True / False

For the True / False questions you must justify your answers.

1. (4 points) True / False. It is possible to find an integrating function $\mu(y)$ (μ depends only on y) such that the following differential equation

$$
x^{2}+2 x+y^{2}+2 y y^{\prime}=0
$$

becomes exact when multiplied by μ.
If we multiply $*$ by $\mu(y)$, we get

$$
\underbrace{\mu(y)\left[x^{2}+2 x+y^{2}\right]}_{N}+\underbrace{2 y \mu(y)}_{N} y^{\prime}=0
$$

To see if the new ODE is exact, we Check: does $M_{y}=N_{x}$? $M_{y}=\mu^{\prime}(y)\left[x^{2}+2 x+y^{2}\right]+\mu(y)[2 y]$ $N_{x}=0$

Can we find $\mu(y)$?
No. If we solve $\mu^{\prime}(y)\left[x^{2}+2 x+y^{2}\right]+2 y \mu(y)=0$ then $\mu(y)$ would also depend
2. (4 points) True / False. There exists a unique solution to the following initial value problem

$$
x y^{\prime}=y, \quad y(0)=0
$$

The ODE is separable, so let's try!

$$
x \cdot \frac{d y}{d x}=y \rightarrow \int \frac{d y}{y}=\int \frac{d x}{x} \rightarrow \ln |y|=\ln |x|+\tilde{c}
$$

So, we have $y=c x$. Using the initial conditions, we have

$$
0=c \cdot 0 \longrightarrow c=\text { anything! }
$$

Thus, $y=c x$ represents an infinite class of solutions to the IVP. And \therefore there is not a unique solution.

Points earned: \qquad out of a possible 8 points

Matching/Multiple Choice

3. Consider the plots of solutions to initial value problems for various second-order differential equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(x)
$$

(plots given on the next page).
If possible, match the following differential equations with a plot that best matches a solution to a corresponding initial value problem. If it is not possible to match the differential equation with a corresponding figure, use one of the blank grids on the next page to sketch a suitable graph corresponding to a non-trivial (non-zero) solution to a corresponding initial value problem.
(a) (4 points) $y^{\prime \prime}-2 y^{\prime}+2 y=0$

$$
\begin{aligned}
& \lambda^{2}-2 \lambda+2=0 \\
& \lambda-2 \lambda+1+1=0 \\
& (\lambda-1)^{2}=-1 \\
& \lambda=1 \pm i
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=e^{x} \cos (x) \\
& y_{2}=e^{x} \sin (x) \\
& \quad y(x)=e^{x} \sqrt{c_{1}^{2}+c_{2}^{2}} \cos (x-\theta)
\end{aligned}
$$

A solution corresponds to Figure \qquad
(b) (4 points) $3 y^{\prime \prime}+17 y^{\prime}+10 y=0$

$$
\begin{array}{ll}
3 \lambda^{2}+17 \lambda+10=0 & y=c_{1} e^{-2 / 3 x}+c_{2} e^{-5 x} \\
(3 \lambda+2)(\lambda+5)=0 & \text { as } x \rightarrow \infty \quad y \rightarrow 0
\end{array}
$$

A solution corresponds to Figure \qquad
(c) (4 points) $y^{\prime \prime}+y=\sin (2 t)$

$$
\begin{aligned}
\lambda^{2}+1 & =0 \\
\lambda & = \pm i
\end{aligned}
$$

$$
\begin{aligned}
& y_{n}=c_{1} \cos (t)+c_{2} \sin (t) \\
& y_{p}=A \cos (2 t)+B \cos (2 t)
\end{aligned}
$$

A solution corresponds to Figure \qquad

Points earned: \qquad out of a possible 12 points

Figure A

Figure C

Figure E

Figure B

Figure D

Figure F

\qquad out of a possible 0 points

Find the Solution

Find the general solution to each of the following differential equations.
You may leave your solution in implicit form if you like.
4. (10 points) $4 y^{\prime \prime}-8 y^{\prime}-4 y=0$

$$
\begin{gathered}
\text { Assume } y=e^{\lambda x} \longrightarrow \text { char.eqn. } \rightarrow 4 \lambda^{2}-8 \lambda-4=0 \\
4\left(\lambda^{2}-2 \lambda-1\right)=0 \\
\lambda-2 \lambda+1-2=0 \\
(\lambda-1)^{2}=2 \quad \lambda=1 \pm \sqrt{2}
\end{gathered}
$$

\qquad out of a possible 10 points
5. (10 points) $r^{\prime}(t)=\frac{t-e^{-t}}{r(t)+e^{r(t)}}$

$$
\begin{aligned}
& \text { Separable! } \\
& \int\left(r+e^{r}\right) d r=\int t-e^{-t} d t \\
& \frac{1}{2} r^{2}+e^{r}=\frac{1}{2} t^{2}+e^{-t}+c
\end{aligned}
$$

\qquad
6. (15 points) $y^{\prime \prime}+2 y^{\prime}+y=\frac{e^{-t}}{t}$

In order to solve this ODE, you would need to use variation
of parameters for a second order ODE. This topic will not
be included on the Winter 2015 Exam \#1.
$2^{\text {nd }}$ order, linear, const coeff. non-homeg!
Find y_{n}

$$
\begin{array}{cc}
y^{\prime \prime}+2 y^{\prime}+y=0 & \longrightarrow \lambda^{2}+2 \lambda+1=0 \\
& \lambda=-1 \text { repeated } \\
y_{1}=e^{-t} & y_{2}=t e^{-t}
\end{array}
$$

Find y_{p} must use VOP

$$
\begin{aligned}
& W\left(y_{1} y_{2}\right)=\left|\begin{array}{cc}
e^{-t} & t e^{-t} \\
-e^{-t} & (1-t) e^{-t}
\end{array}\right|=e^{-2 t}[1-t+t]=e^{-2 t} \\
& \underline{W}=e^{-2 t} \\
& y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \quad \text { where } \quad u_{1}=\int \frac{-y_{2} g(x)}{w} d x \quad u_{2}=\int \frac{y_{1} g(x)}{w} \\
& u_{1}=\int \frac{-t e^{-t} \cdot \frac{1}{t} e^{-t}}{e^{-2 t}} d t=\int-d t=-t \\
& u_{2}=\int \frac{e^{-t} \cdot \frac{1}{t} e^{-t}}{e^{-2 t}} d t=\int \frac{1}{t} d t=\ln |t| \\
& S 0 \ldots \\
& y(x)=c_{1} e^{-t}+c_{2} t e^{-t}-t e^{-t}+\ln |t| t e^{-t}
\end{aligned}
$$

\qquad out of a possible 15 points

Solve each of the following initial value problems.
You may leave your solution in implicit form if you like.
7. (15 points) Solve the initial value problem $x y^{\prime}=y+x^{2} e^{-x}, \quad y(1)=4$.

$$
\begin{aligned}
& y^{\prime}-\frac{1}{x} y=x e^{-x} \quad y(1)=4 . \\
& \mu=e^{-\int \frac{1}{x} d x} \\
& =e^{-\ln |x|}=\frac{1}{x} \\
& \frac{d}{d x}\left[\frac{1}{x} \cdot y(x)=e^{-x} \quad \rightarrow \quad \text { if } \quad x=1, y=4\right. \\
& \frac{1}{x} y(x)=-e^{-x}+c=4+e^{-1} \\
& \frac{1}{x} y(x)=e^{-1}+c
\end{aligned}
$$

\qquad
8. (15 points) $\frac{d y}{d x}=\frac{3 x+x y^{2}}{y+x^{2} y}, \quad y(1)=3$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x\left(3+y^{2}\right)}{y\left(1+x^{2}\right)} \quad \text { separable! } \\
& \int \frac{1 y}{3+y^{2}} d y=\int \frac{x}{1+x^{2}} d x \quad-\frac{1}{2} \ln \left(3+y^{2}\right)=\frac{1}{2} \ln \left(1+x^{2}\right)+c \\
& \\
& \frac{1}{2} \ln (12)=\frac{1}{2} \ln (2)+c \\
& \frac{1}{2} \ln \left(3+y^{2}\right)=\frac{1}{2} \ln (6) \rightarrow \ln (\sqrt{6}) \\
&
\end{aligned}
$$

\qquad
9. (15 points) $q^{\prime \prime}+4 q^{\prime}+13 q=e^{-2 t}, \quad q(0)=1, q^{\prime}(0)=2$

$$
\begin{gathered}
\lambda^{2}+4 \lambda+4+9=0 \\
\lambda=-2 \pm 3 i
\end{gathered}
$$

$$
\begin{aligned}
& q_{1}=e^{-2 t} \cos (3 t) \\
& q_{2}=e^{-2 t} \sin (3 t)
\end{aligned}
$$

$$
\begin{aligned}
& q_{p}=A e^{-2 t} \\
& q_{p}^{\prime \prime}=4 A e^{-2 t}
\end{aligned} \quad q_{p}^{\prime}=-2 A e^{-2 t}
$$

$$
\begin{aligned}
4 A-8 A+13 A & =\varnothing 1 \\
9 A & =1 \quad A=\frac{1}{9}
\end{aligned}
$$

$$
\begin{aligned}
& y=e^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\frac{1}{9} e^{-2 t} \\
& g^{\prime}=-2 e^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{1}{9}\right)+e^{-2 t}\left[-c_{1} \sin (3 t) \cdot 3+3 c_{2} \cos (3 t)\right]
\end{aligned}
$$

$$
\begin{aligned}
& q(0)=1 \quad \rightarrow \quad c_{1}+\frac{1}{9}=1 \\
& q^{\prime}(0)=2 \rightarrow-2\left(c_{1}+\frac{1}{9}\right)+\left[3 c_{2}\right]=2 \\
& -2+3 c_{2}=2 \\
& 3 c_{2}=4 \\
& q(t)=e^{-2 t} \cdot\left[\frac{8}{9} \cos (3 t)+\frac{3}{4} \sin (3 t)+\frac{1}{9}\right]
\end{aligned}
$$

\qquad out of a possible 15 points

