Math 234 - Exam #1

Spring Quarter 2013

Name: _

Any student found engaging in academic misconduct will receive a score of 0 on this exam. All suspicious behavior will be reported. By signing the space below, you agree that you will not give nor receive any unauthorized aid during the exam.

Signature: _____

Page:	3	4	6	7	8	9	10	11	Total
Points:	8	12	10	10	15	15	15	15	100
Score:									

Page:	12	Total
Bonus Points:	10	10
Score:		

Final Score: _____ out of 100 points = _____%

- Check that your exam has a total of 14 pages and 10 problems.

- You are not allowed to use a calculator on this exam.

- You should show/explain your work on all problems to receive full credit. The correct answer with no supporting work may result in no credit.
- If you have a question, please come up to the front.
- There is extra paper available up front for scratch work, or if you run out of space.
- Clearly indicate your final answer by placing a box around it.
- You will have 85 minutes to complete your exam.

GOOD LUCK!!!

TRUE / FALSE

For the True / False questions you must justify your answers.

1. (4 points) **True / False.** It is possible to find an integrating function $\mu(y)$ (μ depends only on y) such that the following differential equation

$$x^2 + 2x + y^2 + 2yy' = 0$$

becomes exact when multiplied by μ .

2. (4 points) True / False. There exists a unique solution to the following initial value problem

 $xy' = y, \qquad y(0) = 0.$

MATCHING/MULTIPLE CHOICE

3. Consider the plots of solutions to initial value problems for various second-order differential equations of the form

$$ay'' + by' + cy = g(x),$$

(plots given on the next page).

If possible, match the following differential equations with a plot that best matches a solution to a corresponding initial value problem. If it is not possible to match the differential equation with a corresponding figure, use one of the blank grids on the next page to sketch a suitable graph corresponding to a non-trivial (non-zero) solution to an initial value problem.

(a) (4 points) y'' - 2y' + 2y = 0

A solution corresponds to Figure

(b) (4 points) 3y'' + 17y' + 10y = 0

A solution corresponds to Figure _____

(c) (4 points) $y'' + y = \sin(2t)$

A solution corresponds to Figure _____

Points earned: ______ out of a possible 12 points

FIND THE SOLUTION

Find the general solution to each of the following differential equations.

You may leave your solution in implicit form if you like.

4. (10 points) 4y'' - 8y' - 4y = 0

5. (10 points) $r'(t) = \frac{t - e^{-t}}{r(t) + e^{r(t)}}$

Math 234

6. (15 points) $y'' + 2y' + y = \frac{e^{-t}}{t}$

In order to solve this ODE, you would need to use variation of parameters for a second order ODE. This topic will not be included on the Winter 2015 Exam #1. Solve each of the following initial value problems.

You may leave your solution in implicit form if you like.

7. (15 points) Solve the initial value problem $xy' = y + x^2 e^{-x}$, y(1) = 4.

8. (15 points)
$$\frac{dy}{dx} = \frac{3x + xy^2}{y + x^2y}, \qquad y(1) = 3$$

9. (15 points) $q'' + 4q' + 13q = e^{-2t}$, q(0) = 1, q'(0) = 2

BONUS

10. (10 points (bonus)) Let both P and Q be functions that are continuously differential in both x and y (i.e. Q(x, y) and P(x, y) both have continuous derivatives with respect to x and y). If $P_x = Q_y$ and $Q_x = -P_y$, show that the differential equation

$$P(x,y) + Q(x,y)\frac{dy}{dx} = 0$$

is not exact in general, but becomes exact when multiplied by

$$\frac{1}{P^2 + Q^2}.$$

Exam #1

TABLE OF INTEGRALS

$$(1) \int \sin(x) \, dx = -\cos(x) + c \qquad (2) \int \cos(x) \, dx = \sin(x) + c$$

$$(3) \int \sin^2(x) \, dx = \frac{1}{2} (x - \sin(x)\cos(x)) + c \qquad (4) \int \cos^2(x) \, dx = \frac{1}{2} (x + \sin(x)\cos(x)) + c$$

$$(5) \int \sin^2(x)\cos(x) \, dx = \frac{1}{3}\sin^3(x) + c \qquad (6) \int \cos^2(x)\sin(x) \, dx = -\frac{1}{3}\cos^3(x) + c$$

$$(7) \int \frac{1}{\sin^2(x)} \, dx = -\frac{\cos(x)}{\sin(x)} + c \qquad (8) \int \frac{1}{\cos^2(x)} \, dx = \frac{\sin(x)}{\cos(x)} + c$$

$$(9) \int \frac{ax}{1 + bx^2} \, dx = \frac{a}{2b} \ln(1 + bx^2) + c \qquad (10) \int xe^x \, dx = (x - 1)e^x + c$$

$$(11) \int x^2 e^x \, dx = (x^2 - 2x + 2)e^x + c \qquad (12) \int e^{ax}\cos(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a\cos(bx) + b\sin(bx))$$

$$(13) \int e^{ax}\sin(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a\sin(bx) - b\cos(bx))$$