Math 2340 Radius Practice

Consider the following functions $f(x)$. Use complex variables to find the radius of convergence for the Taylor Series centered about the given x_{0}. Then list the real values of x for which the series will converge.

1. $f(x)=\frac{1}{x^{2}-1}$, where $x_{0}=2 \quad$ 3. $f(x)=\frac{x}{x^{2}-x}$, where $x_{0}=3$

2. $f(x)=\frac{x}{x^{2}+2 x+2}$, where $x_{0}=\frac{1}{2}$

3. $f(x)=\frac{7 x-1}{x^{3}+x}$, where $x_{0}=2$

Math 2340 Info about the radius of convergence

$$
\begin{align*}
& \text { THEOREM } \\
& \begin{array}{l}
\text { If } x_{0} \text { is an ordinary point of the differential equation } \\
\qquad P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0,
\end{array}
\end{align*}
$$

that is, $p(x)=Q(x) / P(x)$ and $q(x)=R(x) / P(x)$ are analytic at $x=x_{0}$, then the general solution of (1) is given by

$$
y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0} y_{1}+a_{1} y_{2}
$$

where a_{0} and a_{1} are arbitrary constants, and y_{1} and y_{2} are linearly independent series solutions. Furthermore, $y(x)$ is analytic at $x=x_{0}$, and the radius of convergence for $y(x)$ is at least as large as the radius of convergence for the series expansion of $p(x)$ and $q(x)$.

In order to find information about the radius of convergence for a series solution to a differential equation, there are three options:

1. Find the series solution $y(x)$ and then test for convergence.
2. Find the series expansion for $p(x)$ and $q(x)$. Find the x values for which it converges using a convergence test. This gives a lower bound on the radius of convergence for $y(x)$.
3. Use complex variables to find where the series for $p(x)$ and $q(x)$ converge. This idea can be summarized as follows: If $f(x)$ is a rational function, then the series expansion for $f(x)$ about a point x_{0} has a radius of convergence that is precisely the distance from x_{0} to the closest singularity of $f(x)$ (think zero in the denominator).

Here are some facts you might need:

- $\sum_{n=0}^{\infty} b_{n}$ converges absolutely if

$$
\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|<1
$$

- If $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ are complex numbers, then the distance between z_{1} and z_{2} is given by

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

