MATH 234 - MECHANICAL VIBRATIONS

PROBLEM SET-UP

As an application to second-order linear equations with constant coefficients, we go back to Newton’s law:
F = ma.

Here F' is the sum of the forces acting on the point particle of mass m, and a denotes the particle’s acceler-
ation. We’ll consider the case of a particle suspended from a linear spring with spring constant k. The top
of the spring could be moving in a prescribed way, and the particle is undergoing damping. You can think
of damping as a consequence of dealing with a realistic spring (small damping) or a physical damper. The
situation is described in the diagram below:

So, what’s our governing equation? We need to determine the explicit form of the total force. We have

F=FE spring T E damper T Foxternal-

What are the functional forms of these different forces. The last one is given to us as

F

external = Fe (1),

some function of ¢. The other two are not much harder. The damping force is

Flamper = 7



where v is the velocity of the particle, and « is a constant damping rate. Note that this force has a negative
sign: it opposes the motion. The last force is given by Hooke’s law:

Fspring = —kux.

This force also comes with a minus sign. It is a restoring force: it pulls the particle back to its equilibrium
position.

Putting all these together, we finally obtain

ma” +yx' + kx = F.(t). ‘

Here we've used that a = 2", v = 2’: the acceleration and the velocity are the second, respectively first,

time derivative of the position.

UNFORCED OSCILLATIONS - THE HOMOGENEOUS EQUATION

If Fo(t) # 0 then the above differential equation is nonhomogeneous. As we’ve seen: whenever we'’re
facing a nonhomogeneous problem, we should solve the homogeneous problem first. We’ll get back to the
nonhomogeneous problem when we talk about forced oscillations in the next lecture. Here we consider

mx” + vz’ + kx = 0.

We refer to the motions predicted by this differential equation as free motions. Further, if v = 0, the motion
is undamped. Otherwise, if v > 0, then the motion is damped.

We start by considering the characteristic equation:

MM+ AN+Ek=0 = Moo=

—y + /7% — dmk
2m '

Note that all of m, v, and k are not allowed to be negative.

There are three possible cases:
1. 2 > 4mk: lots of damping. This is known as an overdamped spring.
2. 42 = 4mk: still a lot of damping, but less than overdamped. We call this a critically damped spring.

3. v? < 4mk: a small amount of damping. This is known as the underdamped spring.

We’ll spend most of our time studying the underdamped case. Note that the undamped spring is a special
case of the underdamped spring.

UNDERDAMPED OSCILLATIONS

If v2 < 4mk then 4mk — ¢ > 0, so that




where
dmk — >
w=—.

2m
The general solution is given by

x = cre 2™ coswt + coe T2 sin wit

= e‘”t/Qm(cl coswt + g sinwt).

Let’s look at this solution in two different cases.

1. The undamped spring: v = 0. In this case the exponential dissapears and

T = ¢1 coswol + ¢ sinwgt,

with
B vVamk B vmk B k
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The parameter wy is called the natural frequency of the system: it is the frequency the spring-particle
system likes to oscillate at when no other forces (external, damping) are present. In order to completely
determine the solution, we need initial conditions to specify the constants ¢; and cy. Often it is useful
to rewrite the solution formula in so-called amplitude-phase form. Let

c1 = Acosyp
co = Asingp
Then
A [ 2, 2 C2
=4/c]f+c5, tangp = —.
C1
We have

x = Acospcoswyt + Asin @ sinwgt

= Acos(wot — ).

The new parameters A and ¢ are called the amplitude and the phase respectively, of the solution. We
see that the solution is periodic with period

T=2"
wo
A plot of an undamped solution is shown in Fig. 1.
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Figure 1: A solution of an undamped system: x = 3 cos(2t — 3).



2. The underdamped spring: v > 0.

In the underdamped case with v > 0 we have
x = e 2 (¢ coswt + ¢ sinwt)

= Ae 2™ cos(wt — ).

We see that the factor Ae=7*/2™ plays the role of a time-dependent amplitude. If the damping rate
is small, then this amplitude factor will decay to zero, but at a slow rate.

While these solutions are not periodic in the traditional sense, we can still define a quasi-period and quasi-
frequency that will give us an indication of how often the amplitude flips from positive to negative values.
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Figure 2: A solution of an underdamped system: = = 3e~*/% cos(2t — 3). The red dashed line represents the
solution” envelope given by the curves 3e~*/4 and —3e~t/4.

If we compare the ratio of wio we see that for small v, we can expand the expression as a Taylor-series
w  \4mk—~2/2m /1 2 ~1 1
wo Vk/m n dmk "~ 8mk

If we look at w, we find that the quasi-frequency is given by

1

= SmE o

wr (1

so that the frequency with damping is lower than that without damping. Likewise, the quasi-period is given

by
1
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ar (It g )



