MATH 234 - LECTURE NOTES'

INTRODUCTION TO DIFFERENTIAL EQUATIONS

OVERVIEW

In today’s lecture, we will discuss some of the basic terminology we will use for the remainder of the quarter.
We will also discuss a method to determine the long term behavior of solutions to differential equations
without needing to find the solution.

ALGEBRAIC EQUATIONS

An algebraic equation is an equation between an unknown quantity x and functions of this quantity x. It
may be written in the form
F(z)=0,

such as 222 + 2 — 3 = 0. In this case, the function F(z) is simply the expression F(z) = 22 + x — 3.

If there are multiple variables, say x and y, then the equation is of the general form

F(x,y) =0,
where F' is a vector. As an example,
-y = 2
r+y = cos(x).

In the above example, the vector function F(z,y) is given by

Fen) = |, Y i)

x4y — cos(x)

SOLUTIONS OF ALGEBRAIC EQUATIONS

If you are given an algebraic equation (or a set of algebraic equations) to solve, you would need to find a
number or a set of numbers that satisfy F(z) =0 (or F(x,y) = 0, etc). Often, finding solutions to algebraic
equations can be difficult; especially when the algebraic equations contain transcendental functions such as
sin and cos. However, if you are given a numeric value, it is easy to check if it is a solution.



EXAMPLE

Verify that « = 4 is a solution of 22 — 2z — 8 = 0.

SOLUTION

Plug = = 4 into the equation:
42-2.4-8=0 = 0=0V

Thus indeed, x = 4 solves the equation.

Note that checking that a given number solves the algebraic equation requires no more effort than plugging
the proposed solution into the equation. This is a lot easier than actually finding a solution.

DIFFERENTIAL EQUATIONS

A differential equation is a relationship between a function and its derivatives. The difference between an
algebraic equation and a differential equation is that the solution to a differential equation is a function
instead of a number.

An example of a differential equation is ¢y’ 4+ 2y = 1, where y is a function of z (y = y(z)). In order to solve
this equation, we need to find all functions that satisfy it.

EXAMPLE

Verify that y = % + ce™?7 is a solution of the differential equation ¢y’ + 2y = 1, with ¢ being a constant.

SOLUTION

To check, we simply plug the function y = % + ce~2% into the differential equation. In order to plug in y(x)
into the differential equation, we need to first calculate 3’.

Y =0+c-(=2)e?* gy = —2ce".

Plugging this into the differential equation, we have

|
—

1
—2ce”2% 42 (2 + ce_2m>

0
1 =1 V.

Therefore, y(x) = 3 + ce™>” is a solution of the differential equation y' + 2y = 1.

We should not be surprised there is an arbitrary constant in the solution. The differential equation contains



one derivative. To get rid of it, you will need to integrate at some point. This integration will result in an
integration constant.

This is pretty good: although we don’t know yet how to solve differential equations, we already know how to
verify that something is a solution. Note that this verification requires us to take derivatives. That’s okay:
taking derivatives is mechanical. There’s a set of rules, and if we follow these rules, we’re doing fine. Since
solving differential equations requires us to get rid of derivatives, you might justifiably think that integration
enters into it. But integration is a lot harder than differentiation: there are some rules, but often there are
tricks to be used. Even more often, integrals cannot be explicitly done. So be it. In summary:

'CHECKING = PLUGGING IN!

GENERAL DEFINITIONS / TERMINOLOGY

Now, we will introduce some basic terminology that we will use throughout the course.

DEFINITION: ORDER

The order of a differential equation is the order of the highest derivative appearing in it.

EXAMPLE

For each of the following differential equations, determine the order:
(a) y' +2y =1,
(b) ¥ =y" —y + sin(),

dz d*z dx 2 _
(C) E‘Fﬁﬂ‘i’l’ =8

SOLUTION

(a) first order
(b) third order
(c) second order

DEFINITION: ORDINARY VS. PARTIAL DIFFERENTIAL EQUATION

If a differential equation contains derivatives with respect to only one variable, it is called an ordinary
differential equation. Otherwise it is called a partial differential equation.



EXAMPLE

Which of the following equations is an ordinary differential equation:
du _ ou

(a) dat — 257

(b) u, = sin(x)

SOLUTION

Equation (a) is a partial differential equation, and equation (b) is a ordinary differential equation.

DEFINITION: LINEAR VS. NONLINEAR DIFFERENTIAL EQUATION

An equation is called linear if the unknowns in it appear in a linear way: they do not multiply each other
or themselves, and they do not appear as arguments of nonlinear functions.

EXAMPLE

Determine if each of the following ODEs is linear or nonlinear:
(a) y' = zy?,
(b) uy = usin(z)

SOLUTION

(a) nonlinear ordinary differential equation because of the 3® term,
(b) is a linear ordinary differential equation.

EXAMPLE

Check that y = ¢1 cos(z) + cosin(z) is a solution of y”” + y = 0. Note that this is a linear second-order
equation.

SOLUTION

Plugging in gives:

y' = —cy sin(z) + o cos(x)
y" = —cp cos(x) — casin(x)
?
= —cy cos(z) — casin(x) + (1 cos(x) + ¢ sin(z)) =0
|
= 0 =0.

Note that the solution of this second-order problem depends on two arbitrary constants ¢; and co. This is
to be expected: in order to get rid of two derivatives, you expect to have to integrate twice, resulting in two
integration constants.



DEFINITION: INITIAL VALUE PROBLEM (IVP)

An initial-value problem is a differential equation together with some algebraic conditions which allow
you to determine the arbitrary constants. In general, if you want to determine all arbitrary constants, you
need to specify as many initial conditions as the order of the equation.

EXAMPLE

Show that y = % + %6_2“ satisfies the IVP

y+2y = 1,
y(0) = 1

SOLUTION

We have already verified that the given y satisfies the differential equation, so it is left to check that it
satisfies the initial condition. At x =0, y = 1/2+1/2 = 1, so the initial condition is indeed satisfied. Thus,

y = % + %6_29‘ is a solution to the above IVP.

EXAMPLE

Find ¢1, ¢o so that y = ¢; cos(z) + ¢o sin(x) satisfies the initial-value problem

y'+y = 0
y(0)=1,4'(0) = 0

SOLUTION

We already know that the given y(z) satisfies the differential equation for all choices of ¢; and cs.

We have y(0) = c1, so that from the first initial condition it follows that ¢; = 1. Next, ¢y’ = —¢; sin(z) +
¢o cos(z), so that y'(0) = cs.

It follows from the second initial condition that ¢y = 0, so that the solution to the initial-value problem is
y = cos(x).

When checking solutions to IVPs, it is important to check that the solution satisfies both the differential
equation and the algebraic constraints.



GUESSING SOLUTIONS

Our main method for solving differential equations in this course will be: (drum roll...)

'GUESSING!|

Often we will guess the form of a solution. A suitable form for the solution will depend on a few parameters.
We will adjust the parameters to make the solution work.

EXAMPLE

Consider the differential equation y” + 3y’ — 4y = 0. Find all functions y(x) such that when you take a linear
combination of y(x) and two of its derivatives, you get zero. In other words, find a function y(x) whose
derivatives are very similar to it.

SOLUTION

One such function is y = €®®, where a is a constant. Let’s check to see if this works.

Yy =€
= y/ —ael®
= y// :a26ax
= y"+3y’—4y:a26”+3ae‘”—4e‘m
=(a® 4 3a — 4)e®.
So, this does not work... unless > +3a —4 =0, ie, a = 1 or a = —4. In other words,

Y1 = ea:’ Y2 = 6749:

are both solutions. By guessing the functional form of a solution, we reduced the problem of solving a
differential equation to the problem of solving an algebraic equation. This is definitely progress! We don’t
have all solutions yet, as the general solution should depend on two arbitrary constants. In the lectures on
second-order equations we will learn how to use the two solutions we just found to construct the general
solution.

DIRECTION FIELDS

For any first-order differential equation

Yy = f(x,y),



we can get a graphical idea of what the solutions look like, even if we can’t solve the equations. At any point
(20,y0) in the (z,y)-plane, the equation tells us what the rate of change of the solution through this point
is. So, if we happen to find ourselves at this point (perhaps the initial condition put us there), the equation
tells us how to move on from the point where we are.

The collection of all arrows through all points is called the direction field of the differential equation. The
rate of change at any point gives the tangent vector to the solution curve through this point, allowing us
to draw the tangent vector to the curve y = y(x), which solves the differential equation, even if we cannot
determine the form of this solution.

To summarize, you can draw a direction field by following these steps:

1. Choose a point in the z-y plane (z,yo), and evaluate 3 at this point.
2. At the point (g, o), draw a small arrow with the slope found in part (1).

3. Repeat this process for a lot of points (xo,yo). The plot that you obtain will give you a good idea of how
solutions behave. NOTE: You can use the dfield applet found at http://math.rice.edu/ dfield/dfpp.html
to automatically generate this plot.

For example, consider the differential equation
y/ — y2 —

By choosing the following (z, y) points, we can find the value of dy/dx at those values to create the following
table:

x|y | dy/dx
010 0
110 -1
011 1
1|1 1
212 2

Thus, to find out what y(x) looks like:

'FOLLOW THE ARROWS!

The final direction field for 3’ = y? — x (along with some solution curves) is shown in Figure 1

As you may see from this direction fields, they may often be used to understand the long-time behavior of
solutions, which in many applications is all we care about.
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Figure 1: The direction field for the equation 3’ = y? — x, together with some inferred solution curves.

EXAMPLE

Using the direction field, determine the long term behavior of the solution to the initial value problem

y = cos(y),

y(0)

0

SOLUTION
Looking at the direction field (see Figure 2), it appears that y(z) — & as  — co.
y~ = cosl(y)
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Figure 2: The direction field for the equation y' = cos(y), together with some inferred solution curves.




LAGNIAPPE:

Notice that the limit as @ — oo depends on y(0). If we look at the pattern on the vertical axis, we can
actually write down the limit as x — oo for all initial conditions!

Let y(0) = yo, where yq is some arbitrary constant. We can write the following:

(2n + 3)w (2n+ 1)m (2n + 5)m

7z
5 5 <yo < 5 n€
lim y(z) =
Tr—r 00
2 1 2 1
Gnade _@ntnr o
2 2
where Z represents all integers (..., —3,—2,-1,0,1,2,3,...).

Of course, drawing all the tiny vectors in a direction field is a lot of work. It’s also very boring work.
In other words, it is the kind of work that a computer is very good at. On the course webpage you
will find a link to a Java applet by John Polking and others to draw direction fields. It is available at
http://math.rice.edu/"dfield/dfpp.html. The applet also allows you to draw in solution curves by
clicking on the point through which you wish to draw a curve.

1t These lecture notes are based on those of Dr. Bernard Deconinck at the University of Washington. They have been
modified to fit this class.



