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Abstract

Disk drive manufacturers are putting increasingly larger
built-in caches into disk drives. Today, 2 MB buffers are
common on low-end retail IDE/ATA drives, and some SCSI
drives are now available with 16 MB. However, few pub-
lished data are available to demonstrate that such large
built-in caches can noticeably improve overall system per-
formance. In this paper, we investigated the impact of the
disk built-in cache on file system response time when the
file system buffer cache becomes larger. Via detailed file
system and disk system simulation, we arrive at three main
conclusions: (1) With a reasonably-sized file system buffer
cache (16 MB or more), there is very little performance ben-
efit of using a built-in cache larger than 512 KB. (2) As a
readahead buffer, the disk built-in cache provides notice-
able performance improvements for workloads with read
sequentiality, but has little positive effect on performance if
there are more concurrent sequential workloads than cache
segments. (3) As a writing cache, it also has some pos-
itive effects on some workloads, at the cost of reducing
reliability. The disk drive industry is very cost-sensitive.
Our research indicates that the current trend of using large
built-in caches is unnecessary and a waste of money and
power for most users. Disk manufacturers could use much
smaller built-in caches to reduce the cost as well as power-
consumption, without affecting performance.

1. Introduction

Almost all modern hard disk drives have an internal
buffer, or built-in cache. The disk built-in cache can
serve multiple purposes. Besides as a pass-through speed-
matching buffer between the bus and the disk media, it can
be readily extended to include read caching, readahead and
write caching [12, 10, 11].

In the last couple of years, hard disk manufacturers have
dramatically increased the size of disk built-in caches in

their products. Even as recently as the late 1990s, 256 to
512 KB was common on disk drives, and it was not un-
usual to find only 512 KB cache on even some SCSI units
(though many had from 1 MB to 4 MB). Today, a 2 MB
built-in cache is common on retail low-end IDE/ATA drives,
and some SCSI drives are now available with 16 MB. There
are possibly two main reasons for this dramatic increase in
built-in cache sizes. The first is that memory prices have
dropped precipitously over the last few years. The second
is pertinent to marketing: hard disk consumers have a per-
ception that doubling or quadrupling the size of the built-in
cache will have a great impact on the system performance.

1.1. Do large built-in caches improve system perfor-
mance?

While large built-in caches may show their usefulness
under some artificial disk benchmarks, there are no pub-
lished research results, as far as we know, to demonstrate
that they can really improve the performance of real sys-
tems. In fact, we believe that large disk built-in caches will
not significantly benefit the overall system performance.
The reason is that all modern operating systems already use
large I/O buffer caches to cache reads and writes. At the
time of this writing, most low-end personal computers have
at least 256 MB of RAM, and high-end workstations and
servers have many gigabytes of RAM. As a result, the OS
can use an I/O buffer cache ranging from tens of MBs to
several GBs. With such a large OS buffer cache, the ef-
fectiveness of disk built-in cache is unclear. Consequently,
it is quite meaningful to study the behavior of the built-in
cache and the effect of this cache on the overall system per-
formance. Such a study should use real-world workloads,
with real system configurations. This paper uses detailed
file system and disk system simulation to explore the effect
of the built-in cache on the system performance, especially
when the file system buffer cache gets larger and larger.

This research will benefit the disk drive industry and user
community in the following two important ways. First, the
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disk drive industry is very cost sensitive and has a thin profit
margin. A difference of merely several dollars may deter-
mine the success or failure of a product. If we can deter-
mine a smaller, optimal built-in cache size, the cost of disk
drives can be reduced. Second, a large built-in cache uses
more power. As many systems increasingly become power-
aware, it is important to reduce the power consumption of
disk caches. Undoubtedly, a smaller disk built-in cache will
use less power.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes the simu-
lation model. Section 4 introduces the analytic model. Sec-
tion 5 shows the results of simulation and analyses of ex-
periments. Finally, we summarize our work in Section 6.

2. Related Work

There are few studies conducted on the behavior of the
disk built-in cache as the size of the file system buffer cache
is becoming larger. Much work has been done in disk mod-
eling. Ruemmler and Wilkes [12] present a strong case
for detailed disk drive simulators and Ganger et al. have
made available a highly-configurable disk simulator called
DiskSim [3]. Shriver et al. [15] also present analytic mod-
els for modern disk drives. They all believe that the disk
built-in cache needs to be modeled for caching if we want
to get results closely matching the real disk drive. More-
over, some researchers have provided a suite of extraction
techniques to obtain detailed knowledge of disk characteris-
tics, including the built-in cache segment number, type and
size [13, 19].

Ruemmler and Wilkes [11] have studied access patterns
at the disk level using a simulator. They showed that reada-
head and NVRAM (Non-Volatile RAM) write caching at
the disk can yield significant improvement in performance.
Their systems had small system RAM sizes (32–96 MB)
by today’s standard. Shriver et al. [14] have constructed
an analytic model for file system reads, trying to explain
why file system prefetching works. They believe that the
disk built-in cache plays an important role in prefetching.
Biswas et al. [1] have also used a trace-driven simulation
to explore the issues around managing a non-volatile write
disk caches, and found that having a relatively small amount
of NVRAM for a write cache is very effective in reducing
the number of I/O writes to the disk and still allows for a
write-behind strategy for the write cache to ensure consis-
tency and crash recovery. Smith [16] has given design con-
siderations (i.e., cache location, cache size, etc.) to both
disk caches located in the I/O system and those located in
the main memory.

Recent work by Wong et al. [18] have explored the ben-
efits of exclusive caches, in which data blocks are either in
the client or disk array cache, but never in both. Their work

is motivated by a fact that modern disk arrays generally have
a very big cache, typically in the size of several GBs. The
disk built-in cache in our study instead is much smaller (typ-
ically several MBs).

3. Simulation Model

In order to conduct this research, we used various
file system traces to drive a system model that uses a
realistically-sized file system buffer cache and a modern
disk drive with a large built-in cache. Our main perfor-
mance metric is file system response time, which is the re-
sponse time measured after a file read or write request is
issued by an application.

3.1. Simulators

We developed a detailed file system simulator, which
models the 4.4BSD Unix implementation of the Berkeley
Fast File System [6, 17]. FFS and its variations are the most
widely used file system for Unix systems. The algorithms of
the simulator are ported from the BSD kernel source code.
The file system simulator is built on top of a popular and ac-
curate disk simulator called DiskSim [3] (due to space con-
straints, we here omit the detail of our simulators. Please
refer to [20] for more detail). Based on our understanding
of the FFS, we determined a set of parameters that allow us
to model the FFS, which can be found in Table 1.

We chose the disk Quantum Atlas 10K (TM09100W) as
a disk model in our experiments, because it has been already
validated by DiskSim [2]. The disk capacity is 9GB with a
built-in cache of 2 MB. Other parameters can be found in
[2].

3.2. File System Workloads

In order to provide a fair and unbiased performance eval-
uation, we paid special attention in selecting the workload
that drives our simulator since it plays a critical role in per-
formance evaluation. Our main objective in choosing the
workload is to use the real-world file system traces. In
addition, a file system trace generated from PostMark [5]
benchmark is used. We have also generated a small number
of synthetic micro-benchmark workloads, which are used
to study a specific aspect of system performance and will
be discussed later.

3.2.1. Real-World Traces

Five real-world traces have been used in our simulation.
INS, RES, and WEB [8, 9] are from University of Cali-
fornia. INS is a collection of traces from a group of 20
machines located in labs for undergraduate classes. RES
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parameter definition value
BlockSize the amount of data which the file system processes at once 8 KB
FragmentSize the minimum amount of data which the file system processes at once 1 KB
DirectBlocks the number of blocks that can be accessed before the indirect block

needs to be accessed
12

ClusterSize the amount of files that is stored contiguously on disk 64 KB
CylinderGroupSize the size of a cylinder group 16 MB
SysCallOverhead time needed to check the file system buffer cache for the requested data 0.01 ms
MemoryCopyRate rate at which data are copied from the file system buffer cache to the

application memory
0.01 ms/KB

Table 1. Parameters for FFS simulator

traces RES INS WEB HARP SITAR
data read(MB) 52743 94619 327838 520 213
data write(MB) 14105 16804 960 249 183
read:write ratio 3.7 5.6 341.5 2.08 1.16

reads(thousands) 9433 71869 9545 26 57
writes(thousands) 2216 4650 779 12 49
file size(0–16 KB) 60% 88% 63% 73% 80%

Table 2. Five real-world traces.

consists of 13 machines on the desktops of graduate stu-
dents, faculty, and administrative staff of the research group
project. WEB is collected from a single machine that is the
web server for an online library project, which maintains
a database of images using the Postgres database manage-
ment system and exports the images via its web interface.
This server receives approximately 2300 accesses per day
during the period of the trace.

HARP and SITAR [4] are from University of Ken-
tucky. HARP is gathered on a SPARC station for a re-
search project. It is dominated by two collaborating pro-
grammers working on a large software project. Their work
consists almost entirely of edit/compile/run/debug cycles on
a large multimedia application. SITAR records user activ-
ity on a publicly available SPARC station. Most users ac-
cessed this workstation remotely via telnet, rlogin,and X-
applications. It is a collection of file accesses by gradu-
ate students and professors doing work such as emailing,
reading news, compiling programs, running LaTeX, editing
files, and so on. Further detail of of these real-world traces
can be found in [8, 9, 4]. Some basic characteristics of these
real-world traces are described in Table 2.

3.2.2. PostMark Trace

The PostMark benchmark was designed to model the work-
load seen by Internet Service Providers under heavy load
[5]. Specifically, the workload is meant to model a com-
bination of electronic mail, netnews, and web-based com-

merce transactions. The PostMark trace is generated using
20,000 initially created files with a size range of 512 bytes
to 16 KB. 200,000 transactions were performed with ap-
proximately 120,000 created and deleted files. There was
no bias toward any transaction type. A total data size of
approximately 1.1 GB is read and 1.2 GB is written.

4. Analytic Model

In this section, we present our analytic model which will
be used to explain the simulation result in Section 5. We
assume a uniprocessor running a modern file system (FFS).
The system includes a large file system buffer cache, which
holds disk blocks that have been referenced previously and
uses an LRU replacement policy. To simplify our analysis,
we assume that an I/O request issued by an application can
be satisfied with a single disk access.

Here, we present several parameters that will be used in
our model.

4.1. File System Specification

� ���� is the mean file system response time.

� ���� is the amount of time that it takes to read the block
from the file system buffer cache.

� ����� is the amount of time that it takes to read the
block from the disk.
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� ����� is the miss rate of the file system buffer cache.

� ���������	� is the mean request size at the system
level.

� Other parameters can be found in Table 1.

4.2. Disk Drive Specification

� 
�� is the mean disk response time.

� 
���
������� includes the time to send the request
down the bus and the processing time at the controller,
which is made up of the time required for the controller
to parse the request, check the disk built-in cache for
the data, and so on [14].

� ����� is the mean seek time.

� ������ is the mean rotational latency.

� ���	
 is the service time of a request in the disk mech-
anism.

� 
������������	� is the mean disk request size.

� ��������� is the disk built-in cache miss rate.

� ����� is the data transfer rate between the disk built-
in cache and the host. In our simulation, the transfer
rate is 18 MB/s.

� 
����� is the data transfer rate between the disk sur-
face and the disk built-in cache. The disk we used in
our simulation spins at 10,025 RPM, thus giving us a

����� of close to 18 MB/s.

4.3. Disk Response Time

The disk response time 
�� depends both on the disk
mechanism service time ���	
 and the built-in cache miss
and hit probabilities. In particular, ��������� is the proba-
bility that a request will be a cache miss. If readahead at the
disk is not enabled or if a request is a write (since the disk
built-in cache is made of volatile RAM, it by default uses
write-through to preserve data in case of a power failure),
��������� will be 1 [15].

���	
 depends on the disk seek time, the rotational la-
tency and the transfer time. It can be computed as follows:

���	
 � ����� � ������ �

������������	�


�����
(1)

So the disk response time 
�� can be computed as:


�� � 
���
��������

������������	�

�����
���������� � ���	
 (2)

4.4. File System Response Time

In our model, an access that hits in the file system buffer
cache experiences time �
�� to read the block from the
cache.

�
�� � �������
��������
���������	�

��������������

In the case of a cache miss, the block needs to be fetched
from disk before it may be delivered to the application.

����� � �
�� �
��

Given a cache miss rate �����, the file system response
time can be computed as:

���� � �
�� � ����� �
�� (3)

Combining equation (2) and (3), we have

���� � �
�� � ����� � �
���
�������

�

������������	�

�����
� ��������� � ���	
� (4)

5. Simulation Results and Performance Analy-
ses

This section presents our simulation results and perfor-
mance analyses. We try to investigate the impact of disk
built-in caches on the file system response time in the fol-
lowing aspects: cache size, readahead and write caching.
Due to space constraints, we cannot present all results here.
Please refer to [20] for detailed results.

5.1. Impacts of Sizes of File System Caches and Disk
Built-in Caches

Figure 1 shows the file system response time with differ-
ent disk built-in cache sizes and file system buffer cache
sizes for five real-world workloads as well as PostMark
trace. The figure clearly shows that, with a file system
buffer cache size of 16 MB or more, the built-in cache has
very little impact on the file system response time when the
disk built-in cache size is larger than 512 KB. When the file
system buffer cache is 16 MB, a system using a 16 MB disk
built-in cache is only 1.1–4.1% faster than a system with
a 512 KB disk built-in cache. When the file system buffer
cache is 128 MB, the former is only 0.3–1.5% faster than
the latter. We therefore conclude that, larger built-in caches
have virtually no noticeable performance benefit on overall
system performance, especially when the file system buffer
cache is large.
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Figure 1. File system response time with different cache sizes for six workloads. Readahead at the
disk level is enabled. Write caching at the disk level is disabled.

5.1.1. Analyses

In this section we use the analytic model discussed ear-
lier to explain why this happened. For a certain work-
load with the same file system buffer cache size, it is rea-
sonable to assume that ����, �����, �������	��
����,
����
�������, �	��� and ����� are same. So when
the disk built-in cache size changes, we compute �����
from equation (4) as

����� � ����� �������	��� � ����� (5)

With the disk built-in cache increasing from 512 KB to
16 MB, ������	��� is quite small. This is because that,
compared to the size of the file system buffer cache, the disk
built-in cache is typically small, which means that most ac-
cesses never reach the disk. In addition, the disk built-in
cache acts as a speed-matching circular buffer, “random”
and “reuse” cache hits are relatively rare. Though requests
for contiguous extension of prior reads can be common and
performing readahead at the disk level can improve cache
hit rate, the cache hit rate as a result of readahead is still
low because of multiple interleaving streams of read re-
quests. So even the disk built-in cache reaches up to 16 MB,
�����	��� is still quite large. In our simulation, �����	���

is always larger than 90%. As a result, ������	��� is still
small (� ���) as the built-in cache varies from 512 KB up
to 16 MB. Furthermore, when the file system buffer cache
becomes larger, ����� decreases. For example, when file

system buffer cache is 32 MB, ����� is less than 15% for
all workloads (except for WEB and PostMark, their �����

are about 45% and 96% respectively). According to equa-
tion (5),����� is small consequently.

We also found that there is a slight difference in the mean
physical access time as the file system buffer cache size
varies. This suggests that the “filtering” of the reference
stream by various file system buffer caches alters the inter-
action between requests presented to the disk, resulting in
the difference in the mean physical access time.

Moreover, the disk built-in cache miss rate increases
slightly when the file system buffer cache increases from
16 MB to 128 MB. This is because that larger file system
buffer caches capture more locality, those requests missing
the file system buffer cache therefore have poorer locality,
resulting in higher built-in cache miss rates.

5.2. Impact of the Readahead Policy

To improve the disk built-in cache hit rate for sequen-
tial access patterns, modern disk drives prefetch data after
read requests. If a next read comes, the disk will check if
the requested data is in the cache as a result of readahead
for previous requests. On a cache hit, the disk sends the
data directly from the disk built-in cache, and thus avoids
mechanical positioning overheads (seek time plus rotational
latency). In the disk model we used, 9 out of 10 cache seg-
ments are devoted for the readahead cache.
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We experimented on the effect of disabling or enabling
readahead for all the traces (due to space constraints, we
here do not present the figure). The percent improvement of
enabling readahead in response time for PostMark trace is
very small (about 1.8 – 1.9%), this is because the incidence
of each transaction type and its affected files in PostMark
are chosen randomly, thus minimizing the influence of file
system caching and disk level caching [5]. Even though all
files are read in their entirety, the small size of the randomly
chosen files (ranging from 512 bytes to 16 KB, which can
be read in only one disk request) keeps readahead from per-
forming effectively. While for RES, INS, WEB, HARP and
SITAR, when the file system buffer cache is 16 MB, the per-
cent improvements of enabling readahead in response time
are 13.5%, 42.1%, 6.0%, 9.0% and 10.5% respectively. As
the file system buffer cache size increases, the percent im-
provements decrease dramatically. This is because larger
file system buffer caches mean higher cache hit, and can
absorb most reads and writes, thus amortizing the negative
effect of not performing readahead to some extent. There
is an exception for INS: when the file system buffer cache
varies from 16 MB to 128 MB, the percent improvements in
response time are more than 17.7% with performing reada-
head. This is because INS has much more reads than writes
and it also has a great number of small files (88% for file
size less than 16 KB) [9, 8]. However, the percent improve-
ments for other four real-world traces are small.

5.2.1. Effects of Cache Sizes
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Figure 2. Performance impact on INS. Write
caching at the disk is disabled. (a) Percent
improvement of enabling readahead in re-
sponse time with different file system buffer
cache sizes and disk built-in cache sizes.
(b) Performance impact of numbers of cache
segments.

Readahead so far was studied by using a 2 MB disk
built-in cache. In an attempt to further explore the effect

of readahead under various cache sizes, we ran our simula-
tion for five real-world workloads under various file system
buffer cache sizes and disk built-in cache sizes with reada-
head enabled and disabled (PostMark was excluded in this
experiment since readahead has a very little impact on it).
Figure 2(a) shows the results for INS trace. We observed
similar results for other four real-world traces as well.

Clearly, the size of file system buffer caches affects the
effectiveness of performing readahead at the disk level.
When the file system buffer cache size is 16 MB, readahead
performs extremely well and achieves about 42–45% im-
provement in response time for various disk built-in cache
sizes. While the file system buffer cache size increases (up
to 32 MB, 64 MB and 128 MB), the percent improvement
(about 12–20%) decreases dramatically. This suggests that
larger file system buffer caches mean higher cache hit and
can absorb a greater fraction of the read requests, therefore
amortizing the negative effect of not performing readahead
at the disk to some extent. Furthermore, we observe that, for
various file system buffer cache sizes, a 512 KB disk built-
in cache performing readahead nearly achieves a maximum
percent improvement in response time over one without per-
forming readahead. This makes us to believe that a 512 KB
built-in cache can perform readahead very well, even com-
pared to a larger one.

5.2.2. Effects of Numbers of Cache Segments

A single readahead cache can provide effective support for
only a single sequential read stream. If two or more sequen-
tial read streams are interleaved, the result is no benefit at
all. This can be remedied by segmenting the cache so that
several unrelated data items can be cached.

Segmenting a disk cache is similar to dividing a CPU
cache into multiple cache lines. Just like in the CPU cache,
there is a tradeoff between the number of segments and the
segment size. More segments in the cache can accommo-
date a larger number of concurrent workloads. On the other
hand, when the cache size is fixed, having more segments
means a smaller segment size. This will have a negative
impact on the cache’s ability to absorb spatial locality, be-
cause the readahead algorithm will have less room to put
the prefetched data.

The disk model we used has a default segment number
of 10. To study the impact of segment numbers, we var-
ied the number of segments from 1 to 80 while keeping the
built-in cache size fixed at 2 MB. The results for INS trace
are shown in Figure 2(b). We observed similar results for
other cache sizes. Note that, if the number of segments is
small (1–8), the cache cannot accommodate many concur-
rent requests in the workload, rendering readahead useless.
For this particular trace, the number of concurrent access
streams is probably less than 10. As a result, there is vir-
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tually no performance difference when the number of seg-
ments varies from 10 to 40. Further increasing the num-
ber of segments will decrease performance instead because
each segment becomes too small. For example, using 80
segments resulted in a performance decrease of about 2.5%.
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Figure 3. The file system buffer cache is 16 MB
and the disk built-in cache is 2 MB. Write
caching at the disk is disabled. (a)File system
response time for sequentially reading nine
64 KB files with 5 readahead cache segments
and 9 readahead cache segments. (b)Disk
built-in cache miss rate for both 5 readahead
cache segments and 9 readahead cache seg-
ments.

In an attempt to further quantify the effect of readahead,
which depends on a number of factors, including the num-
ber of cache segments, the number of concurrent sequential
workloads, and request sizes, we generated a set of syn-
thetic micro-benchmark traces for our simulation. This set
of traces consists of 9 concurrent workloads sequentially
reading 64 KB files with various request sizes from 1 KB to
16 KB.

Figure 3(a) compares the file system response time when
servicing 9 concurrent workloads with 5 cache segments
and the response time with 9 cache segments. When the
request size takes 1 KB, 2 KB, 4 KB, 8 KB and 16 KB, the
decreases in the response time are 65.1%, 56.6%, 43.2%,
27.5% and 7.9% respectively. Obviously, 9 cache segments
perform much better than 5 segments in concurrently read-
ing nine files. This is because 9 cache segments can prevent
data prefetched into cache segments from being polluted by
other read requests, and consequently improve the cache hit
rate for sequential access patterns. Figure 3(b) compares
the disk built-in cache miss rate for both 5 segments and 9
segments with various request sizes. We can easily see that,
there is a big difference in disk built-in cache miss rates be-
tween 5 segments and 9 segments. Therefore, if there are
enough cache segments to service multiple streams of se-
quential requests, readahead will work more effectively.

In other words, if the file system can dynamically adapt
the number of the disk built-in cache segments to be the
number of files being concurrently read from the disk, the
built-in cache will perform better. This is a simple and in-
expensive SCSI operation, and can make the built-in cache
work effectively. With the request size increasing, however,
the benefit will decrease. A smaller request size can yield
more benefits in readahead when the number of the cache
segments is equal or larger than the number of concurrent
workloads.

5.3. Impact of Write Caching at the Disk

Enabling write caching at the disk could improve the per-
formance in the following ways. First, write latency can
be reduced due to the fact that write requests are consid-
ered completion as soon as all write data have been trans-
ferred to the cache (but not necessarily to disk media). Sec-
ond, data in a write cache segment are often overwritten in
place, reducing the amount of data that must be written to
the disk media. Third, stored writes at the write cache seg-
ment make it possible for the controller to schedule them in
near-optimal fashion, so that each write takes less time to
perform. In the disk model we used, one cache segment
(� 0.2 MB) was devoted for write caching. This is be-
cause: (1) More than one cache segments devoted for write
caching have little positive impact on overall performance
in our experiments, and (2) as discussed earlier, more cache
segments devoted for readahead can be more effective.

Our results show that there is almost no file system re-
sponse time improvement in WEB when write caching is
enabled. Since the WEB workload has few writes, its disk
traffic is dominated by reads even with larger file system
buffer caches [9, 8]. While for RES, INS, HARP, SITAR
and PostMark, the improvements in file system response
time are 3.0–5.8%, 2.0–3.4%, 4.1–6.0% , 5.0–7.0% and
35.6–37.8%, respectively (due to space constraints, we here
do not present the figure). With the file system buffer cache
increasing from 16 MB to 128 MB, we found that the per-
cent improvements increase. This is because these work-
loads like RES and INS have more write traffic while the
file system buffer cache increases [8, 9]. In other words,
larger file system buffer caches can alter the workload pre-
sented to the disk by absorbing a greater fraction of the
read requests [7]. Since most write requests must even-
tually be reflected on the disk for safety, disk traffic and
disk performance will become more and more dominated
by writes. Our results suggest that, in write-intensive work-
loads, write caching can provide much more benefits. We
also proposed for the built-in cache a new policy — selec-
tive write caching, wherein metadata requests and user-data
requests are treated differently at the disk level (please re-
fer to [20] for more detail). Our results show that selective
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write caching performs better than no write caching (except
for WEB workload) without compromising system consis-
tency.

6. Conclusions

Disk drive manufacturers are putting increasingly larger
built-in caches into disk drives. Some disk drives nowa-
days have a cache of 16 MB or bigger. However, there are
few published results to demonstrate that such large built-
in caches can really improve overall system performance.
While most of the research work has been busy trying to
come up with better caching schemes and finding new ways
to use caches, our work takes the opposite view. Via de-
tailed simulations, we arrive at the following three main
conclusions:

(1) Given the workloads studied, larger disk built-in
caches do not have much impact on system performance.
Since the disk drive industry is very cost-sensitive, we ar-
gue that disk manufacturers could use much smaller disk
built-in caches (about 512 KB) in future products to bring
down the cost, without affecting performance. Moreover, a
smaller cache will consume less power, which is becoming
increasingly important for many portable applications.

(2) Enabling readahead at the disk provides signifi-
cant performance improvements for workloads with read
sequentiality (e.g., multimedia applications might be the
case), but if the number of the disk built-in cache segments
is smaller than the number of concurrent workloads, per-
forming readahead at the disk has little effect on file system
response time. Therefore, the number of built-in cache seg-
ments is important for multiple sequential streams of read
requests when the disk built-in cache performs readahead.

(3) Write caching at the disk also has some positive ef-
fects on system performance (especially on write-intensive
workloads), at the risk of data loss and the need for more
complicated error recovery after a power failure. We pro-
pose selective write caching to strike the balance between
the performance and the risk of file system inconsistency.
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