
MATH 234 - 2ND ORDER ODES

CONSTANT COEFFICIENTS

In this lecture, we’ll look at second-order equations for the first time. All the second-order equations we’ll
consider here will be linear. We won’t look at nonlinear equations again until we get to nonlinear systems,
much later in these notes.

Any second-order linear equation is of the form

r(x)y′′ + p(x)y′ + q(x)y = g(x),

where r(x), p(x) and q(x) may be functions of x. For now, we’ll assume they are constants: r(x) = a,
p(x) = b and q(x) = c, with a, b and c constant. Further, we’ll start with the homogeneous case, i.e., the
case where g(x) = 0. Thus, we’ll consider

ay′′ + by′ + cy = 0,

where y = y(x) is the function we’re looking for. Let’s introduce some shorthand. Let

L[y] = ay′′ + by′ + cy,

so that the differential equation simply is L[y] = 0. Let’s discuss a few properties of this equation.

Theorem: Principle of Superposition

If y1 and y2 are independent solutions of this equation, then y(x) = c1y1(x) + c2y2(x) is the general solution.

Proof: Note that the general solution will depend on two constants, since we are now dealing with a
second-order equation.

L[y] = ay′′ + by′ + cy

= a(c1y
′′
1 + c2y

′′
2 ) + b(c1y

′
1 + c2y

′
2) + (c1y1 + c2y2)

= c1(ay′′1 + by′1 + cy1) + c2(ay′′2 + by′2 + cy2)

= c1L[y1] + c2L[y2]

= c10 + c20

= 0.

We’ve used that L[y1] = 0 and L[y2] = 0, since y1 and y2 are solutions. Thus y1 = c1y1 + c2y2 is also a
solution, which is what we had to prove. F

We can use this theorem to get new solutions from known ones: if y1 and y2 are solutions, then so are
y3 = (y1 + y2)/2 and y2 = (y1 − y2)/2. These are easily obtained by choosing c1 = c2 = 1/2, and c1 = 1/2,
c2 = −1/2 in the theorem.

In order for the theorem to hold, y1 and y2 have to be “independent”. What does this mean? We’ll define
this properly soon, but for the moment it suffices to say that y1 and y2 are not a multiple of each other. If
this happens, say y2 = αy1, for some constant α, then
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y = c1y1 + c2y2

= c1y1 + c2αy1

= (c1 + c2α)y1

= c3y1,

where c3 = c1 + c2α is another constant. We see that in this case, our proposed general solution y only
depends on one constant. That’s not enough!

Here’s why this theorem absolutely rocks: in order to find the general solution of

L[y] = 0,

it suffices to find two solutions y1 and y2! Awesome!

It’s easy to find two such solutions: guess
y = eλx,

for some constant λ, to be determined. Then

y′ = λeλx, y′′ = λ2eλx.

Plugging all this in, we get

aλ2eλx + bλeλx + ceλx = 0

eλx
(
aλ2 + bλ+ c

)
= 0

aλ2 + bλ+ c = 0,

since eλx is never zero. Thus, in order to find solutions, we have to choose λ to be a solution of the quadratic
equation

aλ2 + bλ+ c = 0.

This equation is known as the Characteristic equation of the differential equation. From it, we get two
solutions for λ:

λ1,2 =
−b±

√
b2 − 4ac

2a
.

This gives two solutions of the original differential equation, namely

y1 = eλ1x, y2 = eλ2x.

Using our theorem, we find that the general solution is

y = c1e
λ1x + c2e

λ2x.

Thus, we’ve constructed the general solution for a second-order linear equations with constant coefficients,
and all we’ve had to do was solve a quadratic equation!

This works very well if λ1 and λ2 are both real, and different. In the other cases, we’ll have to do a bit of
extra work. Let’s look at some examples where the above does work.
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Example

Find the solution to the IVP:
y′′ − y = 0, y(0) = 2, y′(0) = −1,

Solution

Note that we’re specifying two initial conditions, since we have two constants to determine. Let’s start with
the characteristic equation: we have a = 1, b = 0, c = −1.

λ2 − 1 = 0 ⇒ λ1 = 1, λ2 = −1,

from which y1 = ex, y2 = e−x, and the general solution is

y = c1e
x + c2e

−x.

Since we’ll need y′ to use the second initial condition, let’s calculate it now: y′ = c1e
x − c2e−x. Plugging in

the two initial conditions, we get
y(0) = c1 + c2, y′(0) = c1 − c2,

so that c1 + c2 = 2 and c1 − c2 = −1. Adding and subtracting these two equations we find that c1 = 1/2
and c2 = 3/2. Finally, the solution of the initial-value problem is

y =
1

2
ex +

3

2
e−x.

Example

Find the general solution to the ode:
y′′ + 5y′ + 6y = 0.

Solution

The characteristic equation is

λ2 + 5λ+ 6 = 0

⇒ (λ+ 2)(λ+ 3) = 0

⇒ λ1 = −2, λ2 = −3,

and thus y1 = e−2x, y2 = e−3x. The general solution is

y = c1y1 + c2y2 = c1e
−2x + c2e

−3x.
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