
MATH 234 - ABEL’S THEOREM
AND REDUCTION OF ORDER

RECAP

In the last lecture, we discussed that the general solution of the ode ay�� + by� + cy = 0 is given by y =
c1y1 + c2y2 if y1 and y2 were linearly independent solutions to the ode. We will refer to the linearly
independent solutions y1 and y2 as fundamental solutions.

We also argued that we will need two linearly independent solutions in order to solve a second-order initial
value problem since we know we will have two constants of integration from removing the second order
derivative.

In addition, we showed that two functions f(x) and g(x) are linearly independent if their Wronskian is not
zero for all x where the Wronskian is defined as

W (f, g)(x) =
����
f(x) g(x)
f �(x) g�(x)

���� = f(x)g�(x)− f �(x)g(x) (1)

Combining this information, we can rephrase our superposition theorem from last time as:

Theorem

If y1 and y2 are two solutions of the differential equation

ay�� + by� + cy = 0

and their Wronskian

W (y1, y2) �= 0,

then the general solution to the differential equation is

y = c1y1 + c2y2.

ABEL’S THEOREM AND REDUCTION OF ORDER

Consider the following example:
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Example

Find the fundamental solution set to the differential equation

y�� − 2y� + y = 0, y(0) = 1, y�(0) = 2

Solution

To find the fundamental solution set, we need to find two linearly independent functions that are solutions
to the above differential equation. Since this is a constant coefficient problem, we can guess that the solution
is of the form y = eλx. However, if we plug this into the ode to find the characteristic equation, we have

λ2 − 2λ + 1 = 0 ⇒ λ = 1

Thus, we only get one solution ex. We need to have one additional fundamental solution to the ode that is
linearly independent to ex. Therefore, we do not know how to solve this differential equation... yet!

We have already seen how to solve constant-coefficient equations when the roots of the characteristic equation
are real and different.

In this lecture, well see how to solve the case where the two roots λ1 and λ2 are equal: λ1 = λ2 (note that
they are automatically real in this case). It is clear that our previous plan of attach will not work, since we
now have y1 = y2, and we do not have two linearly independent solutions.

Theorem

Let y1 and y2 be any two solutions of

y�� + p(x)y� + q(x)y = 0,

then

W (y1, y2) = ce−
R

p(x)dx,

where c is a constant.

Proof

By definition of the Wronskian, W (y1, y2) = y1y�2 − y�1y2. We can also take the derivative of the Wronskian
to find

W �(y1, y2) = ✟✟✟y�1y
�
2 + y1y

��
2 − y��1 y�2 −✟✟✟y�1y

�
2
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Using this definition, along with the fact that both y1 and y2 satisfy the ODE y�� + p(x)y� + q(x)y = 0, we
have

W �(y1, y2) = y1y
��
2 − y��1 y�2

= y1 (−(p(x)y�2 + q(x)y2))− y2 (−(p(x)y�1 + q(x)y1))
= −p(x) (y1y

�
2 − y2y

�
1) + q(x) (y1y2 − y1y2)

= −p(x)W (y1, y2)

Thus, we have an ODE for the Wronskian which we can solve by separation.

W � = −p(x)W =⇒ W (y1, y2) = ce−
R

p(x) dx

where c is a constant. Thus, we have proved our final statement. �

So, here’s the million dollar questions. How can we actually use this theorem to solve our problem of knowing
only one fundamental solution?

REDUCTION OF ORDER

We can now use Abels theorem to get a second linearly independent solution of a second-order linear dif-
ferential equation if we already know a first one. This is known as reduction of order, because it reduces
the problem of finding a solution of a second-order equation to that of solving a related first-order equation.
Heres how this works: supposed we know y1, but we do not know y2.

With Abel’s theorem in mind, we have two ways to write an expression for the Wronskian of the fundamental
solutions. One from the definition (given by Equation (1)) and the other from Abel’s theorem. Thus, we
have the relationship:

W (y1, y2) = y1y
�
2 − y�1y2 = ce−

R
p(x) dx (2)

If we want to find the second linearly independent solution, we will use what we know about the differential
equation (p(x)) to find the Wronskian, and use the first solution y1 to find the second linearly independent
solution.

Let’s try this now with out initial example problem: y�� − 2y� + y = 0.
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Example

If y(x) = ex is a fundamental solution to the differential equation

y�� − 2y� + y = 0,

find the second fundamental solution.

Solution

Since the ODE is already in standard form, we know that the Wronskian between the two fundamental
solutions is given by

W = ce−
R
−2dx = ce2x.

We also know from the definition of the Wronskian that

W = y1y
�
2 − y�1y2 ⇒ W = exy�2 − exy2,

where we have used the fact that y1 = ex and y�1 = ex. Equating the two expressions for the Wronskian, we
have

exy�2 − exy2 = ce2x ⇒ y�2 − y2 = cex.

Now we have a first-order linear differential equation for the second fundamental solution. Hence, we have
reduced the order of the differential equation (reduction of order).
To solve y�2 − y2 = cex, we use a linear integrating factor which is given by µ(x) = e−x. This allows us to
write the differential equation as

d

dx

�
e−xy2

�
= cexe−x = c

Integrating the above and solving for y2, we find

y2(x) = cxex + c̃ex,

where c̃ is another arbitrary constant. Since c̃ is multiplying our first fundamental solution only, we can
ignore this term (it’s a constant multiple of a known fundamental solution). Thus, the second fundamental
solution is given by

y2(x) = cxex

Guess what? Abel’s theorem and reduction of order is not just limited to constant coefficient problems.
Consider the following example:
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Example

Consider the equation
2x2y�� + 3xy� − y = 0,

for x > 0.
(a) Check that y1 = 1/x is a solution of this equation
(b) Find a second fundamental solution to the ODE.

Solution

(a) First, let’s check that y = 1/x is a solution to the ODE. To do that, we need to calculate y� and y��:

y� =
−1
x2

, y�� =
2
x3

Plugging this into the ODE, we have

2x2y�� + 3xy� − y = 2x2 2
x3

+ 3x
−1
x2
− 1

x

=
4
x
− 3

x
− 1

x
= 0 �

Thus y1 = 1/x is a solution.
(b) Now we use the method above to find a second solution y2, linearly independent of the first one. First
we need to compute the Wronskian W . Using Abels theorem, we have that

W = ce
R
−p(x) dx

For our equation p(x) = 3x/(2x2) = 3/(2x), since we need to write the differential equation so that the
coefficient of y�� is one, in order to use Abels theorem. Thus

W = ce
R
−3/(2x) dx = ce−3/2 ln(x) = cx−3/2

There’s no need to choose c at this point. Since y1(x) = x−1, y�1 = −x−2. Combining these facts with Abel’s
theorem and the definition of the Wronskian, we find

x−1y�2 + x−2y2 = cx−3/2 ⇒ y�2 + x−1y2 = cx−1/2.

Again, we now have a first-order linear differential equation for y2. The integrating factor is given by µ(x) = x
and thus, we find

d

dx
(xy2) = cx1/2.

Integrating and solving for y2, we find

y2(x) = 2cx1/2 = 2c
√

x

Now, let’s consider another example: it will allow us to solve the case of linear, constant-coefficient equations
where the roots of the characteristic equation are equal.
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Example

Consider the differential equation

ay�� + by� + c = 0 =⇒ aλ2 + bλ + c = 0

Solving for λ we have

λ =
−b±

√
b2 − 4ac

2a
= − b

2a

Let’s assume that we have repeated roots. In other words, we only obtain one real, unique solution for λ.
Find the two fundamental solutions, and then the general solution

Solution

From algebra, we know that if we have repeated roots, the discriminant is identically zero. In other words,
we know b2 − 4ac = 0.

Since we only get one root, we only have one solution which is y1 = e−(b/(2a))x = eλx. NOTE: For

simplicity, let λ = −b/(2a). Thus, b/a = 2λ.

However, since this is a second-order ode, we expect that we will need two linearly independent solutions to
obtain our general solution. To find the second solution, we will use reduction of order.

First, we use Abel’s theorem to calculate the Wronskian. Note that we have p(x) = b/a = 2λ. Also, let’s
use the constant α in Abel’s theorem, as the equation already has a c in it. Abel’s theorem gives us the
Wronskian by the formula:

W = αe−
R

2λ dx = αe−2λx

Since y1(x) = eλx, y�1 = λeλx. Combining these facts with Abel’s theorem and the definition of the Wron-
skian, we find

eλxy�2 − λeλxy2 = αe−2λx.

Writing in standard linear form for first-order differential equations, we have

y�2 + λy2 = αe−λx.

Again, we now have a first-order linear differential equation for y2. The integrating factor is given by
µ(x) = eλx and thus, we find

d

dx

�
eλxy2

�
= α.

Integrating and solving for y2, we find

y2(x) = αxeλx,

and thus, the general solution is given by

y(x) = c1e
λx + c2xeλx.
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Example

Consider the differential equation y�� + 8y� + 16y = 0 Find the general solution to the above ODE.

Solution

Since we’re solving a constant coefficient ODE, we can immediately jump to the characteristic equation:

λ2 + 8λ + 16 = 0

and thus λ1 = λ2 = −4. Since the roots are repeated, we only get one fundamental solution.

However, using the above example, we can write down BOTH fundamental solutions! Thus y1 = e−4x, and
y22 = xe−4x, using the result from the previous example. The general solution is

y = c1y1 + c2y2 = (c1 + c2x)e−4x

REDUCTION OF ORDER (ALTERNATIVE APPROACH)

There is another method called “Reduction of Order” due to D’Alambert. This basic idea is the same:

If we know one of the fundamental solutions, we can find the second fundamental solution by

reducing the second order ODE to a first order ODE.

However, the implementation of the alternative approach is more straight-forward. D’Alambert proposed
that we consider the y2 to be related to y1 by

y2 = v(x)y1

In other words, the second solution is some unknown function v(x) times the first known solution.

Consider the following example:

7



Example

Find the second fundamental solution to the differential equation

(x− 1)y�� − xy� + y = 0, x > 0,

if the first fundamental solution is given by y1 = ex.

Solution

Since y1(x) = ex is a solution, let’s find the second solution by plugging in y2(x) = v(x)ex. This means

y�2 = v�ex + vex, and y��2 = v��ex + 2v�ex + vex.

Plugging this expression into the original ODE, we get

(x− 1)y�� − xy� + y = (x− 1) (v��ex + 2v�ex + vex)− x (v�ex + vex) + vex

= v�� ((x− 1)ex) + v� (2(x− 1)ex − xex) + v ((x− 1)ex − xex + ex)
= v�� ((x− 1)ex) + v� (x− 2)ex)

Thus, if we assume the form y2(x) = v(x)y1(x), then v(x) must satisfy the differential equation

v�� (x− 1) + v� (2(x− 1)ex − xex) = 0.

Now, if we let u(x) = v�(x), we can turn this into a first order ode for u(x). In other words,

u� ((x− 1)ex) + u (x− 2)ex) = 0

. If we can solve for u(x), we can find v(x) by taking the integral and be done with it all.

u� = − (x− 2)u
x− 1

⇒ ln(u(x)) = ln(x− 1)− x + c̃.

It helps to rewrite the integrand using the following trick:

−x− 2
x− 1

= −x− 1− 1
x− 1

= −
�

x− 1
x− 1

− 1
x− 1

�
= −1 +

1
x− 1

.

Thus, u(x) = c(x− 1)e−x and

v(x) =
�

u(x) dx = −cxe−x + d.

Thus, the second fundamental solution y2(x) = v(x)y1(x) is given by

y2(x) =
�
−cxe−x + d

�
ex = −cx + dex

y2(x) = −cx + dex

Note: we could have just given y2(x) = x. Also, you would get the same answer if you used Abel’s theorem
to help you out!
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