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Abstract. For graphs G and H with totally ordered vertex sets, a function mapping the vertex set

of G to the vertex set of H is an order preserving homomorphism from G to H if it is nondecreasing

on the vertex set of G and maps edges of G to edges of H. In this paper, we study order preserving

homomorphisms whose target graph H is the complete graph on n vertices. By studying a family

of graphs called nonnesting arc diagrams, we are able to count the number of order preserving ho-

momorphisms (and more generally the number of order preserving multihomomorphisms) mapping

any fixed graph G to the complete graph Kn.
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1. Introduction

The study of graph homomorphisms has been the subject of a great deal of recent work in

the fields of enumerative, algebraic, and topological combinatorics. A recent survey of Lovász et.

al. [1] is an excellent source on the many facets of enumerating graph homomorphisms, while

Kozlov’s mongraph [3] outlines a more topological approach. In this paper, we study combinatorial

properties of order preserving homomorphisms between two graphs G and H as introduced by

Braun, Browder and Klee [2].

Throughout this paper, V (G) and E(G) will denote the vertex set and edge set respectively of

a graph G. All graphs are assumed to be simple, meaning that loops and multiple edges are not

allowed.

Let G be a graph on vertex set [m] = {1, 2, . . . ,m} and let H be a graph on vertex set

{x1, x2, . . . , xn}. We order the vertex set of G naturally, and we order the vertex set of H by
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declaring that x1 < x2 < · · · < xn. An order preserving homomorphism from G to H is a function

ϕ : V (G) → V (H) such that

(1) If 1 ≤ i < j ≤ m, then ϕ(i) ≤ ϕ(j), and

(2) If (i, j) ∈ E(G), then (ϕ(i), ϕ(j)) ∈ E(H).

An order preserving homomorphism ϕ : G → H may be presented as a vector [ϕ(i)]mi=1 =

[ϕ(1), . . . , ϕ(m)].

Example 1.1. Let G and H be the graphs shown in Figure 1.1.

1 2 3 x1 x2 x3 x4

G : H :

Figure 1

Define functions ϕ1, ϕ2, ϕ3 : V (G) → V (H) as follows:

ϕ1 : [x1, x2, x2]

ϕ2 : [x1, x2, x4]

ϕ3 : [x1, x3, x4].

The functions ϕ1 and ϕ2 are order preserving homomorphisms from G to H. Notice that since

(2, 3) is not an edge in G, having ϕ1(2) = ϕ1(3) does not violate the definition of an order preserving

homomorphism. The function ϕ3 is order preserving, but it is not a homomorphism since (1, 2) ∈

E(G), but (ϕ(1), ϕ(2)) = (x1, x3) /∈ E(H).

Rather than view each order preserving homomorphism from G to H as a single function, it is

often more convenient to encode several homomorphisms as a single object. An (order preserving)

multihomomorphism from G toH is a function η : V (G) → 2V (H)\∅ with the property that [ϕ(i)]mi=1

is an order preserving homomorphism from G to H for all possible choices of ϕ(i) ∈ η(i) and

1 ≤ i ≤ m. The complex of order preserving homomorphisms from G to H, denoted OHOM(G,H),

is the collection of all multihomomorphisms from G to H.

For any graphs G and H, there is a geometric cell complex corresponding to OHOM(G,H) whose

faces are labeled by multihomomorphisms from G to H. While the geometry of OHOM(G,H) is

very interesting in its own right, it is not the primary focus of this paper, and we will not spend any

further time discussing it. For reasons that are motivated by this underlying geometry, we define

the dimension of a multihomomorphism η ∈ OHOM(G,H) to be

dim(η) :=
m
∑

i=1

(|η(i)| − 1).

A zero-dimensional multihomomorphism is an order preserving homomorphism. In this paper, we

are primarly interested in a family of combinatorial invariants of OHOM(G,H) called its Betti

numbers.
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Definition 1.2. The r-th Betti number of the complex OHOM(G,H), denoted βr(G,H), counts

the number of multihomomorphisms η ∈ OHOM(G,H) with dim(η) = r.

Example 1.3. Let G and H be as in Example 1.1. The following table encodes a one-dimensional

multihomomorphism η ∈ OHOM(G,H). The two distinct choices of elements [ϕ(1), ϕ(2), ϕ(3)]

correspond to the order preserving homomorphisms ϕ1 and ϕ2 of Example 1.1.

η(1) η(2) η(3)

x1 x2 x2

x4
Table 1. A multihomomorphism η ∈ OHOM(G,H)

The following proposition is a consequence of from our definitions of order preserving homomor-

phisms. We introduce the following notation, which will be used for the remainder of the paper. If

X and Y are subsets of some totally ordered set (for our purposes, either [m] or {x1, . . . , xn}), we

write X ≤ Y (or X < Y ) to indicate that x ≤ y (similarly x < y) for all x ∈ X and all y ∈ Y .

Proposition 1.4. Let G and H be graphs with V (G) = [m] and V (H) = {x1, . . . , xn}. If η ∈

OHOM(G,H), then η(1) ≤ η(2) ≤ · · · ≤ η(m). Moreover, if (i, j) is an edge in G, then η(i) < η(j).

The purpose of this paper is to determine the Betti numbers βr(G,Kn) of the complex of order

preserving homomorphisms between a fixed graph G and the complete graph on n vertices. In

order to more easily compute the Betti numbers βr(G,Kn), we use the following series of reductions

outlined in [2, Section 5]. All relevant definitions are deferred to Section 2.

(1) We show that for any graph G, there is a nonnesting partition P of [m] and a corresponding

graph ΓP on [m], called an arc diagram, such that OHOM(G,Kn) = OHOM(ΓP ,Kn).

(2) We define a weight function ωr(ΓP ,Kn) that counts the number of r-dimensional multiho-

momorphisms in OHOM(ΓP ,Kn) that are “minimally” determined by P. These weights

are ultimately easier to compute than the Betti numbers of OHOM(ΓP ,Kn).

(3) We define a partial order, denoted �, on the family of nonnesting partitions of [m] and

show that

βr(ΓP ,Kn) =
∑

Q�P

ωr(ΓQ,Kn).

In Section 3, we provide an explicit (and simple) closed formula for the weight function ωr(ΓP ,Kn)

for any nonnesting partition P.
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2. Nonnesting partition graphs

2.1. Nonnesting partitions. A partition P = {P1, . . . , Pt} of the set [m] is a collection of

nonempty subsets Pi ⊆ [m] (called blocks) such that Pi∩Pj = ∅ for all i 6= j and P1∪· · ·∪Pt = [m].

We say that two blocks Pi and Pj nest if there exist 1 ≤ a < b < c < d ≤ m with {a, d} ⊆ Pi

and {b, c} ⊆ Pj and there does not exist e ∈ Pi with b < e < c. If no pair of blocks of P nest,

we say that P is a nonnesting partition of [m]. The family of nonnesting partitions was originally

introduced and studied by Postnikov [4, Remark 2].

Example 2.1. The partition P1 = {{1, 4}, {2, 5, 6}, {3}} of [6] is a nonnesting partition. The

partition P2 = {{1, 3, 5}, {2, 6}, {4}} is nesting since the blocks {1, 3, 5} and {2, 6} nest.

It is more illuminating to represent a partition P of [m] as a graph ΓP as follows.

Definition 2.2. Let P be a partition of [m] and let Pi = {i1, . . . , ik} be a block of P with

i1 < · · · < ik. The arc diagram ΓP is the graph on vertex set [m] whose edges are given by (ij , ij+1)

for consecutive elements of Pi taken over all blocks of P.

The name “arc diagram” is natural when the graph ΓP is drawn so that its vertices are placed

in a line and its edges are drawn as upper semicircular arcs, as shown in Example 2.3. In this

representation, a partition P is nonnesting exactly when no arc of ΓP is nested below another.

Example 2.3. Let P1 = {{1, 4}, {2, 5, 6}, {3}} and P2 = {{1, 3, 5}, {2, 6}, {4}} be the partitions of

[6] discussed in Example 2.1. The arc diagrams ΓP1
and ΓP2

are shown in Figures 2 and 3.

1 2 3 4 5 6

Figure 2. The arc diagram for {{1, 4}, {2, 5, 6}, {3}}.

1 2 3 4 5 6

Figure 3. The arc diagram for {{1, 3, 5}, {2, 6}, {4}}.

The following proposition shows that in order to compute Betti numbers βr(G,Kn) for arbitrary

graphs G, we need only study the Betti numbers of nonnesting arc diagrams.
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Proposition 2.4. [2, Proposition 5.6] For any graph G on vertex set [m], there exists a unique

nonnesting partition P of [m] such that ΓP is a subgraph of G and OHOM(G,Kn) = OHOM(ΓP ,Kn).

We call ΓP the reduced arc diagram for G.

Suppose there exist vertices 1 ≤ a ≤ b < c ≤ d ≤ m in G such that (a, d), (b, c) ∈ E(G) (so

that the edge (b, c) is nested below the edge (a, d)), and let G′ be the graph obtained from G by

removing the edge (a, d). The proof of Proposition 2.4 uses the observation that OHOM(G,Kn) =

OHOM(G′,Kn) so that the reduced graph ΓP is obtained from G by inductively removing the

“top” arc in any pair of nested edges in G.

The goal for the remainder of this section is to describe a natural partial order on the family of

nonnesting partitions of [m]. We then describe how to use this partial order to compute the Betti

numbers βr(ΓP ,Kn) of an arc diagram. For further information on posets and definitions of any

undefined terms, we refer the reader to Stanley’s book [5].

Definition 2.5. The m-th diagram poset, denoted Dm = (Dm,�), is the poset whose elements

are arc diagrams of nonnesting partitions of [m], partially ordered by P � Q if every arc of Q lies

above an arc of P.

The minimal element of Dm is the path of length m− 1 on [m], and the maximal element of Dm

is the empty graph.

For example, there are five nonnesting partitions of [3]:

P1 = {{1}, {2}, {3}},

P2 = {{1, 3}, {2}},

P3 = {{1, 2}, {3}},

P4 = {{1}, {2, 3}}, and

P5 = {{1, 2, 3}}.

Let Γ1, . . . ,Γ5 denote their corresponding arc diagrams, as shown in Figure 4.

If (P,≤) is a poset, a subset U ⊆ P is a upper order ideal if y ∈ U whenever x ∈ U and y ≥ x. An

upper order ideal U ⊆ P is principal if there is an element α ∈ P such that U = {y ∈ P : y ≥ α}.

The importance of the partial order on Dm is illustrated in the following proposition.

Proposition 2.6. [2, Proposition 5.8] If P � Q in Dm, then

OHOM(ΓP ,Kn) ⊆ OHOM(ΓQ,Kn).

Further, for each multihomomorphism η ∈ OHOM(Ge,Kn), where Ge denotes the empty graph on

vertex set [m], the upper order ideal U(η) ⊆ Dm of arc diagrams whose OHOM complexes contain

η is principal.

Proof. Fix a multihomomorphism η ∈ OHOM(ΓP ,Kn). We need to show that each choice [ϕ(i) ∈

η(i)]mi=1 yields an order preserving homomorphism from ΓQ to Kn so that η ∈ OHOM(ΓQ,Kn) as

well.
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1 2 3

1 2 3

1 2 3 321

1 2 3

Γ1:

Γ2:

Γ3: Γ4:

Γ5:

Figure 4. The Hasse diagram for D3.

Let (a, d) be an edge in ΓQ with a < d. Since P � Q, there is an edge (b, c) in ΓP such

that a ≤ b < c ≤ d. Since ϕ is an order preserving homomorphism from ΓP to Kn and (b, c) is

an arc in ΓP , we see that ϕ(a) ≤ ϕ(b) < ϕ(c) ≤ ϕ(d). The arc (a, d) was arbitrary, and hence

ϕ(a) < ϕ(d) for all arcs (a, d) in ΓQ. Thus ϕ is an order preserving homomorphism from ΓQ to Kn

and η ∈ OHOM(ΓQ,Kn), as desired.

Suppose next that η ∈ OHOM(Ge,Kn). Consider the graph G on [m] obtained as the union of

all arc diagrams ΓQ such that η ∈ OHOM(ΓQ,Kn), and let ΓP denote the reduced arc diagram of

G. Clearly P � Q for all nonnesting partitions Q whose OHOM complexes contain η. Thus U(η)

is generated by P. �

Example 2.7. We illustrate Proposition 2.6 for the following multihomomorphism η ∈ OHOM(Γ1,K9)

using the notation from Figure 4.

η(1) η(2) η(3)

x1 x4 x7

x3 x6 x9

x7
Table 2. A multihomomorphism η ∈ OHOM(Γ1,K9).

Since η(2) ∩ η(3) 6= ∅, the nonnesting partitions P for which η ∈ OHOM(ΓP ,K9) are P1, P2 and

P3. The corresponding graphs Γ1,Γ2, and Γ3 form an upper order ideal in D3 that is generated by

Γ3.
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2.2. Weights of nonnesting partition graphs. Proposition 2.6 gives a well defined notion

of the minimal arc diagram ΓQ whose OHOM complex supports a given multihomorphism η ∈

OHOM(Ge,Kn). We make this more precise in the following definition.

Definition 2.8. Let P be a nonnesting partition of [m]. The r-th weight of P for n, denoted

ωr(P, n), counts the number of r-dimensional multihomomorphisms η ∈ OHOM(Ge,Kn) such that

P generates U(η).

To be more specific, Proposition 2.6 says that for each nonnesting partition Q and each multi-

homomorphism η ∈ OHOM(ΓQ,Kn), there is a unique minimal nonnesting partition P � Q such

that η ∈ OHOM(ΓP ,Kn). This allows us to partition the r-dimensional multihomomorphisms of

OHOM(ΓQ,Kn) according to the poset Dm, as the following proposition indicates.

Proposition 2.9. [2, Proposition 5.10] For any nonnesting partition Q,

(2.1) βr(ΓQ,Kn) =
∑

P�Q

ωr(P, n).

Recall that a collection of verticesW in a graph G is independent if there are no edges in G among

the vertices in W . The following lemma provides a converse to Proposition 1.4 when computing

weights.

Lemma 2.10. Let η be a multihomomorphism of OHOM(Ge,Kn), and let P be the nonnesting

partition whose arc diagram generates U(η). Suppose I = [a, c] ⊆ [m] is independent in ΓP . Then

(1) η(a) ∩ η(c) 6= ∅,

(2) |η(a) ∩ η(c)| = 1, and

(3) if η(a) ∩ η(c) = {xi}, then η(b) = {xi} for all a < b < c.

Proof. To prove (1), suppose by way of contradiction that η(a)∩η(c) = ∅. Consider the arc diagram

ΓQ obtained from ΓP by adding the arc (a, c). Since I is independent in ΓP , the graph ΓQ is the

arc diagram of a nonnesting partition Q.

First, we observe that Q ≺ P since ΓP is a subgraph of ΓQ, and hence every arc of ΓP lies

above an arc of ΓQ. Next, we claim that η ∈ OHOM(ΓQ,Kn). Since (a, c) is the only edge in

E(ΓQ) \ E(ΓP), we only need to check that (x, y) is an edge of Kn for any choice of x ∈ η(a) and

y ∈ η(c). This follows immediately from our assumption that η(a) ∩ η(c) = ∅.

Thus η ∈ OHOM(ΓQ,Kn) and Q ≺ P, contradicting our assumption that the nonnesting parti-

tion P generates U(η). This proves that η(a)∩η(c) 6= ∅. Parts (2) and (3) follow immediately from

the requirement that η(a) ≤ η(b) ≤ η(c) for all a < b < c, together with the fact that η(a)∩η(c) 6= ∅.

�

Lemma 2.11. [2, Theorem 5.11] If ΓP contains an arc (a, c) where c− a > 2, then ωr(P, n) = 0.

Proof. Suppose to the contrary that ΓP contains such an arc and that ωr(P, n) 6= 0. Let η be an

r-dimensional multihomomorphism of OHOM(Ge,Kn) such that ΓP generates U(η).

Consider the intervals I = [a, c − 1] and I ′ = [a + 1, c]. Since P is nonnesting, I and I ′ are

independent in ΓP . By Lemma 2.10, there is an element xi ∈ η(a) ∩ η(c − 1) and moreover,
7



η(b) = {xi} for all a < b < c − 1. In particular, η(a + 1) = {xi} since a + 1 < c − 1. By

applying Lemma 2.10 to the interval I ′, we see that η(a+ 1) ∩ η(c) 6= ∅ and hence xi ∈ η(c). Thus

xi ∈ η(a) ∩ η(c), which contradicts Proposition 1.4. �

Following [2], we call an arc diagram ΓP containing no arcs of the form (i, j) with j − i > 2 a

small arc diagram, and we say that the corresponding nonnesting partition P is a small nonnesting

partition. In light of Lemma 2.11, we need only compute the weights ωr(P,Kn) for which ΓP is a

small arc diagram. The following two results are interesting enumerative results in their own right.

Proposition 2.12. [5] The number of nonnesting arc diagrams on [m] is enumerated by the m-th

Catalan number Cm = 1
m+1

(

2m
m

)

.

Proposition 2.13. [2, Theorem 5.12] Let Fm denote the mth Fibonacci number with F0 = F1 = 1.

The number of small arc diagrams on [m] is F2m−2.

2.3. An example. As a more complicated example, we exhibit the weights and corresponding

Betti numbers for all nonnesting partitions of {1, 2, 3}. We recall the arc diagrams Γ1, . . . ,Γ5 used

in Figure 4.

Proposition 2.14. For all r, n ≥ 0,

ωr(Γ1,Kn) =

(

n

r + 1

)

(r + 1).

Proof. Let η ∈ OHOM(Γ1,Kn) be a multihomomorphism whose upper order ideal U(η) is generated

by Γ1. By Lemma 2.10, there is a single element xi ∈ η(1) ∩ η(3) and η(2) = {xi}. In order to

compute ωr(Γ1,Kn), we first determine that there are r+1 distinct elements in η(1)∪ η(2)∪ η(3).

Indeed, by the inclusion-exclusion principle,

|η(1) ∪ η(2) ∪ η(3)| = |η(1)|+ |η(2)|+ |η(3)|

−|η(1) ∩ η(2)| − |η(1) ∩ η(3)| − |η(2) ∩ η(3)|

+|η(1) ∩ η(2) ∩ η(3)

= (r + 3)− 3 + 1

= r + 1.

In order to describe any such multihomomorphism η, we must choose a subset X ⊆ {x1, . . . , xn}

of the r + 1 distinct elements in η(1) ∪ η(2) ∪ η(3), together with the single element xi ∈ X that

is common to all three sets. Certainly there are
(

n
r+1

)

(r + 1) ways to make these choices. Having

chosen X and xi ∈ X, we take

η(1) = {x ∈ X : x ≤ xi},

η(2) = {xi}, and

η(3) = {x ∈ X : x ≥ xi}.

�
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Proposition 2.15. For all r, n ≥ 0,

ωr(Γ2,Kn) =

(

n

r + 1

)(

r + 1

2

)

.

Proof. Let η ∈ OHOM(Γ2,Kn) be an r-dimensional multihomomorphism whose upper order ideal

U(η) is generated by Γ2. By Lemma 2.10, there is an element xi ∈ η(1)∩ η(2) and another element

xj ∈ η(2) ∩ η(3). Moreover, by Proposition 1.4, η(1) ∩ η(3) = ∅ and hence xi 6= xj . Thus by the

inclusion-exclusion principle, there are r + 1 distinct elements in η(1) ∪ η(2) ∪ η(3).

In order to describe any such multihomomorphism η, we must first choose a subset X ⊆

{x1, . . . , xn} of the r+1 elements in η(1)∪ η(2)∪ η(3), together with the elements xi ∈ η(1)∩ η(2)

and xj ∈ η(2) ∩ η(3). Certainly there are
(

n
r+1

)(

r+1
2

)

ways to make these choices. Given the set X

and distinguished elements xi and xj , we take

η(1) = {x ∈ X : x ≤ xi},

η(2) = {x ∈ X : xi ≤ x ≤ xj}, and

η(3) = {x ∈ X : x ≥ xj}.

�

Proposition 2.16. For all r, n ≥ 0,

ωr(Γ3,Kn) =

(

n

r + 2

)(

r + 2

2

)

.

Proof. Let η ∈ OHOM(Γ3,Kn) be an r-dimensional multihomomorphism whose upper order ideal

U(η) is generated by Γ3. By Lemma 2.10, there is an element xj ∈ η(2)∩ η(3), and by Proposition

1.4, η(1) ∩ η(2) = ∅. By the inclusion-exclusion principle, there are r + 2 distinct elements in

η(1) ∪ η(2) ∪ η(3).

In order to describe any such multihomomorphism η, we must first choose a subset X ⊆

{x1, . . . , xn} of the r + 2 distinct elements in η(1) ∪ η(2) ∪ η(3), together with the element xj ∈

η(2) ∩ η(3) and the largest element xi in η(1). Certainly there are
(

n
r+2

)(

r+2
2

)

ways to make these

choices. As before, having chosen X, xi and xj , we take

η(1) = {x ∈ X : x ≤ xi},

η(2) = {x ∈ X : xi < x ≤ xj}, and

η(3) = {x ∈ X : x ≥ xj}.

�

Proposition 2.17. For all r, n ≥ 0,

ωr(Γ4,Kn) =

(

n

r + 2

)(

r + 2

2

)

.

Proof. The proof of this proposition follows by an argument that is symmetric to the one given to

compute the weights ωr(Γ3,Kn). �
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Proposition 2.18. For all r, n ≥ 0,

ωr(Γ5,Kn) =

(

n

r + 3

)(

r + 2

2

)

.

Proof. Let η ∈ OHOM(Γ5,Kn) be an r-dimensional multihomomorphism whose upper order ideal

U(η) is generated by Γ5. By Proposition 1.4, η(1) ∩ η(2), η(2) ∩ η(3), and η(1) ∩ η(3) are empty.

Thus by the inclusion-exclusion principle, |η(1) ∪ η(2) ∪ η(3)| = r + 3.

In order to describe such a multihomomorphism η, we must choose a subset X ⊆ {x1, . . . , xn}

of the r + 3 distinct elements of η(1) ∪ η(2) ∪ η(3) together with the maximal elements xi and xj

of η(1) and η(2) respectively. Having made these choices, we take

η(1) = {x ∈ X : x ≤ xi},

η(2) = {x ∈ X : xi < x ≤ xj}, and

η(3) = {x ∈ X : x > xj}.

Since η(3) must be nonempty, we cannot choose xj to be the maximal element of X. The number

of ways to choose X, xi, and xj is
(

n
r+3

)(

r+2
2

)

, which completes the proof. �

3. Enumerative results

Our goal for this section is to prove the promised formula computing the weights ωr(P, n) for

any small nonnesting partition P. Before stating the main theorem, we establish notation that will

be used for the remainder of the paper.

Proposition 3.1. For any small nonnesting partition P of [m], there is a unique constant k = k(P)

and a unique decomposition of [m] into intervals I1, . . . , Ik satisfying the following conditions.

(P1): I1 ∪ · · · ∪ Ik = [m],

(P2): I1 ≤ I2 ≤ · · · ≤ Ik,

(P3): |Ij | ≥ 2 for all j, and

(P4): each interval Ij satisfies exactly one of the following conditions:

(i). Ij is a maximal interval (under inclusion) that is independent in ΓP , or

(ii). Ij = {ij , ij+1} and (ij , ij+1) is an edge of ΓP .

Proof. We induct on m. The result is clear when m = 2. When m ≥ 3, we examine two cases.

If (1, 2) is an arc in ΓP , let I1 = {1, 2}. Inductively, we may decompose the restriction of P to

[2,m] into intervals I2, . . . , Ik satisfing conditions (P1)-(P4).

On the other hand, if (1, 2) is not an arc in ΓP , let t be the largest element of [m] such that

[1, t] is independent in ΓP . Let I1 = [1, t]; if t = m, we have found the desired decomposition.

Otherwise, if t < m, the restriction of ΓP to [t,m] is a small arc diagram, and we may inductively

decompose the restriction of ΓP to [t,m] into intervals I2, . . . , Ik satisfying conditions (P1)-(P4).

In either of the above cases, we must check that the resulting interval decomposition [m] =

I1 ∪ · · · ∪ Ik satisfies conditions (P1)-(P4). Conditions (P1)-(P3) are satisfied by the inductive

hypothesis. We must check, however, that if I1 and I2 are both edgefree as in condition (P4.i),

then both are maximal under inclusion. By our construction, I1 = [1, t] is maximal. Since t+1 /∈ I1
10



and P is small, either (t, t+ 1) or (t− 1, t+ 1) is an edge in ΓP . If (t, t+ 1) is an edge in ΓP , then

I2 = {t, t+1} satisfies condition (P4.ii). If (t− 1, t+1) is an edge in ΓP , then I2 satisfies condition

(P4.i), and t − 1 cannot be added to I2 without violating the independence condition. Thus I2 is

maximal under inclusion, which completes the proof. �

Example 3.2. Consider the small arc diagram ΓP shown in Figure 5.

1 2 3 4 5 6 7 8 9

Figure 5. The arc diagram for P = {{1, 3}, {4, 5, 7}, {6, 8}, {9}}.

The interval decomposition of ΓP is

I1 = {1, 2}

I2 = {2, 3, 4}

I3 = {4, 5}

I4 = {5, 6}

I5 = {6, 7}

I6 = {7, 8, 9}.

Theorem 3.3. Let P be a small nonnesting partition of [m] with interval decomposition I1, . . . , Ik

as described by Proposition 3.1. For any r, n ≥ 0,

(3.1) ωr(P, n) =







(

n
ℓ

)(

ℓ−1
k

)

if (1, 2), (m− 1,m) ∈ E(ΓP);
(

n
ℓ

)(

ℓ
k

)

otherwise,

where ℓ := r+m−
∑

j∈J(|Ij |−1) and J ⊆ [k] indexes those intervals described by condition (P4.i).

Proof. Fix a small nonnesting partition P of [m]. For each 1 ≤ j ≤ k, let Ij = [aj , cj ]. For any

r-dimensional multihomomorphism η ∈ OHOM(Γe,Kn), we observe that
∑m

i=1 |η(i)| = r + m. If

the arc diagram for ΓP generates U(η), then Lemma 2.10 prescribes the combinatorial structure of

the intersections of the sets η(i) within each interval I1, · · · , Ik.

As a consequence of these Lemmas, we claim that as a set,

ℓ := |η(1) ∪ · · · ∪ η(m)| = r +m−
∑

j∈J

(|Ij | − 1),

where J ⊆ [k] indexes those intervals described by condition (P4.i). To see this, we simply observe

that for each interval Ij with j ∈ J , there is a single element xj common to the sets among

{η(p) : p ∈ Ij}. When computing |η(1) ∪ · · · ∪ η(m)|, each of these elements xj is overcounted

|Ij | − 1 times.
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Thus in order to describe such a multihomomorphism η, we must first choose a subset X ⊆

{x1, . . . , xn} of the ℓ distinct elements of η(1) ∪ · · · ∪ η(m). This can be accomplished in
(

n
ℓ

)

ways.

Now suppose that (1, 2) is not an arc of ΓP . The binomial coefficient
(

ℓ
k

)

counts the number of

ways in which we may decompose the set X into pairwise disjoint intervals A0 < A1 < · · · < Ak so

that the sets A1, . . . , Ak are nonempty. This follows from a standard stars-and-bars argument [5,

Section 1.2] by arranging the elements of X linearly as

xi1 xi2 · · · xiℓ−1
xiℓ ,

with i1 < · · · < iℓ and choosing k of the spaces between consecutive elements of X to partition the

set. This includes the possibility of choosing the space to the left of xi1 , which corresponds to the

case that A0 is empty.

We now exhibit a bijection between the family of stars-and-bars partitions of X described in

the previous paragraph and the collection of multihomomorphisms η ∈ OHOM(Ge,Kn) such that

η(1) ∪ · · · ∪ η(m) = X and P generates U(η).

Given pairwise disjoint intervals A0 < A1 < · · · < Ak that partitionX with A1, . . . , Ak nonempty,

let mi denote the smallest element of Ai for 1 ≤ i ≤ k. We determine the sets η(i) by declaring

that

• A0 ⊆ η(1),

• Aj ⊆ η(cj) for all 1 ≤ j ≤ k, and

• mj ∈ η(b) for all b ∈ [aj , cj ] and all j ∈ J .

Lemma 2.10 and Proposition 1.4 show that this is a bijective correspondence. By symmetry, the

same argument applies to the situation that (m− 1,m) /∈ ΓP .

In the case that both (1, 2) and (m − 1,m) are edges in ΓP , an analogous bijection holds, with

the exception that
(

ℓ−1
k

)

counts the number of partitions of X into nonempty, pairwise disjoint

intervals B0 < · · · < Bk. Here we must require that B0 and Bk are nonempty as they describe the

elements of η(1) and η(m) respectively. �

We illustrate the proof of Theorem 3.3 in the following example.

Example 3.4.

Let P be the small partition from Example 3.2. Suppose ℓ = 11 and (for simplicity) that

η(1) ∪ · · · ∪ η(9) = {x1, . . . , x11}. The stars-and-bars decomposition

x1 x2 | x3 | x4 x5 x6 | x7 | x8 | x9 | x10 x11
12



η(1) η(2) η(3) η(4) η(5) η(6) η(7) η(8) η(9)

x1

x2

x3 x3

x4 x4 x4

x5

x6

x7

x8 x8

x9 x9

x10 x10 x10

x11
Table 3. The multihomomorphism η described by Example 3.4

gives

A0 = {x1, x2},

A1 = {x3},

A2 = {x4, x5, x6},

A3 = {x7},

A4 = {x8},

A5 = {x9},

A6 = {x10, x11}.

This, in turn corresponds to the multihomomorphism η shown in Table 3. We have shaded the

blocks Aj ⊆ η(cj) for all 1 ≤ j ≤ 6, where the intervals I1, . . . , I6 are those given in Example 3.2

and we write Ij = [aj , cj ] as in the proof of Theorem 3.3.
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