Math 234-2nd Order ODEs Constant Coefficients

In this lecture, we'll look at second-order equations for the first time. All the second-order equations we'll consider here will be linear. We won't look at nonlinear equations again until we get to nonlinear systems, much later in these notes.

Any second-order linear equation is of the form

$$
r(x) y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)
$$

where $r(x), p(x)$ and $q(x)$ may be functions of x. For now, we'll assume they are constants: $r(x)=a$, $p(x)=b$ and $q(x)=c$, with a, b and c constant. Further, we'll start with the homogeneous case, i.e., the case where $g(x)=0$. Thus, we'll consider

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

where $y=y(x)$ is the function we're looking for. Let's introduce some shorthand. Let

$$
L[y]=a y^{\prime \prime}+b y^{\prime}+c y,
$$

so that the differential equation simply is $L[y]=0$. Let's discuss a few properties of this equation.

Theorem: Principle of Superposition

If y_{1} and y_{2} are independent solutions of this equation, then $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is the general solution.

Proof: Note that the general solution will depend on two constants, since we are now dealing with a second-order equation.

$$
\begin{aligned}
L[y] & =a y^{\prime \prime}+b y^{\prime}+c y \\
& =a\left(c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}\right)+b\left(c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}\right)+\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
& =c_{1}\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)+c_{2}\left(a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}\right) \\
& =c_{1} L\left[y_{1}\right]+c_{2} L\left[y_{2}\right] \\
& =c_{1} 0+c_{2} 0 \\
& =0 .
\end{aligned}
$$

We've used that $L\left[y_{1}\right]=0$ and $L\left[y_{2}\right]=0$, since y_{1} and y_{2} are solutions. Thus $y_{1}=c_{1} y_{1}+c_{2} y_{2}$ is also a solution, which is what we had to prove.

We can use this theorem to get new solutions from known ones: if y_{1} and y_{2} are solutions, then so are $y_{3}=\left(y_{1}+y_{2}\right) / 2$ and $y_{2}=\left(y_{1}-y_{2}\right) / 2$. These are easily obtained by choosing $c_{1}=c_{2}=1 / 2$, and $c_{1}=1 / 2$, $c_{2}=-1 / 2$ in the theorem.

In order for the theorem to hold, y_{1} and y_{2} have to be "independent". What does this mean? We'll define this properly soon, but for the moment it suffices to say that y_{1} and y_{2} are not a multiple of each other. If this happens, say $y_{2}=\alpha y_{1}$, for some constant α, then

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} y_{1}+c_{2} \alpha y_{1} \\
& =\left(c_{1}+c_{2} \alpha\right) y_{1} \\
& =c_{3} y_{1},
\end{aligned}
$$

where $c_{3}=c_{1}+c_{2} \alpha$ is another constant. We see that in this case, our proposed general solution y only depends on one constant. That's not enough!

Here's why this theorem absolutely rocks: in order to find the general solution of

$$
L[y]=0
$$

it suffices to find two solutions y_{1} and y_{2} ! Awesome!

It's easy to find two such solutions: guess

$$
y=e^{\lambda x}
$$

for some constant λ, to be determined. Then

$$
y^{\prime}=\lambda e^{\lambda x}, \quad y^{\prime \prime}=\lambda^{2} e^{\lambda x}
$$

Plugging all this in, we get

$$
\begin{aligned}
a \lambda^{2} e^{\lambda x}+b \lambda e^{\lambda x}+c e^{\lambda x} & =0 \\
e^{\lambda x}\left(a \lambda^{2}+b \lambda+c\right) & =0 \\
a \lambda^{2}+b \lambda+c & =0,
\end{aligned}
$$

since $e^{\lambda x}$ is never zero. Thus, in order to find solutions, we have to choose λ to be a solution of the quadratic equation

$$
a \lambda^{2}+b \lambda+c=0
$$

This equation is known as the Characteristic equation of the differential equation. From it, we get two solutions for λ :

$$
\lambda_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This gives two solutions of the original differential equation, namely

$$
y_{1}=e^{\lambda_{1} x}, \quad y_{2}=e^{\lambda_{2} x}
$$

Using our theorem, we find that the general solution is

$$
y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}
$$

Thus, we've constructed the general solution for a second-order linear equations with constant coefficients, and all we've had to do was solve a quadratic equation!

This works very well if λ_{1} and λ_{2} are both real, and different. In the other cases, we'll have to do a bit of extra work. Let's look at some examples where the above does work.

Example

Find the solution to the IVP:

$$
y^{\prime \prime}-y=0, \quad y(0)=2, \quad y^{\prime}(0)=-1,
$$

Solution

Note that we're specifying two initial conditions, since we have two constants to determine. Let's start with the characteristic equation: we have $a=1, b=0, c=-1$.

$$
\lambda^{2}-1=0 \Rightarrow \lambda_{1}=1, \quad \lambda_{2}=-1
$$

from which $y_{1}=e^{x}, y_{2}=e^{-x}$, and the general solution is

$$
y=c_{1} e^{x}+c_{2} e^{-x}
$$

Since we'll need y^{\prime} to use the second initial condition, let's calculate it now: $y^{\prime}=c_{1} e^{x}-c_{2} e^{-x}$. Plugging in the two initial conditions, we get

$$
y(0)=c_{1}+c_{2}, \quad y^{\prime}(0)=c_{1}-c_{2}
$$

so that $c_{1}+c_{2}=2$ and $c_{1}-c_{2}=-1$. Adding and subtracting these two equations we find that $c_{1}=1 / 2$ and $c_{2}=3 / 2$. Finally, the solution of the initial-value problem is

$$
y=\frac{1}{2} e^{x}+\frac{3}{2} e^{-x} .
$$

Example

Find the general solution to the ode:

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

Solution

The characteristic equation is

$$
\begin{array}{lc}
& \lambda^{2}+5 \lambda+6=0 \\
\Rightarrow & (\lambda+2)(\lambda+3)=0 \\
\Rightarrow & \lambda_{1}=-2, \quad \lambda_{2}=-3,
\end{array}
$$

and thus $y_{1}=e^{-2 x}, y_{2}=e^{-3 x}$. The general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}=c_{1} e^{-2 x}+c_{2} e^{-3 x}
$$

