Choosing a method to solve various ODEs

Katie Oliveras

Winter Quarter 2013

Choose the Solution Method

$$
y^{\prime}+y=0
$$

Order? First-Order
Linear/Nonlinear? Linear
Is it separable? YES!
Solution Method: Separate \& Integrate!

Choose the Solution Method

$$
y^{\prime \prime}+y=0
$$

Order? Second-Order
Linear/Nonlinear? Linear
Constant Coefficient? Yes!
Homogeneous? Yes!Solution Method: Guess $y=e^{\lambda x}$ and solve for λ.Alternative Method: Laplace Transforms, Series, ...

Choose the Solution Method

$$
y^{\prime \prime}+y=\cos (x)
$$

Order? Second-Order
Linear/Nonlinear? Linear
Constant Coefficient? Yes!
Homogeneous? No.
Solution Method: Guess $y=e^{\lambda x}$ and solve for λ to find the homogeneous solution. Then use either the Method of Undetermined Coefficients or VOP to find the particular solution.

Alternative Method: Laplace Transforms, Series, ...

Choose the Solution Method

$$
y^{\prime}+2 x y=\cos (x)
$$

Order: First-Order
Linear/Nonlinear: Linear
Is it separable? Nope
Solution Method: Linear Integrating Factor
Alternative Method: Laplace Transforms, Make Exact, Series, ...

Choose the Solution Method

$$
(x-2) y^{\prime \prime}+x y^{\prime}+y=0, \quad \text { where } y(0)=1, y^{\prime}(0)=2
$$

Order? Second-Order

Linear/Nonlinear? Linear
Constant Coefficient? No

Do I know one fundamental solution? No

Regular point or Regular Singular Point? Regular Point.
Solution Method: Use the fact that $y(x)$ has a Taylor Series of the form $y=\sum_{n=0}^{\infty} a_{n}(x-0)^{n}$ and solve for all of the a_{n} 's.

Choose the Solution Method

$$
\begin{aligned}
& f^{\prime}(t)=3 f(t)+2 g(t) \\
& g^{\prime}(t)=2 f(t)-g(t)
\end{aligned}
$$

Order: First-Order System
Linear/Nonlinear: Linear
Is it homogeneous? Yes.
Is it constant coefficient? Yes
Solution Method: Write system as $\overrightarrow{\mathbf{u}}^{\prime}=\mathbf{A} \overrightarrow{\mathbf{u}}$ and let $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{v}} e^{\lambda t}$. Solve for the eigenvalues and eigenvectors.

Choose the Solution Method

$$
\begin{aligned}
& \left(\sin (x)+x^{2} e^{y}-1\right) y^{\prime}+\left(y \cos (x)+2 x e^{y}\right)=0 \\
& \underbrace{\left(y \cos (x)+2 x e^{y}\right)}_{f_{x}=M}+\underbrace{\left(\sin (x)+x^{2} e^{y}-1\right)}_{f_{y}=N} y^{\prime}=0
\end{aligned}
$$

Order: First-Order
Linear/Nonlinear: Nonlinear

Is it separable? No.

Is it exact? Does $f_{x y}=f_{y x}$ (or $M_{y}=N_{x}$)? Yes
Solution Method: Exact! The implicit solution $f(x, y)=c$ is given by solving $f_{x}=M$ and $f_{y}=N$ (system of PDEs)

Choose the Solution Method

$$
y^{\prime \prime \prime}+y y^{\prime}-c y^{\prime}=0
$$

THIS IS A NONLINEAR 3rd order ODE!!!

You can take Math 391 next quarter (Asymptotics) to learn all about it!
This is a really good time to take it. Next time it will be offered is in 2015, and it's the perfect follow-up to this class.

Choose the Solution Method

$$
\begin{aligned}
& \left(\sin (x)+x^{2} e^{y}-1\right) y^{\prime}+\left(y \cos (x)+2 x^{3} e^{y}\right)=0 \\
& \underbrace{\left(y \cos (x)+2 x^{3} e^{y}\right)}_{f_{x}=M}+\underbrace{\left(\sin (x)+x^{2} e^{y}-1\right)}_{f_{y}=N} y^{\prime}=0
\end{aligned}
$$

Order: First-Order
Linear/Nonlinear: Nonlinear
Is it separable? No.
Is it exact? Does $f_{x y}=f_{y x}$ (or $M_{y}=N_{x}$)? No
Try to make it exact. Can you find a function μ to multiply the ODE by to make it exact?I give up!

Solution Method: Try direction fields to get an idea. If you have initial conditions, numerically solve!

Choose the Solution Method

$$
\begin{array}{ll}
u^{\prime}(t)=(t-1) u(t)+2 v(t), & u(0)=1 \\
v^{\prime}(t)=2 u(t)+t^{2} v(t), & v(0)=1
\end{array}
$$

Order: First-Order System
Linear/Nonlinear: Linear
Is it homogeneous? Yes.
Is it constant coefficient? No.
Solution Method: Perhaps consider a series solution method where

$$
u(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, \quad v(t)=\sum_{n=0}^{\infty} b_{n} t^{n}
$$

This should give two equations for each of the "two" unknowns.

