MATH 2340 WARM-UP PROBLEMS

1. Consider the second-order differential equation

y" 4 pla)y + qlx)y = g(x). (1)

Under what special cirenmstance is (1) a homogeneous ODE? What about linear?
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2. Now. consider the initial value problem
v+ p)y +q@)y =0,  y(0) =by, y'(0) = by

Assume that the general solution to the above differential equation is given by y(x) = c1y1(x) 4 caya(x)
where both y;(2) and y2(z) both solve the ODE and ¢; and ¢y are arbitrary constants.

Write a system of two equations involving the initial conditions that allows you to solve for the con-
stants ¢p and ¢y, If possible, write your equations in matrix form A ¢ = b where A is a 2x2 matrix,
and b and € are 2x1 vectors.
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3. What must be true about the expression derived above in order to solve for e; and ey given any set of
initial conditions (any value for by and by)?
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That's it. No more fun on the other side.



