
GridPeaks: Employing Distributed Energy Storage
for Grid Peak Reduction
Yasra Chandio∗, Aditya Mishra†, Anand Seetharam∗
∗Department of Computer Science, SUNY Binghamton, USA

†Department of Computer Science and Software Engineering, Seattle University, USA
{ychandio, aseethar}@binghamton.edu,mishraa@seattleu.edu

Abstract—Since peak demand dictates the costs and carbon
emissions in electricity generation, electric utilities are transition-
ing to renewable energy to cut peaks and curtail carbon footprint.
Although clean and sustainable energy source, intermittent na-
ture of most renewables (e.g., solar, wind) makes it challenging
to integrate them with the traditional electric grid. Energy
storage could facilitate the integration. Grid-scale energy storage
projects have been coming up across the world, but require
huge upfront capital costs, and significant time and efforts.
An economic and scalable alternative to expensive centralized
energy storage is to leverage distributed energy storage across
several homes in the grid. Prior research has proposed employing
home energy storage for cutting peak demands and electricity
bills for customers. However, homes working individually cannot
shave aggregate peaks efficaciously since not all home peaks
are aligned with the aggregate peaks and homes don’t have the
aggregate consumption knowledge. To address these limitations,
we present GridPeaks, a distributed energy storage system that
centrally controls the batteries of the participating homes from
a master node deployed at the grid. The master makes battery
charging-discharging decisions based on aggregate grid demand.
We evaluate GridPeaks on real power consumption data. Our
results show that GridPeaks can cut grid-wide peaks by 23%
and reduce the generation costs by up to 14%.

I. INTRODUCTION

Eighteen of the 19 warmest years have all occurred since
2001 [4]; 2016 is the warmest year on record. The temperature
increase is chiefly driven by increased emissions of green-
house gases (such as CO2) into the atmosphere. Electricity
generation is a significant contributor to the emissions. Around
33% of the total U.S. energy-related CO2 emissions, in 2018,
were from electric power sector [5]. Carbon emissions from
electricity generation are determined not only by the total
energy demand, but also by the magnitude of the maximum
energy that needs to be generated per unit time, i.e., the peak
demand (measured in kW or MW).

Peak demands dictate both the costs and carbon emissions
in electricity generation. Grid’s installed generation and trans-
mission capacity needs to be provisioned for the tallest annual
peak. Unfortunately, due to peaky nature of demand, lot of
the installed capacity sits idle for most time. In the U.S., only
about 50% of the capacity is used 100% of the time. Only 5%
of the time greater than 90% generation capacity is used [1].
The base load generators that are operational continually often

cannot serve peak demands. Utilities need to run extra “peak-
ing” generators to serve the peaks. These “peaking” generators
frequently operate on fossil fuels [7] hence have greater carbon
emissions compared to base load generators like hydroelectric
plants, nuclear plants, solar power [2]. Additionally, due to
higher costs of building fuel efficient generators, peaking
generators are less efficient than base load generators [7]. The
inefficiency adds to carbon footprint.

To curtail electricity’s carbon footprint and cut costs, states
are transitioning to renewable energy sources. For instance,
Hawaii plans to get 100% of its energy from renewable sources
by 2045. Although a sustainable energy source, most renew-
ables are intermittent and unpredictable. The intermittence
makes them incompatible with the traditional electric grid
that operates on the paradigm of “supply follows demand.”
One possible way of bridging this gap is energy storage.
Intermittent energy can be stored in batteries when available.
The stored energy can be drawn to serve demand later.

Grid-scale energy storage projects have been coming up
across the world. For instance, one of the largest energy
storage project, with a gigawatt power rating, is planned for
Utah [8]. Such centralized storage installations do facilitate
renewable energy integration in the grid and allow peak shav-
ing, but require huge upfront costs, planning, and significant
engineering time and efforts.

An economic and scalable alternative to expensive central-
ized energy storage is to leverage distributed energy storage
across several buildings and homes in the grid. Many homes
already have battery storage, for instance, homes with electric
vehicles (EVs), and photovoltaic deployments; in remote areas
and developing nations, where the grid is unstable, battery is
used as backup during outages. As the energy storage price
continues to drop and more off-the-shelf home storage solu-
tions become available, the storage penetration in residential
sector is expected to rise further [6].

Prior research has proposed employing home energy stor-
age for cutting peak demands and electricity bills for cus-
tomers [10], [11], [13], [14], [20]–[22], [25], [26]. However,
this approach has limitations. Using batteries to exploit time-
of-use pricing could create a taller rebound peak during low
price periods [20], [22]. Employing storage to cut individual
home peaks could reduce aggregate peaks (as shown in [22]),
but it does not achieve best results since not all home peaks
are aligned with the grid-wide aggregate peaks. Furthermore,978-1-5386-7466-6/18 $31.00 © 2019 IEEE
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Fig. 1. The marginal cost to generate electricity increases as the demand
increase
as homes do not have grid-level consumption knowledge, they
cannot shave aggregate peaks efficaciously.

Therefore, to cut peaks and generation costs effectively,
overcome limitations of isolated battery deployments, and
reduce user electricity costs we present GridPeaks. Grid-
Peaks is a distributed energy storage system where batteries
at participating homes are centrally controlled by a master
node deployed at the electric grid. Since the master has
knowledge of real-time aggregate demand, it uses an online
charge-discharge algorithm to control distributed storage so
as to optimize the grid demand profile for peak shaving and
generation cost savings.

Although distributed energy storage, operating indepen-
dently, across several buildings in the grid can cut peaks
and save electricity costs for the customers, it produces sub-
optimal results. Our hypothesis is that letting the grid control
charging-discharging of the distributed storage at buildings can
significantly boost aggregate peak reduction, and generation
cost savings. In evaluating our hypothesis, we make the
following contributions: 1) We detail GridPeaks’ architecture
deployed at the participating homes. 2) We present a frame-
work that allows the grid to control charging-discharging of the
distributed energy storage from a centralized location. 3) Novel
revenue sharing model. If traditional peak based pricing plans
are used at homes, centralized control of storage could increase
the bill. Therefore, to incentivize participation in GridPeaks,
we propose a novel revenue sharing system that employs peak
based variable electricity pricing at homes, but allows the grid
to share its generation cost savings (from GridPeaks) with
the participating homes in proportion to their storage capacity
contribution. 4) We evaluate GridPeaks in simulation using
power consumption data from real homes and existing variable
electricity pricing plans.

II. BACKGROUND

A. Electricity generation costs

Figure 1 is derived from the actual U.S. electricity genera-
tion costs data presented in [12]. The figure illustrates that the
generation costs grow super-linearly as the consumption peak
increases. Considering the transmission and distribution losses
are proportional to the square of the of the current, increased
peak demands worsen generation costs since lost electricity
is wasted generation. Approximately 10 to 20% of generation
costs in the U.S. are incurred servicing just the top 100 hours
of peak demand per year [23]. We use the data presented
in [12] to derive the generation cost function in Figure 1 for

GridPeaks evaluation. The function is derived by scaling the
generation cost data in the figure to match the aggregate peak
demand in our micro-grid traces.

B. PeakCharge

GridPeaks leverages centrally controlled distributed battery
system to shave peaks and cut generation costs. For perfor-
mance evaluation, we compare GridPeaks with its distributed
alternative—PeakCharge [22]. PeakCharge proposes a large
scale distributed energy storage system in the grid that is indi-
vidually managed by homes. In PeakCharge, every home uses
an online battery charging-discharging algorithm to cut user
electricity bills in presence of peak based pricing plans. The
idea being, if individual home peaks are shaved, the aggregate
grid-peak would be shaved consequently. To minimize peaks,
PeakCharge tries to keep the home’s consumption close to
its target daily average consumption. If the home’s demand is
below the target average, PeakCharge charges the battery from
the grid at a rate so as to bring up the net consumption from
the grid to the target average. Similarly, if the consumption is
above the target, PeakCharge draws a fraction of the demand
from the battery to bring down the net draw to the target
average. More details about PeakCharge are in [22].

C. Variable and peak based electricity pricing

To cut peaks and generation costs, several utilities are transi-
tioning to market-based variable electricity pricing plans such
as time-of-use (ToU) pricing. The variable pricing incentivizes
customers to lower peak demand by having a higher electricity
price during high demand periods (such as dinner times) and
a lower price during low demand periods (e.g., late nights).
Such pricing plans are in place at several locations including
Ontario [24], Illinois [15]. Additionally, to curtail peaks from
commercial customers, utilities impose a peak penalty on
their highest consumption peak, e.g., [3]. Hence, commercial
customers pay for both energy consumption ($/kWh) and every
kW of their tallest monthly peak ($/kW).

D. GridPeaks’ novel electricity pricing

For a fair comparison with PeakCharge, we evaluate Grid-
Peaks using a hybrid pricing plan needed by PeakCharge,
as done in [22]. The hybrid pricing bills customers for both
the energy consumption ($/kWh) and the tallest peak ($/kW).
For energy consumption, we use the ToU prices from Ontario
Energy Board [24]. We adopt a peak surcharge of $0.60/kW
based on [22].

However, the hybrid pricing plan, recommended by
PeakCharge, is not ideal for GridPeaks since GridPeaks is
focused on shaving the aggregate peaks and not all individual
home peaks are aligned with the aggregate peaks. Therefore,
to incentivize participation in GridPeaks, we propose a novel
revenue sharing system that employs peak based variable
electricity pricing at homes, but allows the grid to share its
generation cost savings (from GridPeaks) with the participat-
ing homes in proportion to their storage capacity contribution.
We propose a savings split of 20%-80% between the grid and
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Fig. 2. GridPeaks system architecture

the homes (respectively) since the homes own and maintain
the batteries. The proposed split is similar to the split used by
transportation network companies, like Lyft and Uber, that do
not own the vehicles but provide the enabling technologies.

E. GridPeaks architecture

Figure 2 depicts the GridPeak’s system architecture as
deployed at the participating homes. The architecture is armed
with a charge controller and a discharge controller (such as
in [27]) that allow GridPeaks to programmatically control the
charge and discharge rate of the battery, respectively. The
gateway server continually monitors the home’s aggregate
consumption via an in-panel energy monitor, and the battery’s
state of charge. The gateway server periodically sends the
monitored data to the central master node. Based on the data
received from the participating homes and the aggregate con-
sumption data from the grid generation units, the master node
computes and sends the desired charge/discharge rate to each
participating home. Section IV-A presents the details of the
charging, discharging algorithms executed at the master node.
The home gateway server uses the charge-discharge directives
from the master node to accordingly charge/discharge the
home battery.

GridPeaks controls the battery charge-discharge at the par-
ticipating homes from a central master node deployed at the
grid. The homes are connected to the master via a high speed
network link such as high speed Internet connection. The
network is used to relay data and the charge-discharge direc-
tives. The master node also receives the real-time aggregate
demand information from the grid generation units. As long as
the master receives the required data in timely fashion (over
the network), its exact deployment location is flexible. One
possible location could be the bulk power substation.

III. PROBLEM STATEMENT

Although energy storage at individual homes can cut peaks
and electricity bills, the choice of when and how much
to charge-discharge the battery presents interesting tradeoffs.
Allowing the homes to independently make battery charging-
discharging decisions could minimize each home’s peak de-
mand and reduce its electricity bill, but may not shave the
aggregate peak—since individual home peaks do not always
sync with the grid-wide peak. If we instead allow the grid
to control charging-discharging of the batteries deployed at
homes, it could cut the aggregate peaks effectively. However,

as not all the peaks occurring at an individual home align with
the grid-peak, individual homes may not obtain the best peak
reduction. If the customers are billed for their tallest peaks, a
sub-optimal peak reduction could increase their bill, hence is
undesirable.

We define the problem of employing distributed energy
storage for grid-peak reduction as follows. Given the aggre-
gate power consumption of all the homes in the grid, and
electricity pricing plan the problem is to design an online
distributed energy storage charging-discharging algorithm to
cut the participating home’s electricity bills and shave grid-
wide aggregate peak demand. The algorithm should determine:
1) the homes whose batteries should be charged or discharged
at a given time; 2) for battery discharge, the fraction of the
home’s demand to be consumed from the grid and the fraction
to be drawn from the energy storage; 3) for battery charge,
the amount of energy to be fed into the battery so as to shave
the aggregate demand peaks and cut generation costs while
reducing electricity bill for the homes.

IV. GRIDPEAKS FRAMEWORK AND ALGORITHM

GridPeaks hides the details of distributed energy storage and
instead presents an abstraction of unified central battery to the
grid. The utility grid can leverage GridPeaks to any desired end
including (but not limited to) peak reduction, generation cost
saving, frequency regulation, storing excess renewable energy,
satisfying excess demand in lieu of dispatching “peaking”
generators. The flexibility inherent in battery storage presents
diverse possibilities. However, in this paper, we focus on
applying GridPeaks for peak shaving and generation cost
savings. One way of achieving those goals is to minimize
load variations on utility generators by keeping the net demand
close to a target daily average value. In this paper, we adopt the
aforementioned approach to the desired goals. In Section IV-A,
we present the GridPeaks framework along with the details
of translating charging-discharging decisions on a centralized
battery abstraction to the actual distributed storage system.
Next, Section IV-B talks about applying the framework for
curtailing peaks and generation costs.

A. Storage Sharing Framework

In this section, we describe the GridPeaks framework that
allows the utility provider to seamlessly control the distributed
energy storage. Let us assume that there are n homes and the
battery capacity at home h is Bh. The total battery capacity
available to the grid, BG, across n sites is BG =

∑n
h=1 Bh.

We assume a controller, that is deployed at the central master
node, helps the utility provider to effectively manage the
distributed energy storage. Our framework is inspired from
prior work [18], in which the authors design a virtualization
layer to enable multiple homes to share underlying physical
resources (i.e., battery and solar array). The objective of
our framework is to hide all the complexities involved in
controlling the distributed set of batteries and present the
utility an intuitive interface that resembles that of a single



battery. Therefore, from an operational perspective, the con-
troller views the distributed set of batteries as single battery
of total capacity BG and takes aggregate charging/discharging
decisions based on that.

The controller keeps track of the the individual battery
capacities, their state of charge (i.e., SOC), and how much
to charge/discharge individual batteries. The battery capacity
available to the grid at each site is fetched at the start and
is updated only when the battery capacity at the site changes.
The controller periodically communicates with the smart home
gateway servers at the participating homes to set the battery
charge-discharge rates and fetch the state of charge of the
individual batteries at each site. We denote the current state
of charge for the aggregate battery as SOCG(t), which is
essentially computed by adding the available battery capacities
at the participating homes. Let us assume that CG(t) and
DG(t) denote the desired aggregate charge and discharge rates,
respectively, at time t on the aggregate battery BG. The CG(t)
and DG(t) are determined by our grid-level peak shaving
algorithm, described in Section IV-B.The controller takes into
account the state of charge SOCh(t) for home h at time t
and the allowed depth of discharge DODh for home h, to
determines how the grid-level aggregate charging/discharging
decisions are handled at the individual homes. While doing so,
the controller also determines if the aggregate charge/discharge
rates can be achieved by the distributed storage and returns
the actual charge rate C

′

G(t) and discharge rate D
′

G(t), which
may or may not be the same as CG(t), DG(t) depending on
the combined state of charge and remaining capacity of the
distributed storage.

Table I provides an overview of the variables. We next
describe the battery charging and discharging decisions un-
dertaken at the individual battery level.
Charging: Algorithm 1 describes the algorithm for charging
the batteries. The charge operation takes the aggregated charge
requirement at time t, CG(t), and the set of all participating
homes (H) as input (in line 1) and determines the charging
actions to be undertaken at the individual home level. The
magnitude of CG(t) is determined by the grid-level peakshav-
ing algorithm, as described in Section IV-B. Line 2 gets the set
of homes with full battery. These homes need to be excluded
from further charging considerations since they have no more
room in their battery. Line 3 computes the total energy that the
grid would store in next time step “dt” if it could charge at the
rate of CG(t). It is obtained by multiplying the charging rate
with the interval length. The while loop in line 4 continues
until the desired aggregate charge rate is distributed among
participating homes or all the homes have run out of room
to charge. Initial value of Ch(t) for all homes is assumed
zero. In line 5, EC/dt gives us the charge rate required to
provide energy EC in time dt. We divide this required rate by
the number of homes in the set H − HF , i.e., |H − HF |,
which means that the charge rate is equally divided among
all homes whose batteries are not full. Whether a given home
would be able to sustain the computed charge rate depends on
its available battery capacity. Therefore, in line 6, we compute

Variable Description Unit
n Number of sites -
dt Time step hour
H Set of sites -
HF Set of sites with full battery -
HE Set of sites with empty battery -
k Fraction of battery shared with the grid -
PD(t) Power demand at time t kW
P

′
D(t) Power demand at time t after GridPeaks kW

P limit
D Demand limit, typically average demand kW

Bh Battery for site h kWh
BG

h Battery for grid from site h kWh
BG Battery available to the grid kWh
l Bh/l defines the maximum charge rate -
SOCh(t) State of charge for battery of site h at time t -
DODh Depth of discharge for battery of site h -
SOCG(t) State of charge for grid battery at site t -
Ch(t) Charging rate of battery for site h at time t kW
Dh(t) Discharging rate of battery for site h at time t kW
CG(t) Charging rate required by grid at time t kW
DG(t) Discharge rate required by grid at time t kW
C

′
G(t) Charging rate achieved by battery at time t kW

D
′
G(t) Discharge rate achieved by battery at time t kW

Cmax
G (t) Maximum charging rate available to grid kW

Dmax
G (t) Maximum discharging rate available to grid kW

ED(t) Energy discharged between time t and t+ dt kWh
EC(t) Energy charged between time t and t+ dt kWh
Efull

h (t) Energy required to fully charge the battery at
site h at time t

kWh

Eempty
h (t) Energy available till empty battery at site h at

time t
kWh

Eh(t) Energy stored in battery at site h at time t kWh
TABLE I

VARIABLE DEFINITIONS

the remaining battery capacity at home h. The nested for loop
in line 7 iterates through every home in set H −HF . Line
8 determines whether the remaining capacity in the battery
is less than required by the computed charge rate in line 5.
If so, in line 9, we compute the charge rate the home can
sustain at its current remaining capacity for the next time step
and modify the assigned charge rate accordingly.In line 10,
we add this home to the set of homes with full battery (HF),
since charging at the modified rate (computed in line 9) the
home would be full at the end of the next time step. Line 11
updates EC by subtracting the energy that will be fed into
home h.

The charge distribution process (inside the while loop in
line 4) keeps repeating until either we have assigned all the
desired energy to homes, or several batteries are full such
that the algorithm detects there isn’t enough spare capacity
to charge the desired amount. In the latter case, the desired
charge rate by the grid (CG(t)) cannot be achieved. When the
loops terminate, in line 12, the algorithm computes C

′

G(t),
the sum of the charge rates assigned to all the batteries. If
there was enough spare capacity, C

′

G(t) = CG(t). Otherwise
C

′

G(t) < CG(t).
Discharging: Algorithm 2 describes the algorithm for dis-
charging the batteries. The discharge algorithm takes the
desired aggregate discharge rate at time t, DG(t), and the set
of all participating homes (H) as the input. The magnitude of
DG(t) is determined by the grid-level peakshaving algorithm,
as described in Section IV-B.



Algorithm 1 Grid Battery Charging
1: function CHARGE(CG(t),H )
2: HF = {h : h ∈ H ∧ SOCh(t) = 1}
3: EC = CG(t)× dt
4: while (EC > 0 ∧ {H−HF} 6= ∅) do
5: Ch(t) =

EC

|H−HF|×dt + Ch(t), ∀h ∈ {H−HF}
6: Efull

h = BG
h ×(1−SOCh(t)), ∀h ∈ {H−HF}

7: for (h ∈ {H−HF}) do
8: if (Ch(t)× dt ≥ Efull

h ) then
9: Ch(t) = Efull

h /dt
10: HF = HF+ {h}
11: EC = EC − Ch(t)× dt

12: C
′

G(t) =
∑n

h=1 Ch(t)
13: return C

′

G(t)

Algorithm 2 Grid Battery Discharging
1: function DISCHARGE(DG(t),H)
2: HE = {h : h ∈ H ∧ SOCh = DODh}
3: ED = DG(t)× dt
4: while (ED > 0 ∧ {H−HE} 6= ∅) do
5: Dh(t) =

ED

(|H−HE|×dt) +Dh(t), ∀h ∈ {H−HE}
6: Eempty

h = BG
h × (SOCh(t)−DODh)

7: for (h ∈ {H−HE}) do
8: if (Dh(t)× dt ≥ Eempty

h ) then
9: Dh(t) = Eempty

h /dt
10: HE = HE+ {h}
11: ED = ED −Dh(t)× dt

12: D
′

G(t) =
∑n

h=1 Dh(t)
13: return D

′

G(t)

Line 2 gets the set of homes with empty battery. These
homes need to be excluded from further consideration since
they have no stored charge. Line 3 computes the total energy
the grid would discharge if it could discharge at the desired
rate of DG(t) during the next time step “dt.” It is obtained
by multiplying the discharge rate with the interval length.
The while loop in line 4 runs until the desired discharge rate
has been distributed among the participating homes or all the
homes have run out of remaining charge. Initial value of Dh(t)
for all homes is zero. In line 5, ED/dt gives us the discharge
rate required to discharge total energy ED in time “dt.” We
divide this required rate by the number of homes in the set
H − HE, i.e., |H − HE|, which means that the discharge
rate is equally divided among all the homes with non-empty
batteries. Whether a given home would be able to sustain the
computed discharge rate depends on the remaining charge in
its battery. Therefore, in line 6, we computed the remaining
charge stored at home h. The nested for loop in line 7 iterates
through every home in the set H − HE. Line 8 determines
whether the remaining charge in the battery is is less than
required by the computed discharge rate in line 5. If so, in line
9, we compute the discharge rate that the home can sustain at
its current remaining charge for the next time step and modify

Algorithm 3 Battery State of Charge
1: function SOC()
2: Eh(t) = BG

h × SOCh(t), ∀h ∈ {H}
3: SOCG(t) = Eh(t)/BG

4: return SOCG(t)

the remaining discharge rate accordingly. In line 10, we add
this home to the set of homes with empty battery (HE), since
discharging at the modified rate (computed in line 9) the home
would be empty at the end of the next time step. Line 11
updates ED by subtracting the energy that would be drawn
out of home h.

The discharge rate distribution process inside the while loop
(line 4) iterates until either all the desired discharge energy
(DG(t)) has been assigned to the participating homes, or
several batteries are empty such that the algorithm detects
there isn’t enough available capacity to discharge the desired
amount. In the latter case, the desired discharge rate DG(t)
cannot be achieved. After the loop terminates (in line 12) the
algorithm computes D

′

G(t), the sum of discharge rates as-
signed to all the batteries. If there was enough available charge
in the batteries, D

′

G(t) = DG(t). Else, D
′

G(t) < DG(t).
Battery State of Charge: The framework also provides a state
of charge function, presented in Algorithm 3, that computes
and returns the aggregate state of charge (SOC) across the
distributed batteries. The function first checks the state of
charge for every participating battery and computes the total
energy stored in those batteries. The SOC for the aggregate
grid-wide storage is computed by dividing the total stored
energy by the total capacity available to the grid. The SOC
for the battery is in range 0 to 1.

B. GridPeaks Algorithm

In this section, we describe how an electric utility can lever-
age the GridPeaks framework for peak reduction. Algorithm
4 provides an overview of the algorithm. The utility can use
the GridPeaks abstraction to achieve any desired target net
demand on its generation units. Here we assume, to minimize
load variations on its generators and cut generation expenses,
the utility strives to keep the net demand close to a target daily
average value. If the current aggregate demand is less than
the target average, the utility requests GridPeaks to charge the
distributed battery system at a rate CG(t) that is equal to the
difference between the target average and the current demand.
The GridPeaks’ computed charge rate (CG(t)) is capped by
the maximum charge rate for the entire battery system, the
algorithm picks the smaller of the two values. The maximum
charge rate limit is simply the sum of maximum charge rates
of all the batteries in the distributed storage system. The
maximum charge rate at each site h is computed as Bh/l,
where l is an integer that is defined by the battery specification
and generally takes value between 4 and 8. After computing
CG(t), the algorithm calls the CHARGE function (defined in
Algorithm 1), which returns the actual charge rate C

′

G(t) that
can be achieved at the time. The final net aggregate demand



on utility generators, P
′

D(t), is simply the sum of original
aggregate demand PD(t) and the achieved charge rate C

′

G(t).
On the other hand, if the current aggregate demand is greater

than the target average demand, GridPeaks discharges the
distributed storage system at a rate DG(t), which is equal
to the difference between current total demand and target
average demand. Again, the algorithm caps the computed
DG(t) value with the maximum discharge rate for the battery.
The maximum discharge rate limit is simply the sum of
maximum discharge rates of all the participating batteries. The
maximum discharge rate at each site h is typically set at a rate
that will discharge the battery in an hour; for instance a 12
kWh battery can be discharged in an hour by drawing power
at 12 kW–the max discharge rate. After computing DG(t),
the algorithm calls the DISCHARGE function (defined in
Algorithm 2), which returns the actual discharge rate D

′

G(t)
that can be achieved at the time. The final net aggregate
demand on utility generators P

′

D(t), in this case, is simply the
sum of the original demand PD(t) and the achieved discharge
rate D

′

G(t).

Algorithm 4 GridPeaks
Require: P limit

D , PD(t),H
1: if (PD(t) < P limit

D ) then
2: CG(t) = min(P limit

D − PD(t), Cmax
G )

3: C
′

G(t) = CHARGE(CG(t),H)
4: P

′

D(t) = PD(t) + C
′

G(t)
5: else
6: DG(t) = min(PD(t)− P limit

D , Dmax
G )

7: D
′

G(t) = DISCHARGE(DG(t),H)
8: P

′

D(t) = PD(t)−D
′

G(t)

V. EVALUATION

In this section, we evaluate GridPeaks using real-world
power consumption data from 114 homes over a week (Febru-
ary 8 to February 14, 2016) [9]. We compare GridPeaks with
PeakCharge [22], the closest distributed energy storage system.
Our results show that GridPeaks outperforms PeakCharge in
aggregate peak reduction and generation cost savings.

Experimental parameters used, unless stated otherwise, are
as follows. For every home, battery capacity C is 20% of its
daily average consumption, which is in line with the findings
of [22], where authors showed that a battery with usable
capacity greater than 20% of the daily average consumption
was sufficient to get maximum peak reduction at individual
homes. The maximum battery charging rate in our experiments
is C/4, i.e., the battery charges to full capacity in 4 hours,
which translates to roughly a C/8 rate for a battery used at
45% depth-of-discharge (DOD). The C/4 maximum charging
rate is within the maximum possible charge rate of C/3
for sealed lead-acid batteries [19]. We use a peak demand
surcharge of $0.60/kW on the highest 30-minute peak. Peaks
are computed at 30 minute granularity since several utilities
charge customers for 30 minute peaks, e.g., [3]. For both
the PeakCharge and GridPeaks, we use a hybrid pricing
plan, similar to the one used in [22], where the customers

are charged for both total energy consumption in the billing
cycle ($/kWh component) and tallest peak ($/kW component);
the energy consumption is billed using ToU pricing similar
to the one employed by Ontario Energy Board [24], which
offers time-of-use electricity pricing based on three usage
periodsoff-peak (6.5/kWh), mid-peak (9.5/kWh), and on-peak
(13.2/kWh).

A. Qualitative Results

Figure 3(a) shows the aggregate grid demand on a particular
day. Peak demand for this day is 287 kW. Figures 3(b)
and 3(c) show the grid-level consumption after employing
PeakCharge and GridPeaks (at participating homes) respec-
tively. In both cases, aggregate battery capacity used is 1056
kWh. Figure 3(b) shows that PeakCharge successfully shaves
the initial peaks, but is unable to shave the day’s tallest
peak. However, GridPeaks shaves all the peaks. This happens
because PeakCharge is designed to shave individual home
peaks without knowledge of the grid-wide consumption. Not
all peaks at homes are aligned with the aggregate peak.
PeakCharge uses the stored energy in shaving the initial
home peaks and runs out of charge for the tallest grid-wide
peak. In contrast, GridPeaks has the knowledge of aggregate
consumption. It only discharges the energy needed for shaving
the grid-wide peak to a target average value, which may
not require shaving all the individual home peaks. Hence,
GridPeaks uses much less energy for peak reduction and it
has the energy required for curtailing all of the day’s peaks.
In summary, the figures demonstrate that better grid-level
peak reduction (and generation cost savings since peaks drive
generation costs) can be achieved if the distributed energy
storage is centrally controlled, as done in GridPeaks.

B. Generation Cost Savings and Peak Reduction

In Figures 4 and 5, we investigate the aggregate peak reduc-
tion and generation cost savings across the grid, respectively,
as a function of battery capacity. The capacity at homes goes
from 0% to 100% of the home’s average daily consumption.
We observe that generation cost savings and peak reduction
increase sharply and then flatten out when the battery capacity
reaches 20%; this happens because a homes total consumption
is fixed. Adding more storage after a certain point cannot
reduce the peak further. The figures also show that GridPeaks
can provide significantly higher peak reduction and generation
cost savings in comparison to the PeakCharge. PeakCharge
reduces the peaks up to 10%, whereas GridPeaks can achieve
up to 23% reduction—a boost of more than 100%. Similarly,
PeakCharge results in around 7% generation cost savings,
where GridPeaks achieves 14%. Figure 6 shows the actual
dollar generation costs (derived from the data in Figure 1) in
our experimental microgrid for raw demand, GridPeaks, and
PeakCharge.

Figures 7 and 8 show the peak reduction and generation
cost savings, respectively, as a function of fraction of homes
participating in GridPeaks. Both GridPeaks and PeakCharge,
for a storage penetration of less than 5% do not yield any
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Fig. 3. Average hourly power consumption of a representative day
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Fig. 4. Peak reduction vs. battery capacity
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Fig. 5. Generation cost savings vs. battery capacity

peak reduction or generation savings. This is primarily due
to the small storage capacity across the grid; since both
algorithms operate in online fashion, the stored energy is
used up in shaving smaller peaks earlier in the day. However,
as the adoption increases, both PeakCharge and GridPeaks
steadily cut the aggregate peaks and generation costs. Here too,
GridPeaks outperforms PeakCharge. For instance, GridPeaks
achieves generation cost savings of up to 14%, as opposed to
7% from PeakCharge. GridPeaks’ better performance can be
attributed to its knowledge of aggregate demand and targeting
only aggregate peaks. It does not shave every individual peak
at homes hence saves energy for cutting more peaks over
the day and can achieve better reduction on tall peaks. Since
generation costs are driven by peak demand, GridPeaks does
well here too.

C. Benefit to Customers

Figure 9 shows the peak reduction and cost savings
in energy bills for individual homes. Figure 9(a) shows
that PeakCharge achieves significantly greater peak reduction
than GridPeaks at individual homes. This is expected since
PeakCharge is optimized to shave all possible home-level
peaks. However, GridPeaks optimizes aggregate grid-level
peak reduction. It doesn’t necessarily shave home peaks that
are not aligned with grid-level peaks. Figure 9(b) shows the
dollar savings per day for the customers. The figure shows
PeakCharge can save up to $0.7/day, whereas GridPeaks saves
up to $0.20/day. On including a 20%-80% generation savings
split between the grid and homes, GridPeaks’ savings go
up to $0.55/day. For fair comparison, we have employed a
peak-based pricing plan for evaluation at the homes, which is
optimized for PeakCharge ( [22]). Therefore, PeakCharge’s
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Fig. 6. Generation dollar saving vs Battery Percentage
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Fig. 7. Peak reduction vs. percentage of homes with battery.

better performance is not surprising. Besides, cost savings
from GridPeaks are underestimated in these results. We only
evaluated generation cost savings here. However, the utility
grid can additionally leverage GridPeaks for frequency regu-
lation, transmission cost savings, etc. Given significant unex-
plored cost saving potential of GridPeaks, we believe, overall
GridPeaks will outperform PeakCharge, especially under an
appropriate pricing plan (not optimized for PeakCharge).

VI. RELATED WORK
Most of the research on grid peak reduction has focused on

consumer-centric approaches that use consumer energy storage
in response to the variable electricity pricing to either save on
the bill or reduce home-level peak. In [20], authors present a
machine learning based approach that forecasts demand and
controls the charging of energy storage to reduce the electricity
bill. In [22], authors purpose a peak-based surcharge and
present a peak-aware charging algorithm to optimize the use
of energy storage in the presence of a peak demand surcharge.
In [11], authors present an approach that employs energy
storage to intelligently utilize the renewable energy by moving
a fraction of harvested energy to peak intervals. We argue
that the using energy storage to reduce home-level peaks is
myopic and present an approach that centrally controls the
distributed storage to shave the grid-level peaks. Our approach
beats the aggregate peak reduction presented by all the prior
work. Another body of work focuses on devising optimal
online strategies for controlling energy storage for scenarios
where differential and peak-based pricing is present. In [17],
authors present optimization framework for finding practical
operating strategy for peak-demand pricing when there is
price volatility present. In [16], authors developed an adaptive
controller framework for battery systems based on neural
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Fig. 8. Generation cost savings vs. percentage of homes with battery.
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networks, model predictive control, and system simulation.
They demonstrated that their controller approaches MPC-level
performance at a fraction of the online computational cost of
MPC on a PV-battery system with time-of-use pricing. While
this ensemble of work computes the cost savings, it does not
quantify the peak reduction at home or grid level. On contrary,
our work quantifies the impact giving the control of storage
to the grid when real-world prices are present.

VII. CONCLUSION
We presented GridPeaks. In GridPeaks, a central master

node runs an online algorithm to determine charge-discharge
rate of batteries deployed at the participating homes so as to
shave the demand peaks and cut generation costs. GridPeaks
uses a novel revenue sharing model that allows the grid to
reward participating customers by proportionately disbursing
generation cost savings. Our experiments show that GridPeaks
can cut grid-wide peaks by 23% and reduce generation costs
up to 14%. Individual homes can save more than $0.5/day.
GridPeaks lends itself to several vital grid applications such as
frequency regulation, storing excess renewable energy, cutting
transmission costs, etc. In this paper we only explored the
monetary benefits from generation cost savings. Employing
GridPeaks for other applications could further boost savings
for both the grid and the participating customers. We would
like to explore these possibilities in the future work.
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