MATH 2340 WARM-UP PROBLEMS

1. What are the general solutions to the following differential equations:
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2. Consider the differential equation
v =Ty +12y = 0.
(a) Classify the differential equation. ) -
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(b) Verify that y;(x) = e* and yo(x) = ™ are both solutions to the differential equation.
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(¢) Under what conditions is y3(x) = ¢1e3* + c2e™ also a solution to the differential equation?
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3. Consider the differential equation
r(a)y" + p(x)y’ + q(a)y = 0.

(a) Classify the differential equation,
\ineax, 2" order \'mmgo‘uwouu) ODE |

(b) Assume that y(x) and ya(x) are both solutions to the above differential equation. Under what
conditions is ys(x) = ejy1(x) + caya(x) also a solution?
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(¢) What do you think is special about the differential equation r(x)y” + p(x)y’ + q(x)y = 0 that

allows the above statement to be true.
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