Math 234 - Lecture Notes ${ }^{\dagger}$

First Order Exact Differential Equations

Overview

Let's consider the following differential equation:

$$
2 x y y^{\prime}+2 x+y^{2}=0
$$

Now, this is a pretty tough looking equation: it's nonlinear, and not separable. This means that we do not have a tool to determine the solutions to the differential equation. It would be a shame if there wasn't a method to solve for it. There is a method!

Lets look at this problem in more generality. Suppose we have a function $y(x)$ defined by the implicit equation

$$
f(x, y)=c
$$

where c is a constant. Taking the x-derivative of the above equation and using the chain rule we get

$$
f_{x}+f_{y} \frac{d y}{d x}=0
$$

Thus we have an equation of the form

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

Thus, if there exists some implicit function $f(x, y)=c$ such that $N(x, y)=f_{y}$ and $M(x, y)=f_{x}$, the differential equation is exact, and the solution is given by $f(x, y)=c$.

Before we try to find $f(x, y)=c$, we should find a way to determine if a differential equation is indeed exact. Let's assume that $M(x, y)=f_{x}$ and $N(x, y)=f_{y}$. It should be true that $f_{x y}=f_{y x}$. In other words, the mixed derivatives should be equivalent. This means that $f_{x y}=(M(x, y))_{y}$ and $f_{y x}=(N(x, y))_{x}$. In other words, if we are given a first order nonlinear ODE in the form:

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

the equation is exact if and only if

$$
(N(x, y))_{x}=(M(x, y))_{y}
$$

Definition: Exact Equation

An ODE of the form

$$
N(x, y) y^{\prime}+M(x, y)=0
$$

is exact if and only if

$$
(N(x, y))_{x}=(M(x, y))_{y}
$$

If the ODE is exact, then the solution in implicit form is $f(x, y)=c$ where $f(x, y)$ can be found by solving

$$
N(x, y)=f_{y} \quad \text { and } \quad M(x, y)=f_{x}
$$

Let's see how we can use this to solve the problem we started with.

Example

Consider the differential equation

$$
2 x y y^{\prime}+2 x+y^{2}=0
$$

SOLUTION

First we check if the equation is exact. This means that we need to check to see if $M_{y}=N_{x}$. For this problem, $M=2 x+y^{2}, N=2 x y$. To check for exactness, we check that

$$
M_{y}=2 y, \text { and } N_{x}=2 y
$$

Since these are equal, the equation is exact. Now we can proceed to solve the differential equation. This means that we know our solution in implicit form is $f(x, y)=c$, and that

$$
\begin{aligned}
f_{x} & =2 x+y^{2} \\
f_{y} & =2 x y
\end{aligned}
$$

Our goal is to solve the set of above equations for the function $f(x, y)$. We can solve these equations in the order we prefer. Let's start with the first equation $f_{x}=2 x+y^{2}$. This can be integrated with respect to x to find

$$
f(x, y)=x^{2}+x y^{2}+h(y)
$$

Note that since we are integrating with respect to x, we treat y as a constant. This means that our constant of integration is really a function of y (so it's not really a constant after all!)
We now substitute this in the second equation $f_{y}=2 x y$. This gives

$$
2 x y+h^{\prime}(y)=2 x y
$$

This means that $h^{\prime}(y)=0$ and $h(y)=\tilde{c}$ where \tilde{c} is a real constant.
Now we can write down what we found for $f(x, y)$, to write the solution of the differential equation:

$$
f(x, y)=x^{2}+2 y^{2} x=c
$$

where we have absorbed \tilde{c} into the original constant c.

Example

Let's do a more complicated example. Consider

$$
\left(\sin x+x^{2} e^{y}-1\right) y^{\prime}+\left(y \cos x+2 x e^{y}\right)=0,
$$

a nonlinear differential equation if ever there was one.

Solution

Here

$$
M=y \cos x+2 x e^{y}, N=\sin x+x^{2} e^{y} 1 .
$$

Let's check if this differential equation is exact:

$$
M_{y}=\cos x+2 x e^{y}, \quad \text { and } \quad N_{x}=\cos x+2 x e^{y} .
$$

These are equal, thus the equation is exact. Thus

$$
\begin{gathered}
f_{x}=y \cos x+2 x e^{y} \\
f_{y}=\sin x+x^{2} e^{y} 1
\end{gathered}
$$

Using the first equation $f_{x}=y \cos x+2 x e^{y}$

$$
\begin{array}{r}
f=\int\left(y \cos x+2 x e^{y}\right) d x+h(y) \\
f=-y \sin x+x^{2} e^{y}+h(y)
\end{array}
$$

Calculating f_{y}, we have

$$
f_{y}=\sin x+x^{2} e^{y}+h^{\prime}(y) .
$$

Plugging this in the second equation gives $h^{\prime}(y)=-1$ or $h(y)=-y+\tilde{c}$. Thus, our final solution is given by the implicit equation

$$
f(x, y)=c \rightarrow-y \sin x+x^{2} e^{y}-y=c
$$

where \tilde{c} has been absorbed into the constant c.

What if the ODE is not Exact?

If an ode of the form

$$
n(x, y) y^{\prime}+m(x, y)=0
$$

is not exact, we would like to be able to still try to solve it! So, we will take a cue from Leibniz and try to find a way to make the ODE exact. In other words, can we find a $\mu(x, y)$ so that

$$
\mu(x, y) n(x, y) y^{\prime}+\mu(x, y) m(x, y)=0,
$$

is exact. This means that

$$
(\mu(x, y) n(x, y))_{x}=(\mu(x, y) m(x, y))_{y} .
$$

Typically, we assume that μ is a function of x or y ONLY. In doing so, we hopefully can find a solution for the function μ by solving the equation that results from $(\mu n)_{x}=(\mu m)_{y}$.

For example, if μ is a function of x only, then the above condition simplifies to

$$
(\mu n)_{x}=(\mu m)_{y} \quad \Longrightarrow \quad \mu_{x} n+\mu n_{x}=\mu m_{y}
$$

We can write this as a first order ODE for μ as

$$
\begin{equation*}
\mu_{x}=\mu \frac{\left(m_{y}-n_{x}\right)}{n} \tag{1}
\end{equation*}
$$

and if $\frac{\left(m_{y}-n_{x}\right)}{n}$ depends only on x, we can solve this ODE for the integrating factor μ via separation of variables.

What would Equation (1) be if we assumed that μ was a function of only y ? Hint: expand $(\mu n)_{x}=(\mu m)_{y}$ using the product rule for derivatives remembering that μ does not depend on x so that $\mu_{x}=0$.

