
MATH 234 - MECHANICAL VIBRATIONS

PROBLEM SET-UP

As an application to second-order linear equations with constant coefficients, we go back to Newton’s law:

F = ma.

Here F is the sum of the forces acting on the point particle of mass m, and a denotes the particle’s acceler-
ation. We’ll consider the case of a particle suspended from a linear spring with spring constant k. The top
of the spring could be moving in a prescribed way, and the particle is undergoing damping. You can think
of damping as a consequence of dealing with a realistic spring (small damping) or a physical damper. The
situation is described in the diagram below:

So, what’s our governing equation? We need to determine the explicit form of the total force. We have

F = Fspring + Fdamper + Fexternal.

What are the functional forms of these different forces. The last one is given to us as

Fexternal = Fe(t),

some function of t. The other two are not much harder. The damping force is

Fdamper = −γv,
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where v is the velocity of the particle, and γ is a constant damping rate. Note that this force has a negative
sign: it opposes the motion. The last force is given by Hooke’s law:

Fspring = −kx.

This force also comes with a minus sign. It is a restoring force: it pulls the particle back to its equilibrium
position.

Putting all these together, we finally obtain

mx′′ + γx′ + kx = Fe(t).

Here we’ve used that a = x′′, v = x′: the acceleration and the velocity are the second, respectively first,
time derivative of the position.

UNFORCED OSCILLATIONS - THE HOMOGENEOUS EQUATION

If Fe(t) "= 0 then the above differential equation is nonhomogeneous. As we’ve seen: whenever we’re
facing a nonhomogeneous problem, we should solve the homogeneous problem first. We’ll get back to the
nonhomogeneous problem when we talk about forced oscillations in the next lecture. Here we consider

mx′′ + γx′ + kx = 0.

We refer to the motions predicted by this differential equation as free motions. Further, if γ = 0, the motion
is undamped. Otherwise, if γ > 0, then the motion is damped.

We start by considering the characteristic equation:

mλ2 + γλ+ k = 0 ⇒ λ1,2 =
−γ ±

√
γ2 − 4mk

2m
.

Note that all of m, γ, and k are not allowed to be negative.

There are three possible cases:

1. γ2 > 4mk: lots of damping. This is known as an overdamped spring.

2. γ2 = 4mk: still a lot of damping, but less than overdamped. We call this a critically damped spring.

3. γ2 < 4mk: a small amount of damping. This is known as the underdamped spring.

We’ll spend most of our time studying the underdamped case. Note that the undamped spring is a special
case of the underdamped spring.

UNDERDAMPED OSCILLATIONS

If γ2 < 4mk then 4mk − c2 > 0, so that

λ1,2 =
−γ ± i

√
4mk − γ2

2m
= − γ

2m
± iω,
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where

ω =
4mk − γ2

2m
.

The general solution is given by

x = c1e
−γt/2m cosωt+ c2e

−γt/2m sinωt

= e−γt/2m(c1 cosωt+ c2 sinωt).

Let’s look at this solution in two different cases.

1. The undamped spring: γ = 0. In this case the exponential dissapears and

x = c1 cosω0t+ c2 sinω0t,

with

ω0 =

√
4mk

2m
=

√
mk

m
=

√
k

m
.

The parameter ω0 is called the natural frequency of the system: it is the frequency the spring-particle
system likes to oscillate at when no other forces (external, damping) are present. In order to completely
determine the solution, we need initial conditions to specify the constants c1 and c2. Often it is useful
to rewrite the solution formula in so-called amplitude-phase form. Let

{
c1 = A cosϕ
c2 = A sinϕ

.

Then

A =
√

c21 + c22, tanϕ =
c2
c1
.

We have

x = A cosϕ cosω0t+A sinϕ sinω0t

= A cos(ω0t− ϕ).

The new parameters A and ϕ are called the amplitude and the phase respectively, of the solution. We
see that the solution is periodic with period

T =
2π

ω0
.

A plot of an undamped solution is shown in Fig. 1.
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Figure 1: A solution of an undamped system: x = 3 cos(2t− 3).
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2. The underdamped spring: γ > 0.

In the underdamped case with γ > 0 we have

x = e−γt/2m(c1 cosωt+ c2 sinωt)

= Ae−γt/2m cos(ωt− ϕ).

We see that the factor Ae−γt/2m plays the role of a time-dependent amplitude. If the damping rate γ
is small, then this amplitude factor will decay to zero, but at a slow rate.

While these solutions are not periodic in the traditional sense, we can still define a quasi-period and quasi-
frequency that will give us an indication of how often the amplitude flips from positive to negative values.
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Figure 2: A solution of an underdamped system: x = 3e−t/4 cos(2t− 3). The red dashed line represents the
”solution” envelope given by the curves 3e−t/4 and −3e−t/4.

If we compare the ratio of ω
ω0

we see that for small γ, we can expand the expression as a Taylor-series

ω

ω0
=

√
4mk − γ2/2m√

k/m
=

√
1− γ2

4mk
≈ 1− 1

8mk

If we look at ω, we find that the quasi-frequency is given by

ω ≈ (1 − 1

8mk
)ω0

so that the frequency with damping is lower than that without damping. Likewise, the quasi-period is given
by

Td ≈ (1 +
1

8mk
)T
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