
UPPER BOUNDS ON THE NUMBER OF SPANNING TREES IN A BIPARTITE
GRAPH

FINTAN GARRETT AND STEVEN KLEE

ABSTRACT. Ferrers graphs are a family of connected bipartite graphs that arise from the Ferrers

diagram of a partition. Ehrenborg and van Willigenburg gave a beautiful product formula for the

number of spanning trees in a Ferrers graph. In this paper, we use linear algebraic techniques to

investigate a conjecture of Ehrenborg stating that a similar product formula gives an upper bound for

the number of spanning trees in an arbitrary bipartite graph.

1. Introduction. Suppose we are given an m × n array of boxes. A subset, F , of these boxes is called

a Ferrers diagram if, whenever box (z, w) belongs to F , then each box (x, y) with x ≤ z and y ≤ w also

belongs to F . Here, we use matrix notation, so that box (1, 1) is in the upper left hand corner of the array.

A Ferrers diagram gives rise to a Ferrers graph whose vertices are indexed by the rows x1, x2, . . . , xn and

columns y1, y2, . . . , ym of the array; and the edge {xi, yj} belongs to the graph if and only if the box in row

xi and column yj belongs to the Ferrers diagram. For example, the following figure illustrates a Ferrers

diagram (left) and its corresponding Ferrers graph (right).

y1 y2 y3 y4

x1

x2

x3
x1 x2 x3

y1 y2 y3 y4

Definition 1.1. A Ferrers graph is a bipartite graph G whose vertices are partitioned as X ∪ Y with

X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} with the property that

(1) whenever {xk, y`} is an edge in G, then so is {xi, yj} for any i ≤ k and j ≤ `, and

(2) {x1, ym} and {xn, y1} are edges in G.

Ehrenborg and van Willigenburg [1] found a beautiful formula counting the number of spanning trees in

a Ferrers graph. Here and throughout, we will use τ(G) to denote the number of spanning trees in a graph

G.

Theorem 1.2. [1, Theorem 2.1] Let G be a Ferrers graph whose vertices are partitioned as V (G) = X ∪Y .

Then

|X| · |Y | · τ(G) =
∏

v∈V (G)

deg(v).

Received by the editors December 9, 2015.

1

2 F. GARRETT AND S. KLEE

This has led Ehrenborg (personal communication) to conjecture the following upper bound formula for

the number of spanning trees in an arbitrary bipartite graph.

Conjecture 1.3. Let G be a simple bipartite graph whose vertex set is partitioned as V (G) = X ∪ Y . Then

|X| · |Y | · τ(G) ≤
∏

v∈V (G)

deg(v).

We begin by motivating Conjecture 1.3 as part of the existing literature. Shifted simplicial complexes

play an important role in the study of extremal combinatorics of set systems. Specifically, for a simplicial

complex with a fixed number of k-dimensional faces, a shifted simplicial complex supports the maximal

possible number of (k+ 1)-dimensional faces as prescribed by the Kruskal-Katona Theorem [2, 4]. Further,

a Ferrer’s graph is a shifted version of a bipartite graph (which is often called a “compressed” bipartite

graph). For any simple graph there is a corresponding graphic matroid, which is a simplicial complex whose

vertices correspond to the edges of the graph and whose facets correspond to the spanning trees of the

graph. Therefore, in a sense, Conjecture 1.3 makes a further claim that the graphic matroids corresponding

to shifted bipartite graphs are extremal.

The purpose of this paper is twofold. First, we use linear algebraic techniques reformulate Conjecture 1.3

in terms of purely combinatorial data arising from a given bipartite graph. For any bipartite graph G, we

find an associated edge-weighted complete graph A(G) whose weighted spanning tree enumerator counts the

number of spanning trees in the original graph G. This allows us to computationally verify Conjecture 1.3

when |X| ≤ 5. Next, we use this machinery and linear algebraic techniques to give a new proof of Theorem

1.2 for Ferrers graphs. This combinatorial re-formulation seems to give a promising approach to studying

Conjecture 1.3 in general.

The remainder of the paper is structured as follows. In Section 2 we review the main linear algebraic

tools that will be relevant to our proofs and use these tools to derive the associated edge-weighted complete

graph A(G) that arises from a bipartite graph G. In Section 3 we show that Conjecture 1.3 holds when

|X| ≤ 5. Finally, in Section 4 we further study the Laplacian matrix of the graph A(G) to give a new proof

of Theorem 1.2.

2. Preliminaries. For the purposes of this paper, we will assume that all graphs are simple, meaning

they do not contain loops or multiple edges. We will use V (G) and E(G) to denote the vertex set and edge

set of G respectively. We will always assume that V (G) is finite. We will use τ(G) to denote the number of

spanning trees in G. If v is a vertex of G, we will use deg(v) to denote the degree of v. When it is necessary,

we will use the notation degG(v) to emphasize that we are counting the degree of v in G.

Furthermore, the use of subscripts and parentheses can become confusing when describing various

operations on graphs and matrices. We will consistently use the following notation throughout the paper in

an effort to prevent such confusion.

• If G is a graph, we will use curly braces {i, j} to denote an edge in G.

• If G is a graph with weighted edges, we will use subscripts wij to denote the weight on edge {i, j}.
• If M is a matrix, we will use round parentheses M(i, j) to denote the entry in row i and column j

of M .

UPPER BOUNDS ON THE NUMBER OF SPANNING TREES IN A BIPARTITE GRAPH 3

• If M is a matrix, we will use subscripts M̂ij to denote the matrix obtained from M by removing its

ith row and jth column.

2.1. Counting spanning trees. Let G be a graph with n vertices labeled as V (G) = {1, 2, . . . , n}. The

Laplacian matrix of G, denoted L(G) is an n× n matrix whose rows and columns are indexed by vertices

of G. The entries of the Laplacian matrix are defined by

L(G)(i, j) =

deg(v) if i = j,

−1 if i 6= j and {i, j} ∈ E(G),

0 otherwise.

Clearly the rows (or columns) of L(G) sum to 0, so L(G) is singular. However, the Matrix-Tree Theorem

states that if we delete any row and any column of L(G), then the determinant of the resulting matrix counts

the number of spanning trees in G. Specifically, let L̂ij(G) denote the matrix obtained by deleting row i and

column j from L(G). Let τ(G) denote the number of spanning trees in G.

Matrix-Tree Theorem. Let G be a connected graph with V (G) = {1, 2, . . . , n}. For any vertices i, j ∈ V (G)

(not necessarily distinct),

τ(G) = (−1)i+j det L̂ij(G).

More generally, if we assign a weight wij = wji to each edge {i, j} ∈ E(G) (and define wij = 0 if

{i, j} /∈ E(G)), then we can define a weighted Laplacian matrix, L(G;w) by

L(G;w)(i, j) =

∑n

k=1 wik if i = j,

−wij if i 6= j.

In this case, there is a weighted analogue of the Matrix-Tree Theorem as well.

Weighted Matrix-Tree Theorem. Let G be a connected graph with V (G) = {1, 2, . . . , n}. Let wij = wji

be a weighting on the edges of G. For any vertices i, j ∈ V (G) (not necessarily distinct),

∑
T

 ∏
{k,`}∈T

wk`

 = (−1)i+j det L̂ij(G;w),

where the sum is taken over all spanning trees of G and the product is over all edges in a given spanning

tree.

The quantity on the lefthand side of the weighted Matrix-Tree Theorem is called the weighted spanning

tree enumerator for the graph G. We can view a simple graph (whose edges are, a priori, unweighted) as

a weighted graph in which wij = 1 for each edge {i, j} ∈ E(G). In this case, the weighted Laplacian matrix

is the standard Laplacian matrix, and the weighted spanning tree enumerator for G simplifies to count the

number of spanning trees in G. Thus the Weighted Matrix Tree Theorem can be viewed as a generalization

of the classical Matrix-Tree Theorem.

4 F. GARRETT AND S. KLEE

2.2. Schur complements in block matrices. In this paper, we will be primarily concerned with counting

spanning trees in bipartite graphs with an aim towards developing a better understanding of Conjecture 1.3.

If G is a bipartite graph whose vertex set is partitioned as V (G) = X ∪ Y , then the Laplacian matrix of

G can be naturally decomposed into blocks. The method of Schur complements is useful for simplifying

calculations of the determinant of a block matrix. First we will review this method.

Let M =

[
A B

C D

]
be a square block matrix with the property that A is a square n× n matrix and D is

a nonsingular square m×m matrix. The Schur complement of the block D in the matrix M is the n×n
matrix A−BD−1C. A fundamental result (see [3]) is that for such a matrix M ,

(1) det(M) = det(D) det(A−BD−1C).

Notice that if M =

[
a b

c d

]
is a 2× 2 matrix with d 6= 0, this result gives the familiar determinant formula

det(M) = d
(
a− bc

d

)
= ad− bc.

When M is the Laplacian matrix of a bipartite graph G, the matrices A and D are the degree matrices

for the vertices in G. Thus the Schur complement can be used to reduce the size of the matrix whose

determinant we will compute in the Matrix-Tree Theorem.

2.3. Spanning trees in bipartite graphs. Let G be a connected bipartite graph whose vertices are

partitioned as V (G) = X ∪ Y . Suppose that |X| = n and |Y | = m. Without loss of generality, we can fix a

labeling of the vertices in X as X = {1, 2, . . . , n}. Now we can partition the vertices of Y according to their

neighbors in X. For any subset S ⊆ X, we define a counting variable

xS := #{y ∈ Y : N(y) = S}.

Here, N(y) = {x ∈ X : {x, y} ∈ E(G)} denotes the set of neighbors of y. Throughout, we will treat the

vertices in X as being fixed vertices, we treat the vertices in Y and the edges in G as quantities that vary

as a function of {xS : S ⊆ X}. Our goal now is to understand (or, in some cases, explicitly compute) the

number of spanning trees in G as a function of {xS : S ⊆ X}.

When G is bipartite, its Laplacian matrix is a block matrix of the form

L(G) =

[
DX −Z
−ZT DY

]
,

where DX (respectively DY) is an n× n (resp. m×m) diagonal matrix whose diagonal entries encode the

degrees of the vertices in X (resp. Y). The matrix Z is an n×m matrix whose column corresponding to a

vertex y ∈ Y has a 1 in the row indexed by x ∈ X if x ∈ N(y) and a 0 otherwise.

Since G is connected it has no isolated vertices and hence the matrices DX and DY are nonsingular. Thus

we may compute the Schur complement of the block DY in the matrix L(G), which is the n× n matrix

S(G) := DX − ZD−1Y ZT .

Based on the structure of L(G), we can compute the entries of S(G). For any i, j ∈ X (not necessarily

distinct) and any y ∈ Y , the entry Z(i, y) is equal to 1 if {i, y} ∈ E(G) and is equal to 0 otherwise. Similarly,

the entry D−1Y ZT (y, j) is equal to 1
deg(y) if {y, j} ∈ E(G) and is equal to 0 otherwise. So when we compute

the entry of the matrix ZD−1Y ZT in position (i, j) as the dot product of the ith row of Z with the jth column

UPPER BOUNDS ON THE NUMBER OF SPANNING TREES IN A BIPARTITE GRAPH 5

of D−1Y ZT , there will be a nonzero contribution to the sum for each vertex y ∈ Y that is a common neighbor

of both i and j. Therefore,

ZD−1Y ZT (i, j) =
∑

{y∈Y : i,j∈N(y)}

1

deg(y)
=
∑
S⊆X
i,j∈S

xS
|S|

.

Similarly, for any i ∈ X, the degree of vertex i can be written as deg(i) =
∑

S⊆X
i∈S

xS . Thus

S(G)(i, j) =

∑
S⊆X
i∈S

(
xS −

xS
|S|

)
if i = j

−
∑
S⊆X
i,j∈S

xS
|S|

if i 6= j.

Now we observe that the matrix S(G) can be viewed as the weighted Laplacian matrix of a complete graph

on n vertices in which the edge {i, j} receives a weight wij =
∑

S⊆X
i,j∈S

xS

|S| . Indeed, for any i ∈ {1, 2, . . . , n},
we compute ∑

j 6=i

wij =
∑
j 6=i

∑
S⊆X
i,j∈S

xS
|S|

= (|S| − 1)
∑
S⊆X
i∈S

xS
|S|

=
∑
S⊆X
i∈S

(
xS −

xS
|S|

)
,

so S(G)(i, i) =
∑

j 6=i wij . This motivates the following definition.

Definition 2.1. Let G be a simple bipartite graph whose vertex set is partitioned as V (G) = X ∪ Y with

X = {1, 2, . . . , n}. Define an associated weighted complete graph A(G) on vertex set X in which the

edge {i, j} has weight wij = wji :=
∑

S⊆X
i,j∈S

xS

|S| .

From these observations, we are able to realize that the number of spanning trees in a bipartite graph G

can be computed in terms of the weighted spanning tree enumerator from its associated weighted complete

graph A(G).

Theorem 2.2. Let G be a simple connected bipartite graph whose vertex set is partitioned as V (G) = X ∪Y
with X = {1, 2, . . . , n}. Let A(G) be the associated weighted complete graph to G and let S(G) = L(A(G);w)

be its weighted Laplacian matrix. For any i, j ∈ X (not necessarily distinct), we have

τ(G) =
∏
y∈Y

deg(y) · (−1)i+j det Ŝij(G),

where Ŝij(G) is the matrix obtained by removing the ith row and jth column from S(G).

Proof: Let L(G) be the (unweighted) Laplacian matrix of G. As above, write L(G) =

[
DX −Z
−ZT DY

]
. Let

S(G) be the Schur complement of the block DY in the matrix L(G), which can be realized as the weighted

Laplacian matrix of A(G). The only subtlety that arises now is that we know τ(G) = (−1)i+j det L̂ij(G) is

the determinant of an (m+ n− 1)× (m+ n− 1) matrix, while Ŝij(G) is an (n− 1)× (n− 1) matrix.

6 F. GARRETT AND S. KLEE

Let M = L̂ij(G) be the reduced Laplacian matrix of G obtained by deleting the row corresponding to

vertex i and the column corresponding to vertex j from L(G). Then M is a block matrix of the form

M =

[
D̃ −B
−C DY

]
, where

(1) D̃ is obtained from DX by removing the row corresponding to vertex i and the column corresponding

to vertex j (and hence D̃ is a diagonal matrix whose entries are the degrees of the vertices in X

except for i and j,

(2) B is obtained from Z by removing the row corresponding to vertex i, and

(3) C is obtained from ZT by removing the column corresponding to vertex j.

On the one hand, we know that τ(G) = (−1)i+j det(M) by the Matrix-Tree Theorem. Now we claim

that the Schur complement of the block DY in M is the same as the matrix Ŝij(G) obtained from S(G) by

removing its ith row and jth column, which is to say D̃−BD−1Y C = Ŝij(G). Assuming that this is true, the

proof will be complete since by Equation (1),

det(M) = det(DY) det(D̃ −BD−1Y C) = det(DY) det Ŝij(G) =
∏
y∈Y

deg(y) · det Ŝij(G).

Choose k, ` ∈ X (not necessarily distinct) such that k 6= i and ` 6= j. Since the kth row of B is

equal to the kth row of −Z and the `th column of C is equal to the `th row of −ZT , it follows that

BD−1Y C(k, `) = ZD−1Y ZT (k, `). From here it follows that D̃ −BD−1Y C = Ŝij(G), as desired. �

As a corollary, we obtain a nice formula for the number of spanning trees in a connected bipartite graph

from the Weighted Matrix-Tree Theorem.

Corollary 2.3. Let G be a connected, simple bipartite graph whose vertices are partitioned as V (G) = X∪Y
with |X| = n. Then

τ(G) =
∏
y∈Y

deg(Y) ·
∑

T spanning in Kn

 ∏
{i,j}∈E(T)

∑
S⊆X
i,j∈S

xS
|S|

 .

Observe that |Y | =
∑

S⊆X xS and recall that for any i ∈ X, deg(i) =
∑

S⊆X
i∈S

xS . This leads us to the

following restatement of the main Conjecture 1.3 that depends only on the variables {xS : S ⊆ X}.

Conjecture 2.4. Let G be a simple, connected bipartite graph whose vertices are partitioned as V (G) = X∪Y
with |X| = n. For any 1 ≤ i, j ≤ n, we have

(2) n ·

∑
S⊆X

xS

 · (−1)i+j det Ŝij(G) ≤
n∏

i=1

∑
S⊆X
i∈S

xS

 .

3. Evidence for the main conjecture.

UPPER BOUNDS ON THE NUMBER OF SPANNING TREES IN A BIPARTITE GRAPH 7

Theorem 3.1. Let G be a connected, simple bipartite graph for which Conjecture 1.3 holds. Let u be a new

vertex not in V (G), and let v be a vertex in V (G). Let G′ be the graph obtained by adding the edge {u, v} to

G. Then Conjecture 1.3 holds for G′ as well.

Proof: Suppose the vertices of G are partitioned as V (G) = X ∪ Y , and assume without loss of generality

that v ∈ X. Then the vertices of G′ are partitioned as X ∪ (Y ∪ {u}).

Since degG′(u) = 1, our goal is to prove that

τ(G′) ≤
(degG(v) + 1) ·

∏
w∈V (G)
w 6=v

degG(w)

|X| · (|Y |+ 1)
.

First, since u has only one neighbor in G′, any spanning tree in G′ must contain the edge {u, v}. So

τ(G) = τ(G′). Thus it is sufficient to prove that

(3)

∏
w∈V (G) degG(w)

|X| · |Y |
≤

(degG(v) + 1) ·
∏

w∈V (G)
w 6=v

degG(w)

|X| · (|Y |+ 1)
,

by our hypothesis that τ(G′) = τ(G) is bounded from above by the quotient on the lefthand side of Equation

(3).

We can compute that

|X| · (|Y |+ 1) · degG(v) = |X| · |Y | · degG(v) + |X| · degG(v)

≤ |X| · |Y | · degG(v) + |X| · |Y |

= |X| · |Y | · (degG(v) + 1),

since v ∈ X and hence degG(v) ≤ |Y |. Thus

degG(v)

|X| · |Y |
≤ degG(v) + 1

|X| · (|Y |+ 1)
,

and Equation (3) follows by multiplying both sides by
∏

w∈V (G)
w 6=v

degG(w).

�

Corollary 3.2. Conjecture 1.3 holds when G is a tree.

Proof: Conjecture 1.3 clearly holds when G consists of a single edge, and any tree can be obtained from a

single edge by inductively adding leaf vertices. �

Therefore we need only consider bipartite graphs in which xS = 0 for all |S| ≤ 1, and we will only consider

such graphs for the remainder of the paper.

Corollary 3.3. Conjecture 1.3 holds when |X| = 2.

8 F. GARRETT AND S. KLEE

Proof: Let G be a bipartite graph with |X| = 2. By Theorem 3.1, it suffices to prove that Conjecture 1.3

holds if deg(y) ≥ 2 for all y ∈ Y ; i.e, in the case that G is the complete bipartite graph K2,m. The result is

clear in this case. �

Theorem 3.4. Conjecture 1.3 holds when |X| ≤ 5.

Proof: First suppose |X| = 3. As in Section 2, let wij =
∑

S⊆X
i,j∈S

xS

|S| . By Equation (2), we need to show

that

3 · (x{1,2} + x{1,3} + x{2,3}) · (w1,2 · w1,3 + w1,2 · w2,3 + w1,3 · w2,3)

≤ (x{1,2} + x{1,3} + x{1,2,3}) · (x{1,2} + x{2,3} + x{1,2,3}) · (x{1,3} + x{2,3} + x{1,2,3})

The difference between the righthand side and lefthand side of this inequality expands as

1

4
x2{1,2}x{1,3} +

1

4
x{1,2}x

2
{1,3} +

1

4
x2{1,2}x{2,3} +

1

4
x{1,2}x

2
{2,3} +

1

4
x{1,3}x

2
{2,3} +

1

4
x2{1,3}x{2,3}

+
1

4
x{1,2}x{1,3}x{1,2,3} +

1

4
x{1,2}x{2,3}x{1,2,3} +

1

4
x{1,3}x{2,3}x{1,2,3} −

1

4
x{1,2}x{1,3}x{2,3}.

Without loss of generality assume that x{1,2} ≥ x{1,3} so that x2{1,2}x{2,3} ≥ x{1,2}x{1,3}x{2,3}. This

proves that the desired inequality is nonnegative since x2{1,2}x{2,3} − x{1,2}x{1,3}x{2,3} ≥ 0 and all other

terms are nonnegative.

When |X| ≥ 3, the equations on the left and right side of Equation (2) become quite unwieldy. We wrote

code in Sage [5] to carry out these calculations for us. The code is included in the appendix.

When |X| = 4, the calculations showed that there are 751 terms with positive coefficients and only four

terms with negative coefficients when we compute the difference between the righthand side and the lefthand

side of Equation (2). Twenty of the 755 terms that appear in the expansion are

1

4
x2{1,2}x{1,3}x{1,2,3,4} +

1

4
x{1,2}x

2
{1,3}x{1,2,3,4} +

1

4
x2{1,2}x{2,3}x{1,2,3,4} +

1

4
x{1,2}x

2
{2,3}x{1,2,3,4}

+
1

4
x2{1,3}x{2,3}x{1,2,3,4} +

1

4
x{1,3}x

2
{2,3}x{1,2,3,4} +

1

4
x2{1,2}x{1,4}x{1,2,3,4} +

1

4
x{1,2}x

2
{1,4}x{1,2,3,4}

+
1

4
x2{1,2}x{2,4}x{1,2,3,4} +

1

4
x{1,2}x

2
{2,4}x{1,2,3,4} +

1

4
x2{1,4}x{2,4}x{1,2,3,4} +

1

4
x{1,4}x

2
{2,4}x{1,2,3,4}

+
1

4
x2{1,3}x{1,4}x{1,2,3,4} +

1

4
x{1,3}x

2
{1,4}x{1,2,3,4} +

1

4
x2{1,3}x{3,4}x{1,2,3,4} +

1

4
x{1,3}x

2
{3,4}x{1,2,3,4}

+
1

4
x2{1,4}x{3,4}x{1,2,3,4} +

1

4
x{1,4}x

2
{3,4}x{1,2,3,4} +

1

4
x2{2,3}x{2,4}x{1,2,3,4} +

1

4
x{2,3}x

2
{2,4}x{1,2,3,4}

+
1

4
x2{2,3}x{3,4}x{1,2,3,4} +

1

4
x{2,3}x

2
{3,4}x{1,2,3,4} +

1

4
x2{2,4}x{3,4}x{1,2,3,4} +

1

4
x{2,4}x

2
{3,4}x{1,2,3,4}

−1

4
x{1,2}x{1,3}x{2,3}x{1,2,3,4} −

1

4
x{1,2}x{1,4}x{2,4}x{1,2,3,4} −

1

4
x{1,3}x{1,4}x{3,4}x{1,2,3,4}

−1

4
x{2,3}x{2,4}x{3,4}x{1,2,3,4}.

Here notice that each negative term has the form x{a,b}x{a,c}x{b,c}x{1,2,3,4} for some choice of distinct

a, b, c ∈ {1, 2, 3, 4}. For each such term, we can assume without loss of generality that x{a,b} ≥ x{a,c} so that

UPPER BOUNDS ON THE NUMBER OF SPANNING TREES IN A BIPARTITE GRAPH 9

1
4x

2
{a,b}x{b,c}−

1
4x{a,b}x{a,c}x{b,c} ≥ 0. Since this assumption can be made independently for all four choices

of distinct a, b, c and all other terms in the above array are nonnegative, it follows that the above quantity

is nonnegative. In addition to these 20 terms, the difference between the righthand side and the lefthand

side of Equation (2) contains 735 more monomial terms, each of which has a positive coefficient. Therefore,

Conjecture 2.4 holds when |X| = 4.

When |X| = 5, our calculations showed that there are 123,435 terms with positive coefficients and only

140 terms with negative coefficients when we compute the difference between the righthand side and the

lefthand side of Equation (2). It seems a significant waste of paper to write out all of these negative terms,

but they all fall into one of five families. As in the previous two cases, we will exhibit the general form of

these five families of terms with negative coefficients, together with five corresponding families of terms with

positive coefficients whose value will exceed the negative contributions.

(1) Choose distinct a, b ∈ {1, 2, 3, 4, 5} and let {c, d, e} = {1, 2, 3, 4, 5} \ {a, b}. There are 10 ways to

make such a choice. The difference between the right and lefthand side contains the following terms:

1

16
x2{a,b}x

2
{a,b,c,d}x{a,b,c,e} +

1

16
x2{a,b}x{a,b,c,d}x

2
{a,b,c,e} +

1

16
x2{a,b}x

2
{a,b,c,d}x{a,b,d,e}

+
1

16
x2{a,b}x{a,b,c,d}x

2
{a,b,d,e} +

1

16
x2{a,b}x

2
{a,b,c,e}x{a,b,d,e} +

1

16
x2{a,b}x{a,b,c,e}x

2
{a,b,d,e}

− 1

32
x2{a,b}x{a,b,c,d}x{a,b,c,e}x{a,b,d,e}.

(2) Choose distinct a, b, c ∈ {1, 2, 3, 4, 5}. There are 10 ways to make such a choice. The difference

between the right and lefthand side contains the following terms:

1

4
x2{a,b}x{a,c}x

2
{1,2,3,4,5} +

1

4
x{a,b}x

2
{a,c}x

2
{1,2,3,4,5} +

1

4
x2{a,b}x{b,c}x

2
{1,2,3,4,5}

+
1

4
x{a,b}x

2
{b,c}x

2
{1,2,3,4,5} +

1

4
x2{a,c}x{b,c}x

2
{1,2,3,4,5} +

1

4
x2{a,c}x{b,c}x

2
{1,2,3,4,5}

−1

4
x{a,b}x{a,c}x{b,c}x

2
{1,2,3,4,5}

(3) Choose distinct a, b, c ∈ {1, 2, 3, 4, 5} and choose d 6= a, b, c. There are 20 ways to make such a choice.

The difference between the right and lefthand side contains the following terms:

1

4
x2{a,b}x{a,c}x{a,b,c,d}x{1,2,3,4,5} +

1

4
x{a,b}x

2
{a,c}x{a,b,c,d}x{1,2,3,4,5}

+
1

4
x2{a,b}x{b,c}x{a,b,c,d}x{1,2,3,4,5} +

1

4
x{a,b}x

2
{b,c}x{a,b,c,d}x{1,2,3,4,5}

+
1

4
x2{a,c}x{b,c}x{a,b,c,d}x{1,2,3,4,5} +

1

4
x{a,c}x

2
{b,c}x{a,b,c,d}x{1,2,3,4,5}

−1

4
x{a,b}x{a,c}x{b,c}x{a,b,c,d}x{1,2,3,4,5}

(4) Choose distinct a, b ∈ {1, 2, 3, 4, 5} and choose c 6= a, b. Let {d, e} = {1, 2, 3, 4, 5} \ {a, b, c}. There

are 30 ways to make such a choice. The difference between the right and lefthand side contains the

10 F. GARRETT AND S. KLEE

following terms:

5

8
x2{a,b}x{a,c}x{a,b,d,e}x{1,2,3,4,5} +

5

8
x{a,b}x

2
{a,c}x{a,b,d,e}x{1,2,3,4,5}

+
5

8
x2{a,b}x{b,c}x{a,b,d,e}x{1,2,3,4,5} +

5

8
x{a,b}x

2
{b,c}x{a,b,d,e}x{1,2,3,4,5}

+
5

8
x2{a,c}x{b,c}x{a,b,d,e}x{1,2,3,4,5} +

5

8
x{a,c}x

2
{b,c}x{a,b,d,e}x{1,2,3,4,5}

−1

8
x{a,b}x{a,c}x{b,c}x{a,b,d,e}x{1,2,3,4,5}

(5) Choose distinct a, b, c ∈ {1, 2, 3, 4, 5} and choose distinct S, T ⊆ {1, 2, 3, 4, 5} with |S| = |T | = 4 such

that either {a, b, c} ⊆ S or {a, b, c} ⊆ T (or both). There are 70 ways to make such a choice. The

difference between the right and lefthand side contains the following terms:

19

64
x2{a,b}x{a,c}xSxT +

19

64
x{a,b}x

2
{a,c}xSxT +

19

64
x2{a,b}x{b,c}xSxT +

19

64
x{a,b}x

2
{b,c}xSxT

+
19

64
x2{a,c}x{b,c}xSxT +

19

64
x{a,c}x

2
{b,c}xSxT −

7

64
x{a,b}x{a,c}x{b,c}xSxT

In each of these cases, one of the monomials with a positive coefficient is at least as large as the monomial

with negative coefficient. Therefore the difference between the right and lefthand sides of Equation (2) is

nonnegative when |X| = 5. �

The following corollary is immediate because one of the vertex partitions in a bipartite graph with 11 or

fewer vertices has size at most 5.

Corollary 3.5. Conjecture 1.3 holds for any connected bipartite graph with 11 or fewer vertices.

4. Weighted spanning tree enumerators for Ferrers graphs. Let G be a bipartite graph whose

vertex set is partitioned as V (G) = X ∪ Y with |X| = n. Consider the associated weighted complete

graph A(G) and, as before, let S(G) = L(A(G)) be its Laplacian matrix. Let Σ(A(G)) denote the weighted

spanning tree enumerator for A(G); i.e, Σ(A(G)) = (−1)i+j det Ŝij(G). The quantity on the lefthand side of

Conjecture 2.4 can be written as

(4) n ·

∑
S⊆X

xS

 · Σ(A(G)).

Our goal now is to gain a better understanding of this quantity. We define a new n×n matrix E′′ = E′′(G)

with the property that for all 1 ≤ i, j ≤ n,

E′′(i, j) =

∑
S⊆X
i∈S

xS if i = j,

∑
S⊆X

i/∈S,j∈S

xS
|S|

if i 6= j.

Proposition 4.1. Let G be a bipartite graph whose vertex set is partitioned as V (G) = X ∪Y with |X| = n.

UPPER BOUNDS ON THE NUMBER OF SPANNING TREES IN A BIPARTITE GRAPH 11

Then

det(E′′) = n ·

∑
S⊆X

xS

 · Σ(A(G)).

Proof:

First consider the n×n matrix E that is obtained from S(G) by replacing its first column with the n× 1

vector of all ones. If we compute the determinant of E by cofactor expansion along the first column, we see

that

(5) det(E) =

n∑
i=1

(−1)i+1 det
(
Ŝi,1(G)

)
= n · Σ(A(G)),

by the Matrix-Tree Theorem.

Let c1, c2, . . . , cn be the column vectors of E. Let E′ be the matrix with columns c′1, c
′
2, . . . , c

′
n that is

obtained from E by the column operations

c′j =

∑
S⊆X
j∈S

xS
|S|

 c1 + cj for all 2 ≤ j ≤ n,

and c′1 = c1. Thus for any 2 ≤ j ≤ n,

E′(i, j) =

∑
S⊆X
i∈S

xS if i = j,

∑
S⊆X

i/∈S,j∈S

xS
|S|

if i 6= j.

For any 2 ≤ i ≤ n, consider the ith partial row sum
∑n

j=2E
′(i, j). For a given term xS with i /∈ S, the term

xS

|S| appears in this sum |S| times if 1 /∈ S, and |S| − 1 times if 1 ∈ S. If i ∈ S, the term xS appears exactly

once. Therefore,
n∑

j=2

E′(i, j) =
∑
S⊆X

xS −
∑
S⊆X

1∈S,i/∈S

xS
|S|

.

Similarly, in the first partial row sum
∑n

j=2E
′(1, j) the only terms that appear are the terms xS

|S| with 1 /∈ S,

each of which appears |S| times. Thus
∑n

j=2E
′(1, j) =

∑
S⊆X
1/∈S

xS .

Therefore for all 2 ≤ j ≤ n, the jth column of E′ is the same as the jth column of E′′. We can obtain

E′′ from E′ by replacing the first column of E′ with the vector

c′′1 =

∑
S⊆X

xS

 c′1 −
n∑

j=2

c′j .

Since E′ was obtained from E by elementary column operations, det(E) = det(E′). Since E′′ was obtained

from E′ by multiplying its first column by
∑

S⊆X xS and then performing an elementary column operation,

12 F. GARRETT AND S. KLEE

det(E′′) =
(∑

S⊆X xS

)
det(E′). Therefore, by Equation (5),

det(E′′) = n ·

∑
S⊆X

xS

 · Σ(A(G)).

�

Corollary 4.2. If G is a Ferrers graph, then det(E′′) =
∏n

i=1

(∑
S⊆X
i∈S

xS

)
.

Proof: When G is a Ferrers graph, xS is nonzero only when S has the form {1, 2, . . . , k} for some k.

Therefore, xS = 0 if there exist integers i < j with j ∈ S and i /∈ S, meaning E′′ is upper triangular.

Therefore, det(E′′) is the product of its diagonal entries, which is the product of the degrees of the vertices

in X. �

The matrix E′′ seems quite appealing for the purposes of studying Conjecture 2.4 because the lefthand

side of the inequality in that conjecture is exactly det(E′′) and the product on the righthand side of the

inequality is the product of the diagonal entries of E′′. Unfortunately, E′′ is not positive semidefinite in

general (E′′ can have negative eigenvalues even when |X| = 3), so results such as Hadamard’s inequality

(which continues to hold for asymmetric PSD matrices) cannot be immediately applied to directly prove

Conjecture 2.4.

Acknowledgments. This research was conducted as part of the Seattle University College of Science &

Engineering Summer Research Program. We gratefully acknowledge support from the Washington NASA

Space Grant, as well as a generous donation from Judith and William Doyle.

REFERENCES

1. Richard Ehrenborg and Stephanie van Willigenburg. Enumerative properties of Ferrers graphs. Discrete Comput. Geom.,

32(4):481–492, 2004.

2. P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2), 12:313–320,

1961.

3. Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, second edition, 2013.

4. R. P. Stanley. Combinatorics and Commutative Algebra. Birkhäuser, Boston, 2. edition, 1996.

5. W. A. Stein et al. Sage Mathematics Software (Version 6.2). The Sage Development Team, 2014. http://www.sagemath.org.

A.

B. . . Code

Given a bipartite graph G, our first goal is to write code to populate the weighted Laplacian matrix of the

associated edge-weighted complete graph A(G). This requires several small functions before the main code

shown below in the function makeKnLaplacian(n). It is easier to reindex the set X so that its elements are

labeled as {0, 1, . . . , n − 1}. Furthermore, for a set S ⊆ X, the variable xS is written by concatenating x

with the elements of S. For example, if S = {1, 3, 4, 5}, the variable xS is stored as x1345 in Sage.

UPPER BOUNDS ON THE NUMBER OF SPANNING TREES IN A BIPARTITE GRAPH 13

def listToVariableDictInput(L):

############################

Input: A list, L, of subsets of [0,...,n-1]

Output: A dictionary in which

keys are variable names formatted as strings

values are variable names formatted as variables

############################

partDict = {}
s = 'x'
for i in L:

s += stringToVar(i)

partDict[s] = var(s)

s = 'x'
return partDict

def createElementInput(x,y,L,dic):

############################

Input:

L = a list of sets

x, y = elements of [0,...,n-1]

dic = a dictionary

Output: Weighted sum of variables xS over S in L

indexed by row x and column y

############################

element = []

toBeChecked = [x,y]

for i in L:

if set(toBeChecked).issubset(set(i)):

element.append(i)

if x==y:

elementSum = sumDiagonalInput(element,dic)

else:

elementSum = sumNonDiagonalInput(element,dic)

return elementSum

def sumDiagonalInput(L,dic):

############################

Input: L = a list of sets

Output:
∑

S∈L

(
xS − xS

|S|

)
############################

value = 0

for i in L:

value += (dic['x'+stringToVar(i)]*(len(i)-1)/len(i))
return value

def sumNonDiagonalInput(L,dic):

############################

Input: L = a list of sets

14 F. GARRETT AND S. KLEE

Output: −
∑

S∈L
xS
|S|

############################

value = 0

for i in L:

value += (dic['x'+stringToVar(i)]*(-1)/len(i))
return value

def stringToVar(L):

############################

Input: A subset of [0...n-1] formatted as a list, L,

whose elements are separated by commas

Output: A string that concatenates the elements of L without commas

############################

s = ''
for i in L:

s += str(i)

return s

This is the main code that is used to populate the weighted Laplacian matrix of A(G) as a function of

the variables {xS : S ⊆ X}.

def makeKnLaplacian(n):

############################

Input: An integer n

Output: Laplacian of the edge-weighted complete graph on n vertices

as a function of the variables xS.

############################

listCombos stores subsets of [0...n-1] as lists

and only includes those subsets with at least 2 elements

listCombos = list(Combinations(range(n)))

listCombos = filter(lambda x: len(x) > 1, listCombos)

i = 0 # row index

j = 0 # column index

create dictionary indexed by variables xS for each set S in listCombos

partitionDict = listToVariableDictInput(listCombos)

create columns of Laplacian matrix

LapMatCols = []

while i < n:

column = []

while j < n:

column.append(createElementInput(i,j,listCombos,partitionDict))

j += 1

LapMatCols.append(column)

j = 0

i += 1

return weighted Laplacian matrix with entires in a symbolic ring

return matrix(SR,LapMatCols)

UPPER BOUNDS ON THE NUMBER OF SPANNING TREES IN A BIPARTITE GRAPH 15

def makeDegrees(n):

############################

Input: An integer n

Output: Product of vertex degrees in X

############################

listCombos = list(Combinations(range(n)))

listCombos = filter(lambda x: len(x) > 1,listCombos)

degrees = 1

i = 0

while i < n:

deg = 0

for x in listCombos:

s = 'x'
if i in x:

s += stringToVar(x)

deg += var(s)

degrees *= deg

i += 1

return degrees

def generateEquation(n):

############################

Input: An integer n

Output: The difference between the righthand side and lefthand side

of the equation in Conjecture 2.4

############################

listCombos = list(Combinations(range(n)))

listCombos = filter(lambda x: len(x) > 1, listCombos)

ySize = 0

for x in listCombos:

s = 'x'
s += stringToVar(x)

ySize += var(s)

M = makeKnLaplacian(n)

LHS = n * ySize * det(M[[0..(n-2)],[0..(n-2)]])

RHS = makeDegrees(n)

eq = expand(RHS) - expand(LHS)

return expand(eq)

Seattle University, Department of Mathematics, 901 12th Avenue, Seattle, WA 98122

Email address: garrettf@seattleu.edu

Seattle University, Department of Mathematics, 901 12th Avenue, Seattle, WA 98122

Email address: klees@seattleu.edu

