
MATH 234 (02)
FORCED MECHANICAL VIBRATIONS

(PRELIMINARY DRAFT)

THE FORCED PROBLEM - THE NONHOMOGENEOUS PROBLEM

Let’s go back to the set-up for the mass-spring-damper system from the previous lecture, but now, let’s
include an external forcing term

Fe(t) = F0 cosωt.

Here F0 and Ω are constants. This forcing represents a periodic moving up and down of the base of the
spring system with constant amplitude F0 and frequency Ω. Thus the differential equation we’re looking at
is

mx′′ + γx′ + kx = F0 cosΩt.

This is a nonhomogeneous problem. That means we have to consider the homogeneous problem first.
Fortunately, we’ve already done this in the previous lecture, so we get to use it here. As before, we’ll break
this up in different cases.

Remark: this same differential equation matters in a variety of different settings: mechanical systems such
as springs, as discussed here; electrical systems with resistors, capacitors and solenoids, see below. In short,
this differential equation is important to study in any setting where we encounter vibrations or oscillations.

1. NO DAMPING (γ = 0), NO RESONANCE (Ω != ω0)

The differential equation is

mx′′ + kx = F0 cosΩt

⇒ x′′ + ω2
0x =

F0

m
cosΩt,

where ω2
0 = k/m is the square of the natural frequency of the system.

(a) The homogeneous solution of this problem (see last lecture) is

xH = c1 cosω0t + c2 sin ω0t,

and the frequency of these oscillations is ω0.

These lecture notes are based on those of Dr. Bernard Deconinck at the University of Washington. They have been modified
to fit this class.
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(b) The particular solution can be found using the method of undetermined coefficients. We guess

xp = A cosΩt + B sinΩt.

This guess looks like a good one, but we need to be careful: if Ω = ω0, then the terms of the particular
solution also appear in the homogeneous solution. In that case we need to multiply our guess by t and
try again. We’ll deal with this case separately later. So, for now: assume that Ω != ω0. In that case
we substitute the above guess in the equation. With

x′′
p = −AΩ2 cosΩt − BΩ2 sinΩt,

we get

−AΩ2 cosΩt − BΩ2 sinΩt + ω2
0(A cosΩt + B sinΩt) =

F0

m
cosΩt

⇒
{

−AΩ2 + ω2
0A = F0/m

−BΩ2 + ω2
0B = 0

⇒





A =

F0

m(ω2
0 − Ω2)

B = 0.

We see immediately that there are problems with the solution if we were to allow Ω = ω0. Good thing
we excluded this! The particular solution is

xp =
F0

m(ω2
0 − Ω2)

cosΩt.

(c) The general solution is given by

x = xH + xp = c1 cosω0t + c2 sin ω0t +
F0

m(ω2
0 − Ω2)

cosΩt.

At this point, c1 and c2 may be determined from the initial conditions.

Let’s impose some special initial conditions. These aren’t really essential, but they make the calculations a
bit easier. Let

x(0) = 0, x′(0) = 0.

You’ll easily check that the corresponding solution is given by

x =
F0

m(ω2
0 − Ω2)

(cosΩt − cosω0t).

(You checked this, right? Otherwise go back and do it NOW!) Using a trig identity (check this too!) this
solution is rewritten as

x =
2F0

m(ω2
0 − Ω2)

sin ω1t sinω2t,

where
ω1 =

ω0 − Ω
2

, ω2 =
ω0 + Ω

2
.

Assume that Ω is close to ω0 (but not equal, otherwise the above result is not valid, remember?) then ω1 is
close to zero, which means that the factor sinω1t is a function with a frequency that is much smaller than
that of sin ω2t. We can trivially rewrite our solution as
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x =
(

2F0

m(ω2
0 − Ω2)

sin ω1t

)
sinω2t = U(t) sin ω2t,

where
U(t) =

2F0

m(ω2
0 − Ω2)

sin ω1t

is interpreted as a time-dependent amplitude: it is a function that is changing much slower than sinω2t.
This time-dependent amplitude is itself oscillating in time, but it takes a lot longer for it to come around.
The kind of pattern we get is illustrated in Fig. 1.
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Figure 1: The beats phenomenon with Ω = 10, ω0 = 9.

Such a signal is called a modulated wave, and the phenomenon observed is that of beats: there are two
frequencies in this problem. The first frequency is the slow one, which governs the modulation of the
amplitude. The second frequency is that of the underlying carrier wave, i.e., the fast oscillations.

2. NO DAMPING (γ = 0), RESONANCE (Ω = ω0)

Let’s look at one of the special cases we skipped. The solution given above is not valid when Ω = ω0. What
happens in this case?

The differential equation is

mx′′ + kx = F0 cosω0t

⇒ x′′ + ω2
0x =

F0

m
cosω0t.

3



(a) The homogeneous solution of this problem is the same as before:

xH = c1 cosω0t + c2 sin ω0t.

(b) The particular solution can be found using the method of undetermined coefficients. We guess

xp = A cosω0t + B sin ω0t.

This guess is no longer valid, since both terms of our guess occur in the homogeneous solution. This
implies we need to multiply our guess by t and try again. We get

xp = At cosω0t + Bt sinω0t,

⇒ x′
p = A cosω0t + B sinω0t − Aω0t sinω0t + Bω0t cosω0t,

⇒ x′′
p = −2Aω0 sin ω0t + 2Bω0 cosω0t − Aω2

0t cosω0t − Bω2
0t sinω0t.

Substituting this in the equation, we obtain

−2Aω0 sin ω0t + 2Bω0 cosω0t − Aω2
0t cosω0t − Bω2

0t sinω0t+

ω2
0 (At cosω0t + Bt sin ω0t) =

F0

m
cosω0t

⇒ −2Aω0 sin ω0t + 2Bω0 cosω0t =
F0

m
cosω0t

⇒
{ −2Aω0 = 0

2Bω0 =
F0

m

⇒






A = 0

B =
F0

2mω0
.

The particular solution is

xp =
F0

2mω0
t sinω0t.

(c) The general solution is given by

x = xH + xp = c1 cosω0t + c2 sin ω0t +
F0

2mω0
t sinω0t.

At this point, c1 and c2 may be determined from the initial conditions.

Let’s think about this solution. After a significant time, the particular solution will give us the most
important part, as it’s linearly increasing in time, whereas the homogeneous solution is just oscillating from
here to oblivion. So, what does this particular solution look like? It’s plotted in Fig. 2. You observe that
the amplitude of the solution is linearly growing in time. This phenomenon is called resonance.

It occurs whenever we force a system at its natural frequency. Resonance is one of the important elementary
processes in all kinds of physical systems. You may imagine that this is not necessarily a good thing in
applications: if we force the spring to oscillate at higher and higher amplitudes, it may eventually break!
This gives us another way to think about the natural frequency of the system: it is the frequency that if
we use it to force the system results in the system oscillating more and more wildly, eventually leading to
breakdown, unless we have a way to prevent it. Preventing it is the subject of the next case.
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Figure 2: The phenomenon of resonance with ω0 = 1.

3. DAMPING (γ != 0)

Let’s look at what happens when we include the effects of damping. In any realistic system some amount of
damping will be present. Sometimes, its effects are so minuscule they may be ignored. In other cases, they
may dominate.

The differential equation is

mx′′ + γx′ + kx = F0 cosω0t.

(a) We’ve seen how to find the homogeneous solution of this problem in the previous lecture: assuming
that we’re dealing with subcritical damping we have

xH = e−γt/2m (c1 cosωt + c2 sin ω0t) ,

where ω =
√

4km − γ2/2m. Note that by assuming subcritical damping we’ve let γ2 < 4km. As we’ve
seen this corresponds to a damped oscillation. Thus, no matter what the particular solution is, or what
the initial conditions are, we have

lim
t→∞

xH = 0.

This implies that, if we wait sufficiently long, all the important information about the general solution
is contained in the particular solution! So, what are we waiting for? Let’s find it!

(b) The particular solution can be found using the method of undetermined coefficients, as before. We
guess

xp = A cosΩt + B sinΩt.
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After substituting this guess in the equation and equating the coefficients of sine and cosine, and doing
some algebra, we get (check this!):






A =
F0
m (ω2

0 − Ω2)
(ω2

0 − Ω2)2 + γ2
0Ω2

,

B =
F0
m γΩ

(ω2
0 − Ω2)2 + γ2

0Ω2
,

where γ0 = γ/m. We see that the particular solution is always bounded as t → ∞.
Even if we were to have Ω = ω0, or Ω = ω, the particular solution we’ve constructed works just fine.
Thus there’s never a danger of the amplitude of the particular solution exploding on us, as there was
in the resonant case without damping.

(c) The general solution is given by

x = xH + xp = e−γt/2m (c1 cosωt + c2 sin ω0t) + A cosΩt + B sinΩt,

where A and B are given by the expressions above. At this point, c1 and c2 may be determined from
the initial conditions.

Let’s think about this solution. After a significant time, the particular solution will give us the only important
part, as it’s not decaying in time, whereas the homogeneous solution is. On the other hand, the particular
solution is just an oscillation. What can we say about it? One of the most important aspects of an oscillation
is its amplitude. For the particular solution here, that amplitude is given by (do I need to say it: Check it!)

√
A2 + B2 =

F0/m√
γ2
0Ω2 + (ω2

0 − Ω2)2
.

It is clear from this formula that the magnitude of the response of the system depends a lot on the parameters
of the input forcing. To quantify that, we rewrite the above as

m

F0

√
A2 + B2ω2

0 =
1

√
γ2
0

ω2
0

Ω2

ω2
0

+
(
1 − Ω2

ω2
0

)2 .

This expression is used to plot the amplitude response graph, shown in Fig. 3. This figure shows the scaled
(by a factor m/F0) amplitude of the response, as a result of forcing the system with frequency Ω (in units
of ω0), for different values of the normalized damping γ0/ω0. We see that for no damping, there is a vertical
asymptote at Ω/ω0 = 1, as expected. For non-zero damping, there is still a maximum in the amplitude near
Ω/ω0 = 1. Thus, if we want to get a lot from a little (and who doesn’t?), we should force the system with a
frequency that is close to its natural frequency, as this will maximize the amplitude of the output response.

Microwaves work on this principle: the microwave operates in the microwave regime (gee, coincidence?),
which is close to the natural frequency for water molecules. Water is the main ingredient in any food. As a
result of the microwave forcing, the water molecules vibrate a lot, giving off a lot of heat due to friction. It
is this heat that warms your food.
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Figure 3: The amplitude-response graph for various values of γ0/ω0.
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