
MATH 234 -THE WRONSKIAN
AND LINEAR INDEPENDENCE

RECAP

In the previous lecture, we learned how to solve

ay�� + by� + cy = 0,

using three steps:

1. Guess the form of the solution eλx to determine the characteristic equation: aλ2 + bλ + c = 0

2. Solve the characteristic equation to find the fundamental solutions: y1 = eλ1x, y2 = eλ2x

3. Combine the fundamental solutions (via superposition theorem) to determine the general solution:
y = c1y1 + c2y2

It turns out that we can use this process to solve any linear constant-coefficient ODE of any order! However,
so far, we have restricted ourselves to constant-coefficient 2nd order ODE whose characteristic equation does
not have repeated roots.

If we slightly generalize the class of ODEs that we are considering to any linear second order ODE of the
form

y�� + p(x)y� + q(x)y = 0,

the superposition theorem will still hold. Thus, the general solution is given by y = c1y1 + c2y2, where y1

and y2 are two linearly independent solutions of

y�� + p(x)y� + q(x)y = 0.

.

But before we talk about linear independence of fundamental solutions, perhaps a more basic questions we
should ask is the following:

If y�� + p(x)y� + q(x)y = 0, and we’re given initial conditions y(x0) = y0 and y�(x0) = y�0, how do

we even know if a solution will exist?

In this lecture, we will talk about the existence of solutions, the concept of linear independence, and the
Wronskian.
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EXISTENCE, UNIQUENESS, AND THE WRONSKIAN

Theorem:

Consider the initial value problem

y�� + p(x)y� + q(x)y = g(x), y(x0) = y0, y
�(x0) = y�0,

where p(x), q(x) and g(x) are continuous on an open interval I that also contains x0
1. Then, there exists

exactly one solution y = φ(x) of this problem and the solution exists throughout the interval I.

It’s important to note the three things that this theorem says:

1. The initial value problem has a solution; in other words, a solution exists.

2. The initial value problem has only one solution; in other words, the solution is unique

3. The solution φ(x) is defined throughout the interval I where the coefficients are continuous and is at
least twice differentiable there.

Example:

Find the longest interval in which the solution of the initial value problem

(t2 − 3t)
d2y

dt2
+ t

dy

dt
− (t + 3)y = 0, y(1) = 2,

dy

dt

���
t=1

= 1

In this problem, if we write it in the form where the coefficient of the second derivative term is one, we
find that p(t) = 1/(t − 3), q(t) = −(t + 3)/(t2 − 3t), and g(t) = 0. The only points of discontinuity of the
coefficients are at t = 0 and t = 3. Therefore, the longest open interval containing the initial point t = 1 in
which all of the coefficients are continuous is I = 0 < t < 3. Thus, this is the longest interval in which our
theorem guarantees that a solution exists.

LINEAR INDEPENDENCE AND THE WRONSKIAN

Now, let’s return to a question we posed earlier:

Assume that both y1 and y2 are two solutions of

y�� + p(x)y� + q(x)y = 0.

Superpositions tells me that y = c1y1 + c2y2 is the general solution of the ODE if y1 and y2 are

linearly independent. But how can we determine if two solutions are linearly independent?

1I is just a range of x values where the functions p, q, and g are well behaved.
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Definition:

Two functions f(x) and g(x) are called linearly independent if the equation

c1f(x) + c2g(x) = 0, for all x,

can only be satisfied by choosing c1 = 0 and c2 = 0. Two functions that are not linearly independent are
called linearly dependent.

This is very similar to the concept for linearly independent vectors. For example, consider the two vectors
v1 and v2. These vectors are linearly independent if c1v1 + c2v2 = 0 implies that both c1 and c2 are zero. If
you need more verification, consider the concrete example where v1 = [10]T and v2 == [01]T . It should be
clear that they are linearly independent vectors. Furthermore, the only way that we can get the zero vector
if we take a linear combination is by letting both c1 and c2 be identically zero.

Example:

f(x) = ex and g(x) = 2ex are linearly dependent because

−2f(x) + g(x) = 0,

so c1 = −2 and c2 = 1. If the only choice was to choose them both zero, the functions would be independent.

Wouldn’t it be nice if there was an easier way to determine linear independence? Well, there is! We need to
introduce the Wronskian first.

Definition:

The Wronskian of two function f(x) and g(x) is just the quantity

W (f, g)(x) = f(x)g�(x)− f �(x)g(x)

Example:

Let f(x) = sin(x) and g(x) = cos(x), find W (f, g)(x).

W (f, g)(x) = sin(x)(− sin(x))− cos(x)(cos(x)) = −1

It’s sometimes easier to think of the Wronskian using matrix notations. In other words:

W (f, g)(x) = det
�

f(x) g(x)
f �(x) g�(x)

�
= f(x)g�(x)− f �(x)g(x) �

Theorem

Two functions f(x) and g(x) are linearly dependent if their Wronskian

W (f, g)(x) = f(x)g�(x)− f �(x)g(x) = 0.
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Proof: If f(x) and g(x) are linearly dependent, then we can find constants c1 and c2, not both zero, so that

c1f(x) + c2g(x) = 0, for all x.

Then also
c1f

�(x) + c2g
�(x) = 0, for all x.

Now, let’s assume that f �= 0, otherwise we can switch the roles of f and g. Then we can solve to find

c1 = −c2g(x)
f(x)

c1f
�(x) + c2g

�(x) = −c2g(x)
f(x)

f �(x) + c2g
�(x)

=
c2

f(x)
(g(x)f �(x)− g�(x)f(x)) = 0

Note that c2 �= 0, since otherwise c1 would also be zero, which would imply the functions are linearly
independent. Thus plugging the expression into the equation for the derivative, we have

fg� − f �g = 0 =⇒W (f, g)(x) = 0,

which is what we had to prove.

Example:

Calculate the Wronskian for the functions f(x) = ex and g(x) = 2ex to determine if they are linearly
independent.

W (ex, 2ex) = ex(2ex)− ex(2ex) = 0,

Since the Wronskian is equal to zero, the two functions are linearly dependent.

Example:

Calculate the Wronskian for the functions f(x) = ex and g(x) = e−x to determine if they are linearly
independent.

W (ex, e−x) = ex(e−x)− ex(−1e−x) = 1− (−1) = 2,

Since the Wronskian is not equal to zero, the two functions are linearly independent.
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