Math 2340 Warm-Up Problems

Recall from class on Friday that $\mathcal{L}\{f(t)\}$ is defined as

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Using integration by parts, we showed that $\mathcal{L}\left\{y^{\prime}(t)\right\}=s Y(s)-y(0)$ where $Y(s)=\mathcal{L}\{y(t)\}$.

1. How do you simplify the expression $\mathcal{L}\left\{y^{\prime \prime}(t)\right\}$ in terms of $Y(s)$ where $Y(s)=\mathcal{L}\{y(t)\}$?
2. Find the Laplace transformation of the solution to the IVP

$$
y^{\prime \prime}-6 y^{\prime}+9 y=4, \quad y(0)=2, \quad y^{\prime}(0)=1
$$

3. Determine what function would give you the following Laplace transforms. Use the table you were given in class on Friday.
(a) $F(s)=\frac{3}{s-1}$
(b) $F(s)=\frac{2}{s^{2}+3 s-4}$
(c) $F(s)=\frac{4}{s(s-3)^{2}}$
(d) $F(s)=\frac{s-1}{s^{2}+4 s+5}$
