Math 2340 Warm-Up Problems

1. Consider the second-order differential equation

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x) \tag{1}
\end{equation*}
$$

Under what special circumstance is (1) a homogeneous ODE? What about linear?
2. Now, consider the initial value problem

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0, \quad y(0)=b_{1}, \quad y^{\prime}(0)=b_{2} .
$$

Assume that the general solution to the above differential equation is given by $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ where both $y_{1}(x)$ and $y_{2}(x)$ both solve the ODE and c_{1} and c_{2} are arbitrary constants.

Write a system of two equations involving the initial conditions that allows you to solve for the constants c_{1} and c_{2}. If possible, write your equations in matrix form $\mathbf{A} \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{b}}$ where A is a 2×2 matrix, and $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are 2×1 vectors.
3. What must be true about the expression derived above in order to solve for c_{1} and c_{2} given any set of initial conditions (any value for b_{1} and b_{2})?

