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Abstract. In this paper, we study a pair of simplicial complexes, which

we denote by B(k, d) and ST (k+1, d−k−1), for all nonnegative integers

k and d with 0 ≤ k ≤ d − 2. We conjecture that their underlying

topological spaces |B(k, d)| and |ST (k+ 1, d−k−1)| are homeomorphic

for all such k and d. We attempt to answer this question by trying

to relate the complexes through a series of well studied combinatorial

operations that transform a combinatorial manifold while preserving its

homeomorphism type.

Contents

1. Introduction 1

Acknowledgments 2

1.1. Simplicial complexes and combinatorial manifolds 2

1.2. The complex ST (m,n) 7

1.3. The complex B(k, d) 7

2. An isomorphism between B(0, d) and ST (1, d− 1) 9

3. The bistellar equivalence of ST (1, d− 1) and B(d− 2, d) 9

4. Other cases 18

References 21

1. Introduction

In a recent paper, Novik and Klee [5] defined a simplicial complex B(k, d)

for all integers k and d with 0 ≤ k ≤ d− 2. These complexes are combina-

torial manifolds with boundary such that ∂B(k, d) triangulates Sk × Sd−k−2

[5, Theorem 1.2(e)]. As such, and based on algebraic invariants of these

complexes [5, Theorem 1.2(d)], it is natural to conjecture that B(k, d) tri-

angulates Sk × Bd−k−1.
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One approach to solving this problem is to study a family of operations

known as bistellar flips, stellar exchanges, and (inverse) shellings, which

locally transform the combinatorial structure of a manifold triangulation

while preserving its homeomorphism type. Our first goal in this paper is

to introduce another family of simplicial complexes, which we denote by

ST (m,n). By studying a modification of the classical staircase triangulation

(see [2, 11, 4, 3]), we are able to easily show that ST (m,n) triangulates

Sm−1 × Bn. This leads us to ask the following question.

Question 1.1. Can B(k, d) be obtained from ST (k+ 1, d− k− 1) through

a series of bistellar moves, stellar exchanges, elemetary shellings, and their

inverses?

If the answer to this question is “yes,” then it follows that B(k, d) trian-

gulates Sk × Bd−k−1 as we hoped. In this paper, we answer Question 1.1 in

the affirmative for two infinite classes of complexes when k = 0 (see Section

2) and k = d − 2 (see Section 3). In Section 4, we answer Question 1.1 for

two other cases when k = 1 and d = 4 or d = 5. These two cases illustrate

part of the difficulty in answering Question 1.1 in the general case.

We begin by defining all of the necessary definitions related to simplicial

complexes and combinatorial manifolds in Section 1.1. We then proceed to

define the main complexes of interest in Sections 1.2 and 1.3 and to prove

our main results.
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1.1. Simplicial complexes and combinatorial manifolds.

Definition 1.2. An (abstract) simplicial complex ∆ on vertex set V (∆)

is a collection of subsets F ⊆ V (called faces) satisfying the following two

properties:

(1) {v} ∈ ∆ for all v ∈ V , and

(2) if F ∈ ∆ and G ⊆ F , then G ∈ ∆.
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The dimension of a face F in ∆ is dimF := |F | − 1, and the dimension

of ∆ is dim ∆ := max{dimF : F ∈ ∆}. A simplicial complex ∆ is pure if

each of its facets (maximal faces under inclusion) has the same dimension.

If ∆ is a pure (d− 1)-dimensional simplicial complex, a (d− 2)-dimensional

face of ∆ is called a ridge. Unless otherwise specified, we will assume that

all of our simplicial complexes ∆ are pure and (d− 1)-dimensional.

For any abstract simplicial complex ∆, there is a corresponding topolog-

ical space |∆|, called the geometric realization of ∆, which contains a

geometric i-simplex for each i-dimensional face F of ∆. For a face F in ∆,

we let F := {G : G ⊆ F} denote the simplex whose vertices belong to F .

The boundary of F is defined as ∂F := {G : G ( F}.

Definition 1.3. Let F be a face in the simplicial complex ∆. The link of

F in ∆ is

lk∆(F ) := {G ∈ ∆ : F ∩G = ∅ and F ∪G ∈ ∆}.

We note that if ∆ is a pure simplicial complex of dimension d − 1, then

lk∆(F ) is a pure (d − |F | − 1)-dimensional simplicial complex for any face

F ∈ ∆.

Definition 1.4. Let Γ and ∆ be simplicial complexes such that V (Γ) ∩
V (∆) = ∅. The join of Γ and ∆ is

Γ ∗∆ = {F ∪G : F ∈ Γ, G ∈ ∆}.

Next, we define a certain family of simplicial complexes known as combi-

natorial manifolds. For further information on combinatorial manifolds, see

[1] or [6].

We say that a simplicial complex Γ is a combinatorial n-ball if |Γ| is

piecewise linear (PL) homeomorphic to σn. Specifically, this means that

there is a homeomorphism ϕ : |Γ| → σn with the property that the restric-

tion of ϕ to any face in the realization of Γ is a piecewise linear map; and

that the inverse map ϕ−1 is also a PL map. Similarly, we say that Γ is a

combinatorial n-sphere if Γ is PL homeomorphic to ∂σn+1.

A combinatorial (d − 1)-manifold is a (d − 1)-dimensional simplicial

complex ∆ with the property that lk∆(v) is either a combinatorial (d− 2)-

ball or a combinatorial (d− 2)-sphere for all vertices v ∈ ∆. We say that a

face F in a combinatorial (d− 1)-manifold ∆ is a boundary face if lk∆(F )

is a combinatorial (d− |F | − 1)-ball, and F is an interior face if lk∆(F ) is

a combinatorial (d− |F | − 1)-sphere.
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The problem of determining whether or not two geometric simplicial com-

plexes are PL homeomorphic may seem to be (and in fact is) quite difficult.

Fortunately, there is a finite collection of local combinatorial operations such

that two combinatorial manifolds are PL homeomorphic if and only if one

can be obtained from the other through a finite sequence of these operations

(see Theorem 1.10). Now we define these operations.

Definition 1.5. Suppose that A is an r-simplex in a (d − 1)-dimensional

combinatorial manifold ∆ and that lk∆(A) = ∂B for some (d−r−1)-simplex

B /∈ ∆. The bistellar move χ(A,B) consists of changing ∆ by removing

A ∗ ∂B and inserting ∂A ∗ B. We say that χ(A,B) is a bistellar i-move

if the size of B is i+ 1. By interchanging the roles of A and B, we see that

the inverse of a bistellar i-move is a bistellar (d− i− 1)-move.

Example 1.6. In the 2-dimensional case (i.e. when d = 3), there are three

possible bistellar flips. In Figure 1(a), |A| = |B| = 2; this is called a 1-move.

In Figure 1(b), |A| = 1 and |B| = 3; this is called a 2-move. The inverse

moves also exist. In Figure 1(a) the inverse is a 1-move, and in Figure 1(b)

the inverse is a 0-move.

(a) 1-move (b) 0-move and 2-move

Figure 1. The 2-dimensional bistellar flips

Definition 1.7. Let A be a nonempty face in a combinatorial (d − 1)-

manifold ∆ such that lk∆(A) = ∂B ∗ L for some nonempty simplex B with

B /∈ ∆ and some subcomplex L ⊆ ∆. Then ∆ is related to ∆′ by the stellar

exchange κ(A,B), if ∆′ is obtained by removing A ∗ ∂B ∗ L from ∆ and

inserting ∂A ∗B ∗ L.

Example 1.8. In Figure 2(a), we illustrate a stellar exchange with |A| =

|B| = 2 and |L| = 1. In Figure 2(b), we illustrate a stellar exchange with

|A| = 1, |B| = 3, and |L| = 1.

Definition 1.9. Suppose that A and B are faces of a combinatorial (d−1)-

manifold ∆ with boundary ∂∆, that A∪B is a facet of ∆, and that A∩∂∆ =
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(a) A stellar exchange (b) Another stellar exchange

Figure 2. Stellar exchanges

∂A and B∗∂A ( ∂∆. The manifold ∆′ obtained from ∆ by an elementary

shelling from B is obtained from ∆ by removing all faces of ∆ containing

B.

The fundamental property of these moves is that if ∆′ is obtained from ∆

by either a bistellar fip, a stellar exchange, or an elementary shelling, then

|∆| is PL homeomorphic to |∆′|. In fact, the converse to this is true as well,

as is illustrated by the following theorem, which was originally proved by

Newman [9] and Pachner [10].

Theorem 1.10. ([6, Theorem 5.10]) Two connected combinatorial (d− 1)-

manifolds with non-empty boundary are piecewise linear homeomorphic if

and only if they are related by a sequence of elementary shellings, inverse

shellings and a simplicial isomorphism.

In proving this theorem, Lickorish shows that any bistellar flip or stel-

lar exchange can be written as a finite sequence of shelling and inverse

shelling operations. Thus, in order to prove that the geometric realizations

of ST (k + 1, d − k − 1) and B(k, d) are homeomorphic, we need only show

that they are related by a sequence of bistellar operations, stellar exchanges,

and shelling/inverse shelling operations.

Definition 1.11. Let Γ and ∆ be simplicial complexes with vertex sets

V (Γ) and V (∆) respectively. We say that Γ and ∆ are isomorphic if there

is a bijection ϕ : V (Γ)→ V (∆) with inverse ψ : V (∆)→ V (Γ) such that:

• For all faces F = {vi1 , . . . , vik} ∈ Γ, ϕ(F ) = {ϕ(vi1), . . . , ϕ(vik)} is a

face of ∆.

• For all faces G = {uj1 , . . . , uj`} ∈ ∆, ψ(G) is a face of Γ.

At this point, we must introduce an additional property of combinatorial

manifolds that will be used later in the proof of our main theorem.
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Definition 1.12. Let ∆ be a pure (d− 1)-dimensional simplicial complex.

The dual graph of ∆, denoted G(∆), is the graph defined as follows. The

vertices of G(∆) correspond to the facets of ∆, and two vertices in G(∆) are

connected by an edge if and only if their corresponding facets intersect along

a ridge. We say that ∆ is strongly connected if the dual graph G(∆) is

connected.

Definition 1.13. Let ∆ be a pure (d− 1)-dimensional simplicial complex.

We say that ∆ is a pseudomanifold if each ridge in ∆ is contained in either

one or two facets.

Any combinatorial manifold is a pseudomanifold, but in general one should

not expect a pseudomanifold to be a combinatorial manifold. In particular,

if ∆ is a combinatorial manifold, then lk∆(F ) is a strongly connected pseu-

domanifold for any nonempty face F ∈ ∆.

We use this fact to prove the following lemma.

Lemma 1.14. Let ∆ be a (d−1)-dimensional combinatorial manifold. Sup-

pose A and B are disjoint sets of vertices in ∆ such that

(1) |A|+ |B| = d+ 1,

(2) A ∈ ∆, and

(3) lk∆(A) ⊇ ∂B.

Then lk∆(A) = ∂B. Specifically, if we further assume that B /∈ ∆, then it

is possible to perform the bistellar operation χ(A,B) on ∆.

Proof. Suppose that lk∆(A) is (r − 1)-dimensional so that |B| = r + 1.

We first observe that any vertex in G(∆) has degree at most r since any

facet of lk∆(A) contains r-many ridges and each such ridge is incident to at

most one other facet. Moreover, since lk∆(A) contains ∂B, it follows that

G(∂B) ⊆ G(lk∆(A)); and we can easily check that G(∂B) is the complete

graph on r + 1 vertices.

Suppose now that there is a facet σ ∈ lk∆(A) that does not belong to ∂B,

and let F be a facet of ∂B. Since G(lk∆(A)) is a connected graph, there

is a path F = F0, F1, . . . , Ft = σ of vertices in G(lk∆(A)) such that Fi−1 is

adjacent to Fi for all i. Consider the smallest index j such that Fj is a facet

of ∂B but Fj+1 is not. The vertex Fj has degree at least r+ 1 (r neighbors

in ∂B in addition to Fj+1), which contradicts the degree bound established

earlier. �
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1.2. The complex ST (m,n). Fix nonnegative integers m and n. In this

section, we define a modification of the staircase triangulation of a product

of two simplices to give a triangulation of ∂σm × σn. We begin by defining

the staircase triangulation of the Cartesian product of two simplices.

Let p0, . . . , pm be the vertices of the m-dimensional simplex σm, and let

q0, . . . , qn be the vertices of the n-dimensional simplex σn. The vertices of

σm × σn all have the form (pi, qj) with 0 ≤ i ≤ m and 0 ≤ j ≤ n.

Let L denote the n × m grid in the xy-plane whose lower-left corner is

(0, 0) and whose upper-right corner is (m,n). We can identify each integer

lattice point (i, j) in L with the vertex (pi, qj) in σm × σn.

Definition 1.15. (see, e.g., [2]) The staircase triangulation of σm × σn

is the simplicial complex whose facets correspond to all lattice paths from

(0, 0) to (m,n) in L with steps in directions 〈1, 0〉 or 〈0, 1〉.

Let Γ and ∆ be simplicial complexes on totally ordered vertex sets. Hav-

ing defined the staircase triangulation of a product of simplices, we can

define a simplicial complex called the Cartesian product [3] or staircase

refinement [11, 4] of |Γ| × |∆| as follows. Let F be a d1-dimensional face

in Γ and let G be a d2-dimensional face in ∆. We triangulate the cell

|F | × |G| ⊆ |Γ| × |∆| by using the staircase triangulation arising from the

d2 × d1 lattice whose columns are indexed by the vertices of F , and whose

rows are indexed by the vertices of G, ordered according to the total order

on the vertex sets of V (Γ) and V (∆).

We define a simplicial complex ST (m,n) on vertex set {(pi, qj) : 0 ≤ i ≤
m, 0 ≤ j ≤ n} to be the staircase refinement of ∂σm × σn. Specifically, the

facets of ST (m,n) are described as follows. For each integer 0 ≤ r ≤ m, let

L′r be the n× (m− 1) lattice whose columns are labeled 0, 1, . . . , r − 1, r +

1, . . . ,m. For each lattice path L in the lattice L′r starting in the lower-left

corner, ending in the upper right corner, and taking only north and east

steps, we form a facet in ST (m,n) whose vertices are the coordinates of

integer points (pi, qj) on the lattice path L.

Example 1.16. We label the vertices of the 1 × 2 lattice L as shown in

Figure 3 . The resulting simplicial complex ST (2, 1) is shown in Figure 4.

1.3. The complex B(k, d). Next we define a family of simplicial complexes

denoted B(k, d) for all nonnegative integers k and d with 0 ≤ k < d. See [5]

for further information on the complexes B(k, d).
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Figure 3. The lattice L defining ST (2, 1)

Figure 4. The simplicial complex ST (2, 1)

The boundary of the d-dimensional cross-polytope, which we denote by

C∗d , has vertex set V (C∗d) = {x1, . . . , xd, y1, . . . , yd} and its facets are all sets

of the form {Z1, ..., Zd} such that Zi ∈ {xi, yi} for all i. As such, we may

identify each facet F of C∗d with a word W (F ) = W1 · · ·Wd in the letters x

and y with Wi = x if Zi = xi and Wi = y if Zi = yi. We define the switch

set of such a word to be

S(W (F )) := {i : Wi 6= Wi+1, 1 ≤ i ≤ d− 1},

and we say that the facet F has m switches if |S(W (F ))| = m.

With this notation established, we define B(k, d) to be the simplicial com-

plex on vertex set {x1, . . . , xd, y1, . . . , yd} whose facets are all facets of C∗d
with at most k switches.

Example 1.17. The complex B(1, 3) is shown in Figure 5.

Figure 5. The complex B(1, 3).

Notice that B(1, 3) (Figure 5) can be obtained from ST (2, 1) (Figure

4) by performing the bistellar operation χ(A,B) with A = {x3, y3} and

B = {y1, y2}. Geometrically, this is a bistellar 1-move as shown in Figure

1(a).



9

2. An isomorphism between B(0, d) and ST (1, d− 1)

We begin by observing that ST (1, d−1) is isomorphic to B(0, d) when we

choose an appropriate labeling of the lattice points in the (d−1)×1 lattice.

Specifically, when the vertices of ST (1, d− 1) are labeled as in Figure 6, the

facets of ST (1, d− 1) are {x1, x2, ..., xd} and {y1, x2, ..., yd}. These are also

the facets of B(0, d). Therefore the labeling of the lattice in Figure 6 gives

an isomorphism between B(0, d) and ST (1, d− 1).

Figure 6. The lattice defining ST (1, d− 1)

3. The bistellar equivalence of ST (1, d− 1) and B(d− 2, d)

In this section we will define an algorithm that generates a bistellar equiv-

alence between ST (d − 1, 1) and B(d − 2, d) for all d ≥ 3. First, we must

introduce the reverse lexicographic (revlex) order on the collection of subsets

of [N ] := {1, . . . , N}.

Definition 3.1. The reverse lexicographic order on the collection of

subsets of [N ] is defined by declaring that F ≺ G if and only if the maximum

element of the symmetric difference of F and G belongs to G.

Example 3.2. The revlex order on subsets of {1, 2, 3} is:

{1} ≺ {2} ≺ {1, 2} ≺ {3} ≺ {1, 3} ≺ {2, 3} ≺ {1, 2, 3}.

Label the vertices of ST (d − 1, 1) according to the lattice L shown in

Figure 7, so that for all 1 ≤ i ≤ d,

• zi :=

yi if i is odd

xi if i is even;
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• wi :=

xi if i is odd

yi if i is even.

Figure 7. The lattice L defining ST (d− 1, 1).

Definition 3.3. Let T := {T ⊆ [d−1] : |T | ≥ 2}. For each T = {t1 < · · · <
t`} ∈ T , we define sets AT and BT by

• BT := {zt1 , zt2 , . . . , zt`−1
, wt`}, and

• AT := {wi : i /∈ T, i < t`} ∪ {zi : t` < i ≤ d− 1} ∪ {zd, wd}.

As our main result of this paper, we claim that performing the bistel-

lar flips χ(AT , BT ) sequentially according to the revlex order on T gives a

bistellar equivalence between ST (1, d− 1) and B(d− 2, d).

Before we go on to state and prove our main result, let us pause to discuss

the motivation behind this choice of labelling and these choices of AT and

BT . First, observe that B(d − 2, d) is generated by all facets of C∗d with at

most d−2 switches. In other words, it has all facets except {x1, y2, x3, y4, . . . }
and {y1, x2, y3, x4, . . . }, which are the facets with exactly d−1 switches. We

choose to label the top and bottom rows of L with these unwanted facets,

since the modified staircase triangulation method will not produce them.

Additionally, we shift the top row so that xi and yi are not contained in a

common face of ST (1, d− 1) for 1 ≤ i ≤ d− 1. This is because the facets in

ST (1, d− 1) are indexed by north/east lattice paths, and wi lies northwest

of zi for 1 ≤ i ≤ d− 1.

In order to motivate the seemingly complicated sets AT and BT , we appeal

to the labelling of the lattice L shown in Figure 7. In addition to the issue

that {xd, yd} is a face in ST (d − 1, 1), we also observe that, for example,

{y1, y2} is not a face of ST (d − 1, 1), but it is a face of B(d − 2, d). More

generally, any face σ in B(d − 2, d) that does not belong to ST (d − 1, 1)

contains a pair of vertices zi, wj with i < j (i.e. such that wj lies northwest

of zi). We have made a canonical choice of missing faces BT with the

property that BT contains one vertex from the top row of L that lies to the

northwest of its other vertices, all of which lie in the bottom row of L.
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Having fixed this method for describing BT , we now describe the corre-

sponding face AT . In order to justify this choice, it is actually easier to

work backwards. If we consider AT ∪ BT as a set of vertices on the lattice

L, the element wt` is the left-most element in the top row of L. All other el-

ements belonging to the top row of L belong to AT ; all elements positioned

strictly southeast of wt` belong to BT ; and all elements positioned either

south or southwest of wt` belong to AT . Given a collection W of vertices

from ST (d− 1, 1) such that xd ∈W , yd ∈W , and either xi or yi belongs to

W for all 1 ≤ i ≤ d− 1, then either (1) W can be uniquely decomposed into

corresponding sets AT and BT or (2) the vertices of W lie on a north/east

lattice path in L from the lower-left to upper-right corner.

The vertices xd and yd are originally connected by an edge in ST (1, d−1),

but they are not connected by an edge in B(d − 2, d). In the last step

χ(A[d−1], B[d−1]) corresponding to the revlex-maximal set T = [d − 1], we

have A[d−1] = {xd, yd}. Performing this bistellar operation disconnects xd

and yd, and hence we can think of this sequence of bistellar operations as

slowly disintegrating the link of the edge {xd, yd}.
The following theorem makes this argument rigorous.

Theorem 3.4. Fix a positive integer d ≥ 3. For all T ⊆ [d−1] with |T | ≥ 2,

let AT and BT be the sets defined in Definition 3.3. Under the revlex order

on the collection of such subsets T , the sequence of bistellar flips χ(AT , BT )

transforms ST (1, d− 1) into B(d− 2, d).

Before proving Theorem 3.4, we give an example illustrating this sequence

of bistellar operations in the case that d = 4.

Example 3.5. The following is an example of the bistellar equivalence be-

tween ST (3, 1) and B(2, 4).

Figure 8. The lattice L defining ST (3, 1)

The facets of ST (3, 1) according to Figure 8 are listed in the following

array. The r-th column shows the facets obtained by removing the r-th

column of L.
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{x1, y2, y3, y4} {x1, x3, x4, y4} {y2, x3, x4, y4} {x1, y2, x3, x4}
{x1, x2, y3, y4} {x1, x2, x4, y4} {y2, y3, x4, y4} {x1, y2, y3, x4}
{y1, x2, y3, y4} {y1, x2, x4, y4} {y1, y3, x4, y4} {x1, x2, y3, x4} .

Now we define BT and AT according to Definition 3.3. After performing

the following bistellar flips, we are left with the facets of B(2, 4).

Bistellar Moves

T BT AT Facets Removed Facets Gained

{y1, y3, x4, y4} {y1, y2, x4, y4}
{1, 2} {y1, y2} {y3, x4, y4} {y2, y3, x4, y4} {y1, y2, y3, x4}

{y1, y2, y3, y4}
{y1, y2, x4, y4} {y1, x3, x4, y4}

{1, 3} {y1, x3} {y2, x4, y4} {x3, y2, x4, y4} {y1, y2, x3, x4}
{y1, y2, x3, y4}

{x1, x2, x4, y4} {x2, x3, x4, y4}
{2, 3} {x2, x3} {x1, x4, y4} {x1, x3, x4, y4} {x1, x2, x3, x4}

{x1, x2, x3, y4}
{y1, x2, x4, y4} {y1, x2, x3, x4}

{1, 2, 3} {y1, x2, x3} {x4, y4} {y1, x3, x4, y4} {y1, x2, x3, y4}
{x2, x3, x4, y4}

In order to simplify the proof of Theorem 3.4, we prove some technical

lemmas here.

Lemma 3.6. Let F be a facet of ST (d− 1, 1) that contains both xd and yd.

Then there is a unique T ∈ T such that F is a facet of AT ∗ ∂BT .

Proof. We view F as a north/east lattice path obtained from L by removing

the column whose vertices are wj and zj+1 for some 1 ≤ j < d − 1. We

claim that exactly one of zj and wj+1 belongs to F . This is because F

contains both xd and yd, so there is only one index 1 ≤ p ≤ d − 1 such

that F contains neither xp nor yp. Since zj lies southeast of wj+1 in L, it

is not possible that both zj and wj+1 belong to F . We examine these two

possibilities separately.

Case 1: zj ∈ F
Let i be the smallest index in [d − 1] such that zi ∈ F and let T :=

{i, i+ 1, . . . , j + 1}. Then

BT = {zi, zi+1, . . . , zj , wj+1}, and

AT = {zd, zd−1, . . . , zj+2} ∪ {wi−1, wi−2, . . . , w1, wd},
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as shown in Figure 9 with the vertices of BT colored blue, the vertices of AT

colored red, and the corresponding lattice path colored green. We see that

Figure 9

F = AT ∪ (BT \ {wj+1}) ∈ AT ∗ ∂BT .

Case 2: wj+1 ∈ F
Let q be the largest index in [d− 1] such that wq ∈ F and let T = {j, q}.

Then

BT = {zj , wq}, and

AT = {zd, zd−1, . . . , zq+1} ∪ {wq−1, . . . , wj+1, wj−1, . . . , w1, wd},

as shown in Figure 10 with the vertices of BT colored blue, the vertices of

AT colored red, and the corresponding lattice path colored green.

Figure 10

Again we see that F = AT ∪ (BT \ {zj}) ∈ AT ∗ ∂BT . �

Lemma 3.7. Let F be a facet of AT ∗ ∂BT for some T ∈ T . Then either

(1) F is a facet of ST (d− 1, 1); or

(2) there is a unique S ∈ T such that S ≺ T and F ∈ ∂AS ∗BS.

Proof. We write T = {t1 < · · · < t`} so that BT = {zt1 , . . . , zt`−1
, wt`}. We

must examine two possibilities based on the element of BT that is removed

from AT ∪BT to form the facet F .

Case 1: F = AT ∪ (BT \ {wt`})
Suppose first that there is no index 1 ≤ j < t` such that wj ∈ AT . In this

case, F = {zd, . . . , zt`+1, zt`−1, . . . , z1, wd} is a facet of ST (d− 1, 1).
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Otherwise, consider the largest index 1 ≤ j < t` such that wj ∈ AT , and

let S = {ti ∈ T : ti < j} ∪ {j}. We see that S ≺ T since t` is the largest

element of the symmetric difference of S and T . Then

BT = {zti : ti ∈ T, ti < j} ∪ {wj}, and

AT = {zi : i > j} ∪ {wi : i < j, i /∈ T} ∪ {xd, yd}.

This is illustrated in Figure 11. The elements of BT are shown in blue and

the elements of AT are shown in red. The elements in dotted blue belong

to BS but not BT ; these are the elements {zi : i > j}, and they must be

moved from BS to AT since they lie southwest of wj .

Figure 11

Again, we may check that F = (AS \ {zt`}) ∪BS ∈ ∂AS ∗BS .

Case 2: F = AT ∪ (BT \ {ztj}) for some 1 ≤ j < `

If |T | = 2, then F = {zd, . . . , zt2+1, wt2 , . . . , wt1+1, wt1−1, . . . , w1, wd} is a

facet of ST (d−1, 1) since F contains neither wt1 nor zt1+1. This is illustrated

in Figure 12 with the vertices in BT colored blue, the vertices in AT colored

red, the eliminated column shown with a dotted line, and the corresponding

lattice path colored green.

Figure 12

Otherwise, if |T | > 2, consider S := T \ {tj}. Then |S| ≥ 2 so that S ∈ T
and S ≺ T since S is a subset of T . In this case, we see that

BS = BT \ {ztj}, and

AS = AT ∪ {wtj},

so that F = AT ∪ (BT \ {ztj}) = (AS \ {wtj}) ∪BS ∈ ∂AS ∗BS . �
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Lemma 3.8. Let F be a facet of ∂AS ∗ BS for some S ∈ T such that xd

and yd belong to F . Then there is a unique T ∈ T such that S ≺ T and F

is a facet of AT ∗ ∂BT .

Proof. Since F contains both xd and yd, there is exactly one index 1 ≤ j ≤
d− 1 such that neither xj nor yj belongs to F . Note that exactly one of xj

or yj belongs to AS . Say S = {s1 < · · · < sm}.
Case 1: j < sm

In this case, wj ∈ AS . Consider T = S ∪ {j}. Clearly S ≺ T since S is a

subset of T , and we see that

BT = BS ∪ {zj}, and

AT = AS \ {wj}.

This is illustrated in Figure 13. The elements of BT are colored blue, and

the elements of AT are colored red. The element wj , which belongs to AS

but not AT , is shown in dotted red, and zj was added to BS to form BT .

Figure 13

Then F = (AS \ {wj}) ∪BS = AT ∪BT \ {zj} ∈ AT ∗ ∂BT .

Case 2: j > sm

In this case, zj ∈ AS . Consider T = {s1, . . . , sm−1} ∪ {sm + 1, . . . , j}.
Since j > sm, we see that S ≺ T . We see that

BT = (BS \ {wsm}) ∪ {zsm+1, . . . , zj−1, wj}, and

AT = (AS \ {zsm+1, . . . , zj−1}) ∪ {wsm}.

Figure 14
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This is illustrated in Figure 14 with the elements of BT colored blue and

the elements of AT colored red. The elements of AS that belong to BT are

shown with dotted red circles: zsm+1, . . . , zj+1 lie southeast of wj , so they

belong to BT instead of AS . Similarly, wsm is shown in a dotted blue circle:

it is not the largest element of BT and it is in the top row of L, so it belongs

to AT .

Then F = AT ∪BT \ {wj} ∈ AT ∗ ∂BT .

�

Lemma 3.9. Let F be a facet of B(d− 2, d). Then either

(1) F is a facet of ST (d− 1, 1), or

(2) there is a unique T ∈ T such that F is a facet of ∂AT ∗BT .

Proof. Since {z1, . . . , zd} and {w1, . . . , wd} are the two facets of C∗d that do

not belong to B(d − 2, d), we see that F must contain at least one vertex

from the top row of L and at least one vertex from the bottom row of L.

Consider the largest index t such that wt ∈ F . If t = d, then F =

{zd−1, zd−2, . . . , z1, wd} is a facet of ST (d − 1, 1). Otherwise, if t ≤ d − 1,

consider the set I := {i < t : zi ∈ F} ⊆ [d− 1].

Case 1: I = ∅
In this case, F contains {zd−1, . . . , zt+1, wt, . . . , w1} and either zd or wd. In

either case, F corresponds to a lattice path obtained by removing either the

first or last column from L. This is illustrated in Figure 15, where the dotted

circles indicate that either xd or yd can be added, and the corresponding

lattice path is shown in green.

Figure 15

Case 2: I 6= ∅
In this case, we let T := I ∪ {t}. Clearly F is either (AT \ {xd}) ∪ BT

or (AT \ {yd}) ∪BT and hence F ∈ ∂AT ∗BT . This is illustrated in Figure

16 with the elements of BT shown in blue and the elements of AT shown

in red. Since only one of xd or yd belongs to F , these vertices are shown in

dotted red.

�
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Figure 16

Proof of Theorem 3.4:

Let us begin by establishing the notation that will be used for the re-

mainder of the proof. As above, let L be the lattice shown in Figure 7.

Let T denote the collection of all subsets of [d− 1] of size at least two, and

let M := 2d−1 − d = |T |. Order the sets in T under the revlex order as

T1 ≺ T2 ≺ T3 ≺ · · · ≺ TM . Let ∆0 = ST (d − 1, 1), and for all 1 ≤ j ≤ M ,

let ∆j be the simplicial complex obtained from ∆j−1 by performing the

bistellar operation χ(ATj , BTj ).

In order to prove this theorem, we must prove that for all j,

(1) ATj ∈ ∆j−1,

(2) BTj /∈ ∆j−1,

(3) lk∆j−1(ATj ) = ∂BTj , and

(4) ∆M = B(d− 2, d).

Conditions (1)–(3) say that the bistellar operation χ(ATj , BTj ) can be

performed on the complex ∆j−1 for all 1 ≤ j ≤ M ; condition (4) says

that only those facets belonging to B(d− 2, d) remain after performing the

bistellar operations χ(AT1 , BT1), · · · , χ(ATM
, BTM

).

Let F be a facet of ATj ∗ ∂BTj . Since F contains all the vertices in ATj ,

both xd and yd belong to F . Thus by Lemma 3.7, F was either originally a

facet of ST (d− 1, 1) or was created as a facet of ∂AS ∗BS for some S ≺ Tj .
By Lemma 3.6 (in the former case) and Lemma 3.7 (in the latter case), Tj

is the unique subset of [d − 1] such that F is a facet of ATj ∗ ∂BTj . In

particular, this means that F is a facet of ∆j−1, which proves that ATj is a

face of ∆j−1 as well. Moreover, by the structure of our choices of the sets

BT , we see that BTj is not a face of ∆j−1.

Next, we show that lk∆j−1(ATj ) = ∂BTj . By the argument in the previous

paragraph, we see that each facet of ATj ∗ ∂BTj belongs to ∆j−1. Thus

lk∆j−1(ATj ) ⊇ ∂BTj and lk∆j−1(ATj ) = ∂BTj by Lemma 1.14.

Finally, suppose σ is a facet of B(d − 2, d). By Lemma 3.9, either σ is a

facet of ST (d−1, 1) or σ was created as a facet of ∂AS ∗BS for some S ∈ T .
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Since σ contains either xd or yd, but not both, σ will not be removed as

a facet of AT ∗ ∂BT for any T ∈ T . Thus σ is a facet of ∆M . Moreover,

any facet of ∆M contains exactly one of xi and yi for all 1 ≤ i ≤ d. Since

{z1, . . . , zd} and {w1, . . . , wd} are not created as facets of ∂AT ∗BT for any

set T ∈ T , we conclude that ∆M = B(d− 2, d).

�

4. Other cases

Theorem 4.1. The complex B(1, 4) can be obtained from ST (2, 2) through

a series of bistellar flips, stellar exchanges, and elementary shellings.

Proof. We label the vertices of ST (2, 2) as shown in Figure 17

Figure 17

Under this labeling, the facets of ST (2, 2) are

{x1, x2, x3, x4}, {v, y3, x4, y4}, {v, x1, y3, y4},
{y1, x2, x3, x4}, {y1, y3, x4, y4}, {x1, x2, y3, y4},
{y1, y2, x3, x4}, {y1, y2, x4, y4}, {x1, x2, x3, y4}.

In comparison with the previously studied cases, we now have two issues

to overcome in proving this theorem. We still must disintegrate the link

of the edge {x4, y4} while adding in the missing faces {y2, y3} and {x1, y2}
(amongst others). We also must remove the vertex v by using either elemen-

tary shellings or a bistellar 4-move. We begin by performing the following

bistellar operations and stellar exchanges.
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Step A B L Facets Removed Facets Gained

1. {y1, x4, y4} {y2, y3} − {y1, y2, x4, y4} {y1, y2, y3, x4}
{y1, y3, x4, y4} {y1, y2, y3, y4}

{y2, y3, x4, y4}
2. {x4, y4} {v, y2} {y3} {v, y3, x4, y4} {v, y2, y3, x4}

{y2, y3, x4, y4} {v, y2, y3, y4}
3. {v, y4} {x1, y2} {y3} {v, x1, y3, y4} {v, x1, y2, y3}

{v, y2, y3, y4} {x1, y2, y3, y4}

Let us denote by ∆ the simplicial complex obtained from ST (2, 2) by

performing these three operations. We observe that the vertex v is only

contained in the facets {v, x1, y2, y3} and {v, y2, y3, x4} in ∆. By using el-

ementary shellings, we wish to remove these two facets, which will remove

the vertex v and leave us with precisely those facets in B(1, 4).

We begin by considering the facet {v, x1, y2, y3}. The link of the face

F := {v, x1} is the simplex on G := {y2, y3}. We claim that G is an interior

face of ∆, that its boundary faces {y2} and {y3} belong to the boundary of

∆, and that F ∗ ∂G is contained in the boundary of ∆. Since the boundary

of ∆ is a subcomplex of ∆, we need only check that F is an interior face of

∆ and that F ∗ ∂G is contained in the boundary of ∆.

First we show that F is an interior face of ∆. This can be easily checked as

lk∆(F ), when viewed as a graph, is a cycle on the vertices v, x4, y1, y4, x1, v.

To see that F ∗ ∂G is contained in the boundary of ∆, we check that

{v, x1, y2, y3} is the unique face of ∆ that contains the two-dimensional

faces of F ∗ ∂G: {v, x1, y2} and {v, x1, y3}. Thus we may remove the facet

{v, x1, y2, y3} using an elementary shelling to obtain a new complex ∆′.

Now we consider the facet {v, y2, y3, x4}, which is the only remaining facet

of ∆′ that contains v. As before, we let F ′ = {v} and G′ = {y2, y3, x4}.
We can check that G′ is an interior face of ∆′ since it is contained in two

facets, {v, y2, y3, x4} and {y1, y2, y3, x4}, and that F
′ ∗ ∂G′ is contained in

the boundary of ∆′.

�

Theorem 4.2. The complex B(1, 5) can be obtained from ST (2, 3) through

a series of bistellar flips, stellar exchanges, and elementary shellings.

Proof. We label the vertices of ST (2, 3) as shown in Figure 18.

Under this labeling, the facets of ST (2, 3) are
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Figure 18

{v, x1, y3, y4, y5}, {v, y3, y4, x5, y5}, {v, x1, y3, y4, y5},
{x1, x2, y3, y4, y5}, {y1, y3, y4, x5, y5}, {x1, x2, y3, y4, y5},
{x1, x2, x3, y4, y5}, {y1, y2, y4, x5, y5}, {x1, x2, x3, y4, y5},
{x1, x2, x3, x4, y5}, {v′, y1, y2, x5, y5}, {x1, x2, x3, x4, y5}.

We begin by viewing the 3×2 lattice in Figure 18 as two overlapping copies

of the 2×2 lattice from Figure 17. We perform the following bistellar/stellar

operations, which are motivated by the three initial operations used in the

proof of Theorem 4.1.

Step A B L Facets Removed Facets Gained

1. {y1, y4, x5, y5} {y2, y3} − {y1, y2, y4, x5, y5} {y1, y2, y3, y4, y5}
{y1, y3, y4, x5, y5} {y1, y2, y3, y4, x5}

{y1, y2, y3, x5, y5}
{y2, y3, y4, x5, y5}

2. {y4, x5, y5} {v, y2} {y3} {v, y3, y4, x5, y5} {v, y2, y3, y4, y5}
{y2, y3, y4, x5, y5} {v, y2, y3, y4, x5}

{v, y2, y3, x5, y5}
3. {v, y4, y5} {x1, y2} {y3} {v, x1, y3, y4, y5} {x1, y2, y3, y4, y5}

{v, y2, y3, y4, y5} {v, x1, y2, y3, y4}
{v, x1, y2, y3, y5}

4. {y1, x5, y5} {v′, y3} {y2} {v′, y1, y2, x5, y5} {v′, y1, y2, y3, x5}
{y1, y2, y3, x5, y5} {v′, y1, y2, y3, y5}

{v′, y2, y3, x5, y5}
5. {v′, y1, x5} {y3, x4} {y2} {v′, y1, y2, y3, x5} {y1, y2, y3, x4, x5}

{v′, y1, y2, x4, x5} {v′, y1, y2, y3, x4}
{v′, y2, y3, x4, x5}

Let ∆ denote the simplicial complex obtained by performing these five

operations. In addition to all of the facets of B(1, 5), ∆ contains the following
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facets, which may be removed from ∆ in the order that they are listed

through a series of elementary shellings. We list the decomposition of each

facet F into the interior face A and boundary face B such that lk(B) = A

and B ∗ ∂A ⊆ ∂∆.

Step Facet A B

6. {v′, y2, y3, x4, x5} {y2, y3} {v′, x4, x5}
7. {v′, y1, y2, y3, x4} {y1, y2, y3} {v′, x4}
8. {v′, y1, y2, y3, y5} {y2, y3, y5} {v′, y1}
9. {v′, y2, y3, x5, y5} {y2, y3, x5, y5} {v′}
10. {v, y2, y3, x5, y5} {v, y2, y3} {x5, y5}
11. {v, y2, y3, y4, x5} {y2, y3, y4} {v, x5}
12. {v, x1, y2, y3, y4} {x1, y2, y3} {v, y4}
13. {v, x1, y2, y3, y5} {x1, y2, y3, y5} {v}

After removing these facets by elementary shellings, we are left with pre-

ciscely those facets of B(1, 5).

�
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