of the paper, we use
the terms query-based, content-based and semantics-based
interchangeably.

In order to support semantics-based access, we have to
add two major components into an existing P2P file system:
a registry of semantic extractors, and semantic indexing and
locating utility. We describe these two components briefly
in the following subsections due to space constraints. Please
see [21] for more detail.

and

DHT

FS

Application/User

FS interface

Extractor
Registry

Semantic Indexing

Locating Utility

Figure 1. Major components of the system ar-
chitecture.

3.1. Semantic Extractor Registry

The semantic extractor registry consists of a set of se-
mantic extractors for each known file type. A semantic ex-
tractor is an external plug-in module. It is a file-type specific
filter that takes as input the content of a file and outputs the
corresponding semantic vector (SV) of this file.

Leveraging the state-of-the-art IR algorithms such as
VSM and LSI, the fundamental functionality of the seman-
tic extractor registry is to represent each file and query as a
semantic vector where each dimension is associated with a
distinct keyword. Recent studies show that a small number
of keywords (typically 200-300) can characterize a file.

Whenever a user/application on a peer node X wants to
store a file f into the system, the semantic extractor registry
on X is responsible for deriving a SV for f . The resulting
SV, as will discussed later, is then used to produce a small
number of semIDs (semantic identifier) as the DHT keys
for f . As a result, the file f can be indexed into the DHT ac-
cording to its semantic presentation, i.e., with the resulting
semIDs as the DHT keys.

3.2. Semantic Indexing and Locating Utility

The semantic indexing and locating utility provides
semantics-based indexing and retrieval capabilities. The
functionality of semantic indexing is to index each
file/query automatically according to its semantic vector
whenever a file/query is created or modified. The result-
ing indices are independent of and do not alter the physical
locations of file objects in the system (all files reside where
they are located), thereby leaving room for the system or
users or applications to organize their files in certain way
for optimizations (e.g., organize files by access locality for
performance considerations). The functionality of seman-
tic locating is to locate semantically close files for a given
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query.
The semantic indexing and locating utility also interacts

with the file system (FS) to generate materialized views of
query results, and allows users to access these materialized
views as regular file system objects through semantic di-
rectories. Due to space constraints, please refer to [21] for
more detail.

4. Semantic Indexing and Locating

In this section, we first introduce the locality sensitive
hashing (LSH), and then discuss our LSH-based semantic
indexing and locating scheme.

4.1. Locality Sensitive Hashing

From [3, 9], a family of hash functions F is said to be
a locality sensitive hash function family corresponding to
similarity function sim(A, B) if for all h ∈ F operating on
two sets A and B, we have:

Prh∈F [h(A) = h(B)] = sim(A, B).
Where Pr is the probability, and sim(A, B) ∈ [0, 1] is

some similarity function.
Min-wise independent permutations [2] provide an

elegant construction of such a locality sensitive hash
function family with the Jaccard set similarity measure
sim(A, B) = |A∩B|

|A∪B| . In our system, both sets A and B

represent a semantic vector of a file/query and sim(A, B)
represents the similarity of two SVs. Therefore, semanti-
cally close files/queries can be defined by sim(A, B). For
example, consider two files/queries semantically close with
the sim(A, B)≥0.9.

The hashing scheme of min-wise independent permu-
tations on a semantic vector is as follows. Note that the
SV is composed of keywords. We cannot perform per-
mutations directly on it. So we first have to convert the
SV into a set of integers produced by SHA-1 hash of each
keyword. Let π represent a random permutation on the
resulting integer’s universe U . Given a semantic vector
A, we convert it into A′ = {a1, a2, ..., an} ⊆ U , which
is a set of integers. The hash function hπ is defined as
hπ(A′) = min{π(A′)} = min{π(a1), π(a2), ..., π(an)}
(that is, the hash function hπ(A′) applies the permutation
π on each integer component in A′ and then takes the min-
imum of the resulting elements). Then for two semantic
vectors A and B, which are first converted into A′ and B′

respectively, we have x = hπ(A′) = hπ(B′) if and only
if π−1(x) ∈ A′ ∩ B′. That is, the minimum element after
permuting A′ and B′ matches only when the inverse of the
element lies in both A′ and B′. In this case, we also have
x = hπ(A′ ∪ B′). Since π is a random permutation, each
integer component in A′ ∪ B′ is equally likely to become
the minimum element of π(A′ ∪ B′). Hence we conclude

that min{π(A′)} = min{π(B′)} (or hπ(A′) = hπ(B′))
with probability p′ = sim(A′, B′) = |A′∩B′|

|A′∪B′| . Because the
SHA-1 hash function is supposed to be collision-resistant
and it would not change the similarity p between A and B
after converting A and B into A′ and B′ respectively, we
conclude that p = sim(A, B) = sim(A′, B′) = |A′∩B′|

|A′∪B′| .
Due to space constraints, we here cannot elaborate min-
wise independent permutations. Please see [2] for more de-
tail.

4.2. LSH-Based Semantic Indexing

In this section, we discuss how files/queries are indexed
into the underlying DHT according to their SVs by using
LSH. The goal of semantic indexing is to cluster the indices
of semantically close files/queries to the same peer nodes
with high probability. Without loss of generality, our fo-
cus here is on files, since queries can also apply the same
indexing procedure.

Given a file’s semantic vector A, semantic indexing
hashes A into a small number of semIDs by using LSH.
This process can be described as follows:

1. For each vector component k of A, convert it into a 64-
bit integer (since we evaluate our system on the Pastry
simulator of 64-bit identifier space, we here convert k
into a 64-bit integer) by taking the first 64 bits of k’s
SHA-1 hash. Therefore, A is converted into A′, which
is a set of 64-bit integers.

2. Using a group of m min-wise independent permutation
hash functions, we derive a 64-bit semID from A′.
Therefore, applying n such groups of hash functions
on A′ can yield n semIDs (as shown in Figure 2).

Semantic Indexing Procedure:

(2) for
(3)
(4) for
(5)
(6) endfor
(7) endfor
(8) for
(9)

end
endfor(10)

(1) convert A into A’, which is a set of integers
\\ g[j] is one of n groups of hash functionseach g[j]

semID[j]=0
each h[i] in g[j] \\ g[j] has m hash functions
semID[j] ^= h[i](A’) \\ ^ is a XOR operation

each semID[j]
insert the tuple <semID,fileID,A> into DHT by having
semID[j] as the DHT key

do

do

do

Figure 2. Semantic indexing procedure.

Note that for two SVs A and B, their similarity is p =
sim(A, B) = sim(A′, B′). This is because that the SHA-1
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hash function is supposed to be collision-resistant and the
above process would not change the similarity p.

Let A denote the SV of a file with a fileID, Figure 2
describes a rough sketch of semantic indexing procedure.
Note that a semID is produced by XORing m 64-bit inte-
gers which are produced by applying a group of m hash
functions on A′. Thus, applying n such groups of hash
functions on A′ yields n semIDs. By having the result-
ing semIDs as the DHT keys, the file is indexed into
the DHT in the form of < semID, fileID, A >. Such
semantic indexing could have the indices of semantically
close files hashed to the same peer nodes with probability
≥ 1 − (1 − pm)n (see [21] for detailed probability analy-
ses).

4.3. LSH-Based Semantic Locating

We now discuss the issue of how to locate semantically
close files that satisfy a query, given the fact that all files
in the system are automatically indexed according to their
SVs in response to file system mutation operations such as
file creation or modification. The goal of semantic locating
is to answer a query by consulting only a small number of
peer nodes which are most responsible for the query.

Given the semantic indexing scheme described earlier,
we show that this goal can be easily achieved. For example,
Let A be a query Q’s semantic vector. Suppose Q wants
to locate those files whose SVs are similar to A (with cer-
tain similarity degree). The semantic locating procedure (as
shown in Figure 3) produces n semIDs from A for Q using
the same set of hash functions (used in the semantic index-
ing procedure). So if a file f satisfies such a query Q, it
will be retrieved by Q with very high probability. Note that
the SVs of file f and query Q could be hashed to the same
semIDs with high probability (i.e., 1− (1 − pm)n). Thus,
by having these semIDs as the DHT keys in the DHT’s in-
terface of get(key), Q is able to retrieve semantically close
files from the peer nodes which are responsible for these
semIDs. n is very small (e.g.,20) in our system, which
implies that a query can be answered by consulting only a
small number n of peer nodes.

In the Figure 3, upon a request, each destination
peer (at most n) locally checks the list of tuples <
semID, fileID, SV > and finds the fileIDs such that
their associated SVs are similar to the query’s SV with cer-
tain similarity threshold, and sends the list of fileIDs to
the requesting peer. Then, the requesting peer merges the
replies from all destination peers, generates a materialized
view of the query result and indexes the query according to
its SV.

Actually, each destination peer can organize its own tu-
ples in such a way that these tuples are clustered locally
according to their SVs by using data clustering techniques

(5)

(7)

Semantic Locating Procedure:

(1) convert A into A’, which is a set of integers
(2) for each g[j]
(3)
(4) for each h[i] in g[j]

\\ ^ is a XOR operation
\\ g[j] has m hash functions

\\ g[j] is one of n groups of hash functions

endfor(6)
endfor

(8) each semID[j]for

semID[j]=0

semID[j]^=h[i](A’)

(9) send a request to a peer which is the destination of the
semID[j] in the DHT

\\ request for semantically close files

(10) endfor
(11) get replies from all the destination peers
(12) merge the fileIDs that satisfy the query from all replies
(13) create a materialized view of the query result asynchronously
(14) index the query according to its SV asynchronously

end

do

do

do

Figure 3. Semantic locating procedure.

such as hierarchical k-means. Each destination peer uses
hierarchical k-means to cluster the tuples into collections
according to the semantic vector until the variance inside a
collection falls below certain threshold. Managing the tu-
ples in the unit of collections allows each peer to narrow the
search range (within a single collection instead of the whole
indices) upon a request, thereby making the search efficient
and fast.

It is worth pointing out that we can use a similar semantic
locating procedure to locate semantically close queries for
reuse. Please refer to [21] for more discussions about query
reuse.

5. Experimental Results

In this section we evaluate our semantic indexing and
locating approach, in terms of load distribution of the se-
mantic indexing scheme and in terms of the percentage of
matched semantically close files obtained by the semantic
locating scheme given a set of queries.

Our semantic indexing and locating approach is evalu-
ated based on the Pastry [16]. The identifier space in Pastry
is 64-bit. Moreover, as mentioned in Section 4.2, semanti-
cally close files are indexed and located in the same peers
with high probability by using n groups of m hash func-
tions. In the rest of the paper, the values of n and m are
chosen to be 20 and 5 respectively unless otherwise spec-
ified. The LSH used in our experiments is min-wise inde-
pendent permutations.

Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P’03) 

0-7695-2023-5/03 $17.00 © 2003 IEEE



5.1. Load Distribution of Semantic Indexing

Our first experiment involved a P2P file system that
stores 10,000 files, whose semantic vectors are chosen from
10,000 unique keywords in the following way: viewing the
10,000 keywords as a circle space, from which we chose
uniformly at random an arc of 200 keywords in length as a
semantic vector for each file. We expect that, in this case,
many files share similarity with each other. Thus, it prob-
ably causes a very skewed index distribution as a result of
our semantic indexing approach. We hashed each file’s se-
mantic vector into 20 semIDs of 64 bits using min-wise
independent permutations, and indexed each file into our
system by applying the semantic indexing procedure. Fig-
ure 4 (a) shows the mean, 5-percentile and 95-percentile of
the number of indices stored per peer node in the system,
as the number of peer nodes in the system varies from 100
to 5000. We note that the load distribution of indices in-
cluding both the 95-percentile and mean drops linearly as
the number of peer nodes increases. Figure 4 (b) shows the
mean, 5-percentile and 95-percentile of the number of in-
dices stored per peer node in a 1000 node system where the
number of indexed files varies from 10,000 to 150,000. The
95-percentile grows sublinearly with the increasing num-
ber of indexed files while the mean shows a superlinear in-
crease.
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Figure 4. Semantic indices per peer node.

We also conducted our experiments on other two sets of
10,000 files. One is that, each file shares no similarity with
any other files. That is, there is no similarity between any
two semantic vectors. We named this case “No-Sim”. The

other is that, we generated 100 base files, each of which
is represented by a 200-keyword semantic vector. Among
these 100 files, there is no similarity. The remaining 9,900
files each share certain similarity with only one of these 100
base files, following a Zipf-like distribution. Namely, the
frequency of the remaining 9,900 files sharing similarity
with the ith base file is proportional to 1

iα . In our experi-
ments, α was set to be 0.7. In addition, we determined the
similarity value between each of the remaining files and its
corresponding base file in the following way: similarity p
∈ (0,0.3), [0.3,0.6), and [0.6,1.0) with a probability of 20%,
30%, and 50% respectively. We called this case “Zipf-like”.
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Figure 5. Semantic indices per peer node.

Figure 5 shows the results for both cases as the number
of peer nodes in the system varies from 100 to 5000. As
expected, No-sim shows a much less skewed load distri-
bution in contrast to Zipf-like as well as the results shown
in Figure 4 (a). This is because the semantic indexing ap-
proach only intends to cluster the indices of semantically
close files into the same peers with high probability (by de-
riving the same semIDs), rather than dissimilar files. We
also note that, in Zipf-like, the load distribution of indices
including both the 95-percentile and mean drops linearly as
the number of peer nodes increases.

We further conducted experiments for both No-sim and
Zipf-like in a 1000 node system where the number of in-
dexed files varies from 10,000 to 150,000. The results are
similar to those presented in Figure 4 (b), but No-sim shows
a much less skewed load distribution.

Discussion. In spite of synthetic workloads used above,
we believe that they could give a flavor of how the load dis-
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tribution looks like under real-world workloads. Moreover,
the semantic indexing scheme adds only index information
to nodes in the form of < semID, fileID, SV >. The
storage overhead is expected to be small. We here offer
some back-of-the-envelope numerical support for our ex-
pectation. For instance, consider a 1000 node system stor-
ing 150,000 files (as shown in Figure 4 (b)). We estimate
the storage requirement for the 95-percentile of the number
of indices stored per peer node (about 9000 index tuples).
Both semID and fileID are 8 bytes, and a SV of 200 key-
words is 1,600 bytes (a SV can be represented as a set of 64-
bit integers). Therefore the 95-percentile consumes about
14 MB. Since the load distribution is skewed, most nodes
in the system contribute less than 14 MB storage space to
the indices. Another concern is that, clustering the indices
of semantically close files into the same peers might cause
a “hot spot” or “flash crowd” problem. We can address this
issue by using the cache diffusion method suggested in [18].

5.2. Performance of Semantic Locating

The performance of our semantic locating approach is
measured in terms of the percentage of semantically close
files that can be located given a set of queries.

As mentioned earlier, Leveraging IR algorithms such as
VSM and LSI, files and queries are represented as semantic
vectors. But, we currently do not have such VSM and LSI
tools to derive semantic vectors for files. Hence, we used
chunk fingerprints as a semantic vector instead in this ex-
periment. Some recent work [3, 13] have suggested to use
fingerprints to identify similar files. For example, a file can
be divided into a list of chunks based on its content. Each
chunk is identified by a fingerprint which is produced by
SHA-1 hash of the chunk. Thus, we can use a list of chunk
fingerprints as a SV to represent a file. If two files have
similar fingerprint lists, they are considered to be similar —
semantically close.

We checked out 205 unique C++ program files from a
CVS repository. Each of these 205 program files consists
of 3 different versions on average. Hence we checked out
615 files in total (about 10 MB). We divided each single
file into a list of variable-sized chunks using the technique
suggested in LBFS [13]. As a result, each file can be rep-
resented as a list of chunk fingerprints, each of which is a
64-bit integer by taking the first 64 bits of the chunk’s SHA-
1 hash [13]. We started our experiment with an empty P2P
file system simulator of 1000 peer nodes built atop Pastry,
and indexed each file into our simulator by applying the se-
mantic indexing procedure. Then we issued a set of queries
to locate different versions for each unique C++ program
file, since here we consider different versions of a program
file semantically close due to similar fingerprints.

Figure 6 (a) shows the results of queries in terms of the
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Figure 6. Performance of semantic locating.

percentage of semantically close files found for different
minimum chunk size limits 1 including 128 Byte, 512 Byte,
1 KB and 2 KB. The x-axis represents the number of group
hash functions n used in the semantic indexing and locat-
ing procedures, while the y-axis represents the percentage
of files found. As expected, the percentage of files matched
increases with the number n increasing from 5 to 20. More-
over, as the minimum chunk size varies from 128 byte to
2 KB, the percentage decreases. This is because chunks
with a smaller minimum chunk size limit are able to iden-
tify more similarity between different versions of a file. But
even when the minimum chunk size limit is 128 Byte and
n is 20, our semantic locating was still unable to find all
the files. This is because some files are very small, even a
minimum chunk size limit of 128 Byte could not make the
similarity high enough between different versions of a file.
According to (1−(1 − pm)n), if p is small (say, ≤ 0.7), our
locating approach might fail to find all semantically close
files with such a small similarity (because it cannot guaran-
tee a 100% probability). Further, a small m, as discussed
in [21], could dramatically improve the percentage. Fig-
ure 6 (b) shows the result for a minimum chunk size limit
of 128 Byte with m = 2.

6. Conclusions

In this paper we have explored the issue of how to in-
tegrate semantics-based access mechanisms into a P2P file

1When dividing a file into chunks, we impose a minimum chunk size
limit like in LBFS [13].
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system, and shown that it can be implemented efficiently
and reasonably clean. Central to our work is to provide
semantic indexing and retrieval capabilities. Our seman-
tic indexing and locating approach is based on DHTs where
the indices of semantically close files are clustered to the
same peers with high probability (nearly 100%) by the use
of locality sensitive hash functions. A query for finding se-
mantically close files can be answered by consulting only a
small number of peer nodes which are most responsible for
such a query, instead of by query flooding. Our approach
only adds index information to peer nodes, thus imposing
only a small storage overhead. This paper constitutes an
initial step to integrate semantics-based access mechanisms
into a P2P file system. A number of issues such as query
consistency, query dependency and query refinement need
to be explored in our future work.
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