MATH 234 - EXAM \#1

Spring Quarter 2013

Name: \qquad

Any student found engaging in academic misconduct will receive a score of 0 on this exam. All suspicious behavior will be reported. By signing the space below, you agree that you will not give nor receive any unauthorized aid during the exam.

Signature: \qquad

Page:	3	4	6	7	8	9	10	11	Total
Points:	8	12	10	10	15	15	15	15	100
Score:									

Page:	12	Total
Bonus Points:	10	10
Score:		

Final Score: \qquad out of 100 points $=$ \qquad

- Check that your exam has a total of 14 pages and 10 problems.
- You are not allowed to use a calculator on this exam.
- You should show/explain your work on all problems to receive full credit. The correct answer with no supporting work may result in no credit.
- If you have a question, please come up to the front.
- There is extra paper available up front for scratch work, or if you run out of space.
- Clearly indicate your final answer by placing a box around it.
- You will have 85 minutes to complete your exam.

True / False

For the True / False questions you must justify your answers.

1. (4 points) True / False. It is possible to find an integrating function $\mu(y)$ (μ depends only on y) such that the following differential equation

$$
x^{2}+2 x+y^{2}+2 y y^{\prime}=0
$$

becomes exact when multiplied by μ.
2. (4 points) True / False. There exists a unique solution to the following initial value problem

$$
x y^{\prime}=y, \quad y(0)=0
$$

\qquad out of a possible 8 points

Matching / Multiple Choice

3. Consider the plots of solutions to initial value problems for various second-order differential equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(x)
$$

(plots given on the next page).
If possible, match the following differential equations with a plot that best matches a solution to a corresponding initial value problem. If it is not possible to match the differential equation with a corresponding figure, use one of the blank grids on the next page to sketch a suitable graph corresponding to a non-trivial (non-zero) solution to an initial value problem.
(a) (4 points) $y^{\prime \prime}-2 y^{\prime}+2 y=0$

A solution corresponds to Figure

\qquad
(b) (4 points) $3 y^{\prime \prime}+17 y^{\prime}+10 y=0$

A solution corresponds to Figure

\qquad
(c) (4 points) $y^{\prime \prime}+y=\sin (2 t)$

A solution corresponds to Figure

\qquad
\qquad out of a possible 12 points

Figure A

Figure C

Figure E

Figure B

Figure D

Figure F

\qquad out of a possible 0 points

Find the Solution

Find the general solution to each of the following differential equations.
You may leave your solution in implicit form if you like.
4. (10 points) $4 y^{\prime \prime}-8 y^{\prime}-4 y=0$
\qquad
5. (10 points) $r^{\prime}(t)=\frac{t-e^{-t}}{r(t)+e^{r(t)}}$
6. (15 points) $y^{\prime \prime}+2 y^{\prime}+y=\frac{e^{-t}}{t}$

> In order to solve this ODE, you would need to use variation of parameters for a second order ODE. This topic will not be included on the Winter 2015 Exam \#1.
\qquad

Solve each of the following initial value problems.
You may leave your solution in implicit form if you like.
7. (15 points) Solve the initial value problem $x y^{\prime}=y+x^{2} e^{-x}, \quad y(1)=4$.
8. (15 points) $\frac{d y}{d x}=\frac{3 x+x y^{2}}{y+x^{2} y}, \quad y(1)=3$
9. $(15$ points $) q^{\prime \prime}+4 q^{\prime}+13 q=e^{-2 t}, \quad q(0)=1, q^{\prime}(0)=2$

Bonus

10. (10 points (bonus)) Let both P and Q be functions that are continuously differential in both x and y (i.e. $Q(x, y)$ and $P(x, y)$ both have continuous derivatives with respect to x and y). If $P_{x}=Q_{y}$ and $Q_{x}=-P_{y}$, show that the differential equation

$$
P(x, y)+Q(x, y) \frac{d y}{d x}=0
$$

is not exact in general, but becomes exact when multiplied by

$$
\frac{1}{P^{2}+Q^{2}}
$$

\qquad

Table of Integrals

(1) $\int \sin (x) d x=-\cos (x)+c$
(2) $\int \cos (x) d x=\sin (x)+c$
(3) $\int \sin ^{2}(x) d x=\frac{1}{2}(x-\sin (x) \cos (x))+c$
(5) $\int \sin ^{2}(x) \cos (x) d x=\frac{1}{3} \sin ^{3}(x)+c$
(7) $\int \frac{1}{\sin ^{2}(x)} d x=-\frac{\cos (x)}{\sin (x)}+c$
(9) $\int \frac{a x}{1+b x^{2}} d x=\frac{a}{2 b} \ln \left(1+b x^{2}\right)+c$
(10) $\int x e^{x} d x=(x-1) e^{x}+c$
(11) $\int x^{2} e^{x} d x=\left(x^{2}-2 x+2\right) e^{x}+c$
(13) $\int e^{a x} \sin (b x) d x=\frac{e^{a x}}{a^{2}+b^{2}}(a \sin (b x)-b \cos (b x))$

