MATH 2340 WARM-UP PROBLEMS

Recall from class on Friday that $\mathcal{L}{f(t)}$ is defined as

$$\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) \, dt.$$

Using integration by parts, we showed that $\mathcal{L}\{y'(t)\} = sY(s) - y(0)$ where $Y(s) = \mathcal{L}\{y(t)\}$.

1. How do you simplify the expression $\mathcal{L}\{y''(t)\}\$ in terms of Y(s) where $Y(s) = \mathcal{L}\{y(t)\}$?

2. Find the Laplace transformation of the solution to the IVP

$$y'' - 6y' + 9y = 4$$
, $y(0) = 2$, $y'(0) = 1$.

3. Determine what function would give you the following Laplace transforms. Use the table you were given in class on Friday.

(a)
$$F(s) = \frac{3}{s-1}$$

(b)
$$F(s) = \frac{2}{s^2 + 3s - 4}$$

(c)
$$F(s) = \frac{4}{s(s-3)^2}$$

(d)
$$F(s) = \frac{s-1}{s^2+4s+5}$$