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1 Introduction

Bertrand’s postulate states that for each positive integer, n, there exists a prime p such
that n ≤ p ≤ 2n. This statement was first proposed by Bertrand in 1845, and he verified
this conjecture for all n < 3 × 106. The first proof of Bertrand’s postulate was given by
Chebyshev in 1852 using analytic methods. In 1919, Ramanujan [7] gave a simpler proof,
and finally Erdős [1, 4] gave a completely elementary proof in 1932.

In this paper, we propose an extension of Bertrand’s postulate to the Gaussian integers.
We begin by reviewing standard notation and definitions. The Gaussian integers, denoted
Z[i], are the set of all integers of the form a + bi with a, b ∈ Z and i2 = −1. The units are
the Gaussian integers ±1, ±i, and the associates of a Gaussian integer are its unit multiples.
The norm of a Gaussian integer is N(a + bi) := a2 + b2. A Gaussian integer ρ is prime if,
whenever ρ | α · β, either ρ | α or ρ | β. Equivalently, since Z[i] is a unique factorization
domain, ρ is prime if its only divisors are ±1, ±i, ±ρ, and ±iρ. The prime Gaussian integers
are classified by the following result, which is standard (see [8]):

Theorem 1.1. A Gaussian integer ρ = a+ bi is prime if and only if either

1. N(ρ) is prime (i.e., ρ = ±(1± i) or N(ρ) ≡ 1 mod 4 is prime), or

2. b = 0 and |a| ≡ 3 mod 4 is prime or a = 0 and |b| ≡ 3 mod 4 is prime.

Colloquially, Bertrand’s postulate is often explained by saying “there is always a prime
between n and 2n.” In order to extend Bertrand’s postulate to the Gaussian integers, we
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must answer two additional questions. First, what does it mean to say that one Gaussian
integer lies between two others? Second, what does it mean to double a Gaussian integer?

Typically, the norm is used as a rough measure of whether one Gaussian integer is bigger
or smaller than another, and hence it seems reasonable to say that a Gaussian integer γ lies
between Gaussian integers α and β if N(α) < N(γ) < N(β). However, the region bounded
by N(α) and N(β) is an annulus, and it makes little intuitive sense to say that γ is between
α and β when it may lie in an entirely different region of the plane from α and β. So, we
propose an additional condition to account for the relative positions of α and β.

Definition 1.2. Let α = a + bi and β = c + di be Gaussian integers with N(α) < N(β).
We define the set of Gaussian integers between α and β, denoted B(α, β), to be the set of
all Gaussian integers x+ yi such that

1. min(a, c) ≤ x ≤ max(a, c),

2. min(b, d) ≤ y ≤ max(b, d), and

3. N(α) ≤ x2 + y2 ≤ N(β).

Geometrically, B(α, β) can be viewed as the intersection of the rectangle whose sides are
determined by the real and imaginary parts of α and β with the annulus whose inner radius
is
√
N(α) and whose outer radius is

√
N(β). This is illustrated in Figure 1.

c a

b

d

α

β

Figure 1: The region B(α, β).

Second, we must answer the question of how to double a Gaussian integer. The obvious
answer to this question is to say that 2α is the double of α. However, it is also reasonable
to say that (1 + i)α is the double of α since multiplication by 1 + i doubles the norm. We
explore both of these doubling methods in this note.
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Therefore, we propose the following extensions of Bertrand’s postulate to the Gaussian
integers. Just as the classical version of Bertrand’s postulate only considers positive inte-
gers, we only consider those Gaussian integers that lie in the first quadrant, which is the
set of Gaussian integers whose real part is strictly positive and whose imaginary part is
nonnegative.

Conjecture 1.3. For all α = a + bi ∈ Z[i] with a > 0, b ≥ 0, and α 6= 1, there exists a
Gaussian prime ρ such that ρ ∈ B(α, 2α).

Conjecture 1.4. For all α = a + bi ∈ Z[i] with a > 0 and b ≥ 0, there exists a Gaussian
prime ρ such that ρ ∈ B(α, (1 + i)α).

Note that if α = a + bi with a, b ≥ 1 and ρ = x + yi is a Gaussian prime such that a ≤
x ≤ 2a and b ≤ y ≤ 2b, then ρ ∈ B(α, 2α) since the condition that N(α) ≤ x2 + y2 ≤ N(2α)
is automatically satisfied. Geometrically, the rectangle determined by α and 2α is always
contained within the annulus bounded by the norms of α and 2α, so the norm condition is
redundant.

In the remainder of the paper, we explore these two notions of doubling, either as mul-
tiplication by 2 (in Section 2) or as as multiplication by 1 + i (in Section 3). In both
cases, we provide experimental results showing Conjectures 1.3 and 1.4 hold for small Gaus-
sian integers—in particular, we verify Conjecture 1.3 for all Gaussian integers a + bi with
1 ≤ a, b ≤ 10100. We include our code and relevant data in Appendix A.

Furthermore, we give asymptotic results showing Conjectures 1.3 and 1.4 hold for suf-
ficiently large Gaussian integers. In both cases, the asymptotic results require that we
understand the number of Gaussian primes in a circular sector. This analysis only applies to
the Gaussian integers whose real and imaginary parts are both strictly positive. We settle
Conjecture 1.3 for Gaussian integers on the real axis; however, Conjecture 1.4 seems pro-
foundly difficult for the Gaussian integers on the real axis. Instead, we verify Conjecture 1.4
for all Gaussian integers a+ 0i with a ≤ 108 experimentally.

2 Doubling as multiplication by 2

We begin by exploring Bertrand’s postulate when interpreting doubling as multiplication by
2.

2.1 Analysis for small Gaussian primes

Our first goal is to verify Conjecture 1.3 computationally for small Gaussian integers. We
are able to do this for all Gaussian integers a+bi with 1 ≤ a, b ≤ 10100. It is computationally
infeasible to check each of these Gaussian integers. Instead we make use of the fact that a
single Gaussian prime lies between α and 2α for a large number of Gaussian integers α.

Lemma 2.1. Let ρ = x+ yi be a Gaussian prime with x, y ≥ 1. Then Conjecture 1.3 holds
for all Gaussian integers α = a+ bi with dx

2
e ≤ a ≤ x and dy

2
e ≤ b ≤ y.
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Proof: Notice that ρ ∈ B(α, 2α) for all such α since a ≤ x ≤ 2a and b ≤ y ≤ 2b. The norm
condition is clearly satisfied. �

Lemma 2.2. If Conjecture 1.3 holds for α = a+ bi, then it also holds for α′ = b+ ai.

Proof: There exists a Gaussian prime ρ = x + yi ∈ B(α, 2α), and hence ρ′ = y + xi is a
Gaussian prime that belongs to B(α′, 2α′). �

In particular, Lemma 2.2 allows us to reduce Conjecture 1.3 to those Gaussian integers
a+ bi such that 0 < b ≤ a.

Lemma 2.3. Let y and N be positive integers. Assume that there exists a sequence of
Gaussian primes x1 + yi, x2 + yi, . . . , xt + yi such that

(1). x1 < x2 < · · · < xt−1 < N ≤ xt, and

(2). xj+1 ≤ 2xj for all 1 ≤ j < t.

Then Conjecture 1.3 holds for each Gaussian integer a + bi such that x1
2
≤ a ≤ N and

y
2
≤ b ≤ y.

Proof: Let α = a+ bi be a Gaussian integer satisfying x1
2
≤ a ≤ N and y

2
≤ b ≤ y.

If x1
2
≤ a ≤ x1, then x1 + yi ∈ B(α, 2α) by Lemma 2.1.

Otherwise, a > x1 and there exists an index 1 ≤ j < t such that xj < a ≤ xj+1. But
this implies that

xj+1

2
< a ≤ xj+1 because xj ≥ xj+1

2
by condition (2) above. Therefore,

xj+1 + yi ∈ B(α, 2α) by Lemma 2.1. �

In particular, if x1 ≤ y ≤ x2 in Lemma 2.3, then Conjecture 1.3 holds for each Gaussian
integer a+ bi such that y

2
≤ a ≤ N and y

2
≤ b ≤ y.

Proposition 2.4. Let α = a + bi ∈ Z[i] with 1 ≤ b ≤ 10100 and b ≤ a ≤ 10100. Then
B(α, 2α) contains a Gaussian prime.

Proof: Rather than blindly verify Conjecture 1.3 in each of these approximately 10200

2
cases,

we use Lemma 2.1 to find a relatively small set of primes with the property that one of these
primes lies in B(α, 2α) for each α under consideration.

We present the following greedy algorithm for finding such a set of primes.

Step 1: Set x = 10100 and y = 10100.

Step 2: (a) Initialize an empty list, P , of found primes.

(b) Find the smallest integer k ≥ 0 such that (x+ k) + yi is prime.

(c) Append (x+ k) + yi to P .

(d) Set x→ dx+k
2
e.

(e) Repeat until x = dx+k
2
e or x < y

2
.
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(f) Save the list P .

Step 3: Set y → dy
2
e and x→ 10100. Repeat Step 2 until y = 1.

Several comments are in order.
First of all, it is unknown whether Step 2(b) will terminate for arbitrary x and y. In fact,

if Step 2(b) were to terminate for arbitrary x+ yi, then Landau’s fourth problem would be
solved. However, for these small values of x and y, we were always successful in finding such
a prime such that k was relatively small.

In Step 2(f), the set of primes P = {x1 + yi, x2 + yi, . . . , xt + yi} is sorted according to
their real parts so that x1 < x2 < · · · < xt. These integers satisfy the conditions of Lemma
2.3 since xj ≥ dxj+1

2
e. In Step 2(e), we impose the halting condition when x < y

2
to cut down

on computational time. This will guarantee that x1 ≤ y ≤ x2. Otherwise, the condition
that x = dx+k

2
e states that the algorithm cannot proceed beyond the given x-value because

x+ yi is the first Gaussian prime encountered to the right of dx
2
e+ yi.

We implemented this algorithm in Sage [9] with N = 10100. For each y, the corresponding
value of x1 is listed online [5]. The data for small values of y is available in Table A.2. In
particular, we have x1 ≤ y for all 5 ≤ y ≤ 10100, and hence Conjecture 1.3 holds for all
Gaussian integers a+ bi with 3 =

⌈
5
2

⌉
≤ b ≤ a ≤ 10100.

When y = 3, the smallest Gaussian prime in P is 8 + 3i. Therefore, Lemma 2.3 implies
that Conjecture 1.3 holds for all Gaussian integers a+ bi with 4 ≤ a ≤ 10100 and 2 ≤ b ≤ 3.
The only Gaussian integers a + bi with 2 ≤ b ≤ a ≤ 10100 not counted here are 2 + 2i and
3 + 2i.

When y = 2, the smallest Gaussian prime in P is 3 + 2i. Therefore, Lemma 2.3 implies
that Conjecture 1.3 holds for all Gaussian integers a+ bi with 2 ≤ a ≤ 10100 and 1 ≤ b ≤ 2.
In particular, the exceptional integers 2 + 2i and 3 + 2i from the previous case are covered
here.

Therefore, the only Gaussian integer a + bi with 1 ≤ b ≤ a ≤ 10100 that is not included
in the above data is 1 + i. It is clear that Conjecture 1.3 holds for 1 + i as 1 + i is prime.
This completes the proof.

�

The following result follows immediately from Lemma 2.2

Corollary 2.5. Let α = a + bi with 1 ≤ a, b ≤ 10100. Then B(α, 2α) contains a Gaussian
prime.

2.2 Analysis when Im(α) = 0

In this section, we consider Gaussian integers α with Im(α) = 0. If α = a + 0i, B(α, 2α) =
{c+ 0i : a ≤ c ≤ 2a}.

Cullinan and Farshid [3] showed that for all x ≥ 7, the interval (x, 2x] contains a prime
congruent to 1 mod 4 and a prime congruent to 3 mod 4. In fact, one can verify by hand
that for all x ≥ 2, the interval [x, 2x] contains a prime congruent to 3 mod 4. The following
result is immediate.
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Proposition 2.6. For all a ≥ 2, there exists a Gaussian prime in B(a+ 0i, 2a+ 0i).

2.3 Asymptotic results

Since we have already established Conjecture 1.3 for Gaussian integers on the real axis
(and hence also for their associates on the imaginary axis), we now turn our attention to
Conjecture 1.3 for Gaussian integers a+ bi with a, b ≥ 1.

We make use of the following result of Kubilyus [6], which approximates the number of
Gaussian primes that lie in a given sector of a circle.

Theorem 2.7. [6], [2, Theorem 2.1]
Let D be an angular sector of the circle x2 + y2 ≤ R2 with angle θ (0 < θ < π

2
). Then the

number of Gaussian primes in D, denoted Πθ(R), is given by

Πθ(R) =
θ

π/2
· R2

log(R2)
+O

(
R2

log2(R)

)
.

Moreover, constant in the error term does not depend on θ.

We aim to establish Conjecture 1.3 for sufficiently large Gaussian integers. Our approach
is first to find a polar rectangle contained in B(α, 2α) for a Gaussian integer α in the first
octant, and second to use Theorem 2.7 to show that this polar rectangle contains a Gaussian
prime once N(α) is sufficiently large. In light of this, we write Πθ(R1, R2; η) to denote the
number of Gaussian primes, ρ, such that R2

1 < N(ρ) ≤ R2
2 and η ≤ arg(ρ) ≤ η + θ.

Theorem 2.8. Conjecture 1.3 holds for all Gaussian integers α for which N(α) is sufficiently
large and arg(α) is bounded away from all of 0, π

2
, π, 3π

2
, and 2π.

Proof: Without loss of generality, we may limit our attention to the first octant of the
complex plane. Accordingly, let α = a + bi be a Gaussian integer with tan(arg(α)) = b

a
=

m < 1. In this way, we may view α as a point in the Euclidean plane lying on the line
y = mx. Next, define θ = arctan(m) − arctan

(
3
4
m
)
, η = arctan

(
3
4
m
)
, R2

1 = 16
9
a2 + b2, and

R2
2 = 4a2 + 9

4
b2.

The angle θ is bounded between the lines through the origin of slope 3
4
m and m. The

former line passes through the points 4
3
a + bi and 2a + 3

2
bi, whose norms are R2

1 and R2
2,

respectively. The latter line passes through the points a+ bi and 2(a+ bi). Since a2 + b2 ≤
R2

1 ≤ R2
2 ≤ (2a)2 + (2b)2, the polar rectangle with radius bounded between R1 and R2 and

with argument bounded between η and η+θ is contained within B(α, 2α). This is illustrated
in Figure 2 below.

We claim that Πθ(R1, R2; η) > 0 whenever N(α) and arg(α) are sufficiently large. By
Theorem 2.7, there exists a constant c such that

θ

π/2
· R2

1

log(R2
1)
− c · R2

1

log2(R2
1)
≤ Πθ(R1) ≤

θ

π/2
· R2

1

log(R2
1)

+ c · R2
1

log2(R2
1)
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2a+ 2bi

2a+ 3
2
bi

a+ bi
4
3
a+ bi

η

θ

R1 R2

Figure 2: A polar rectangle contained in B(α, 2α).

and

θ

π/2
· R2

2

log(R2
2)
− c · R2

2

log2(R2
2)
≤ Πθ(R2) ≤

θ

π/2
· R2

2

log(R2
2)

+ c · R2
2

log2(R2
2)
.

Therefore,

Πθ(R1, R2; η) = Πθ(R2)− Πθ(R1)

≥ θ

π/2
· R2

2

log(R2
2)
− c · R2

2

log2(R2
2)
−
(

θ

π/2
· R2

1

log(R2
1)

+ c · R2
1

log2(R2
1)

)
=

θ

π/2

(
R2

2

log(R2
2)
− R2

1

log(R2
1)

)
− c

(
R2

2

log2(R2
2)

+
R2

1

log2(R2
1)

)
.

Using the fact that R2
2 = 9

4
R2

1 and applying logarithm rules, the final expression above is
equal to

θ

π/2

( 9
4
R2

1

2 logR2

− R2
1

2 logR1

)
− c

( 9
4
R2

1

4 log2R2

+
R2

1

4 log2R1

)
.

Since we may safely assume that R1 ≥
(
3
2

)29/7
(approximately 5.36), it follows that R2 =

3
2
R1 ≤ R

36/29
1 , so that the above expression is greater than or equal to

θ

π/2

( 9
4
R2

1

2 · 36
29

logR1

− R2
1

2 logR1

)
− c

( 9
4
R2

1

4 log2R1

+
R2

1

4 log2R1

)
.
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Simplification yields the following:

Πθ(R1, R2; η) ≥
[

2θ

π

(
29

32
− 1

2

)
− c

(
9

16 logR1

+
1

4 logR1

)]
R2

1

logR1

≥
[

13θ

16π
− 13c

16
· 1

logR1

]
R2

1

logR1

.

To complete the proof, we need only show that the expression in square brackets is eventually
positive. Note that this occurs exactly when θ

π
> c

logR1
, or equivalently, R θ

1 > exp(πc). This
inequality defines a wedge-shaped region in the first quadrant, which can be seen in Figure
3 below.

Figure 3: Theorem 2.8’s region of validity for c = 2.

Observing that R1 >
√
N(α) and θ > 9

50
arg(α) for α in the first octant, it follows that

Conjecture 1.3 holds for the less strict but more elegant condition N(α)arg(α) > exp
(
100πc

9

)
.

The eightfold symmetry of the Gaussian primes gives the result for all octants. �

3 Doubling as multiplication by 1 + i.

3.1 Analysis for small Gaussian primes

It is not possible to match the computational efficiency outlined in the proof of Proposition
2.4 when doubling as multiplication by 1 + i. Instead, we were forced to verify Conjecture
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1.4 individually for each Gaussian integer within a given range. The code for verifying the
following result can be found in Appendix A and is available for download online [5].

Proposition 3.1. Let α = a + bi with 1 ≤ a, b ≤ 105. Then B(α, (1 + i)α) contains a
Gaussian prime.

3.2 Analysis when Im(α) = 0

In this section, we consider Gaussian integers α with Im(α) = 0. If α = a + 0i, then
B(α, (1 + i)α) = {a + bi : 0 ≤ b ≤ a}. In general, the problem of determining whether or
not there exists a Gaussian prime on every vertical line in the complex plane (without any
condition on the size of its imaginary part relative to its real part) seems incredibly difficult.
Instead, we provide computational evidence supporting Conjecture 1.4.

Proposition 3.2. For all 1 ≤ a ≤ 108, the region B(a + 0i, (1 + i)(a + 0i)) contains a
Gaussian prime.

This result is perhaps made more interesting by the plots in Figures 5 and 6 in Appendix
A. For each a, the plot shows the first Gaussian prime a + bi with real part a (i.e., the
Gaussian prime a + bi with b ≥ 1 minimal). We note that, except for the Gaussian primes
1+i and 17449677+598i, the first Gaussian prime a+bi with real part a satisfies b < log2(a)2

for all a ≤ 108, which is considerably stronger than the bound predicted by Conjecture
1.4. For comparison, log2(17449677)2 ≈ 578.72. Figures 5 and 6 in Appendix A show
the first Gaussian prime with real part a for a ≤ 106 and a ≤ 108, along with the curve
f(x) = log2(x)2.

3.3 Asymptotic results

Once again, we will use Theorem 2.7, this time to establish Conjecture 1.4 asymptotically.

Theorem 3.3. Conjecture 1.4 holds for all Gaussian integers α for which N(α) is sufficiently
large and arg(α) is bounded away from all of 0, π

2
, π, 3π

2
, and 2π.

Proof: Without loss of generality, we may limit our attention to the first quadrant of
the complex plane.1 Let α = a + bi be a Gaussian integer in the first quadrant with
tan(arg(α)) = b

a
= m ≤ 4. Next, define θ = arctan(3

4
+m)−arctan(1

2
+m), η = arctan(1

2
+m),

R2
1 = a2 + b2, and R2

2 = 5
4
R2

1. Again, we consider the polar rectangle with radius bounded
between R1 and R2 and with argument bounded between η and η+ θ, as shown in Figure 4.

We claim that the given polar rectangle is contained within the region B(α, (1 + i)α).
First note that the angle θ is constructed so that it is bounded between the lines through
the origin of slope 1

2
+ m and 3

4
+ m, which pass through the line Re(z) = a at the points

1Unlike Theorem 2.8, we may not restrict to the first octant, since B(a+bi, (1+i)(a+bi)) is not symmetric
to B(b + ai, (1 + i)(b + ai)) about the line y = x.
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(1 + i)(a+ bi)

a+ (a
2

+ b)i

a+ bi

a+ (3
4
a+ b)i

η

θ

R1 R2

a+ (a+ b)i

Figure 4: A polar rectangle contained in B(α, (1 + i)α).

a + (a
2

+ b)i and a + (3
4
a + b)i respectively. Since m ≤ 4, it follows that b ≤ 4a. Thus the

norm of a+ (a
2

+ b)i is bounded below by R2
2:

N
(
a+

(a
2

+ b
)
i
)

=
5

4
a2 + ab+ b2 ≥ 5

4
a2 +

1

4
b2 + b2 =

5

4

(
a2 + b2

)
= R2

2.

It follows that the given polar rectangle is contained within the region between α and (1+i)α.
As before, Theorem 2.7 ensures that

Πθ(R1, R2; η) ≥ θ

π/2

(
R2

2

log(R2
2)
− R2

1

log(R2
1)

)
− c

(
R2

2

log2(R2
2)

+
R2

1

log2(R2
1)

)
.

This time, we use the fact that R2
2 = 5

4
R2

1 to get

Πθ(R1, R2; η) ≥ θ

π/2

( 5
4
R2

1

2 logR2

− R2
1

2 logR1

)
− c

( 5
4
R2

1

4 log2R2

+
R2

1

4 log2R1

)
.

Since we may safely assume that R1 ≥
(√

5
2

)73/7
(approximately 3.20), it follows that R2 =

√
5
2
R1 ≤ R

80/73
1 , so that the above expression is greater than or equal to

θ

π/2

( 5
4
R2

1

2 · 80
73

logR1

− R2
1

2 logR1

)
− c

( 5
4
R2

1

4 log2R1

+
R2

1

4 log2R1

)
.
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Simplification yields the following:

Πθ(R1, R2; η) ≥
[

2θ

π

(
73

128
− 1

2

)
− c

(
5

16 logR1

+
1

4 logR1

)]
R2

1

logR1

≥
[
θ

π
· 9

64
− 9c

16
· 1

logR1

]
R2

1

logR1

.

The expression in square brackets is positive exactly when R θ
1 ≥ exp (4πc). So, the result

holds for α in the first quadrant, subject to the conditions that R1 is sufficiently large, θ is
bounded away from zero, and arg(α) = arctan(m) ≤ arctan(4) ≈ 1.3258. By symmetry, this
may be extended to all four quadrants. As before, the conditions may be recast in terms of
N(α) and arg(α) only: specifically, N(α)arg(α) > exp(100πc) and arg(α) ≤ arctan(4). �
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A Supplemental Code

The following code was used to verify Conjectures 1.3 and 1.4 for small values of α. The
source files are also available online [5].

The first piece of code checks whether a given Gaussian integer is prime. We enter a
Gaussian integer α = a+ bi as an ordered pair (a, b) for simplicity.

de f PrimeCheck (a , b ) :
i f not ( a==0 or b==0):

r e turn i s p r i m e ( aˆ2+bˆ2)
i f a==0 and abs (b)%4==3:

re turn i s p r i m e (b)
i f b==0 and abs ( a)%4==3:

re turn i s p r i m e ( a )

A.1 Doubling as multiplication by 1 + i

The first piece of code checks for a prime between a given α = a + bi and (1 + i)α =
(a− b) + (a+ b)i. The code assumes that a, b ≥ 0 so that a− b ≤ a and a+ b ≥ b.

de f PrimeBox (a , b ) :
f o r x in [ a−b . . a ] :

f o r y in [ b . . a+b ] :
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i f aˆ2+bˆ2 <= xˆ2+yˆ2 <= 2∗( aˆ2+b ˆ 2 ) :
i f PrimeCheck (x , y ) : r e turn (x , y )

re turn −1

This code simply tests each Gaussian integer x+ yi with a− b ≤ x ≤ a and b ≤ y ≤ a+ b
(i.e., those Gaussian integers within the rectangular box determined by α and (1 + i)α) until
it finds a Gaussian prime. To cut down on computational time, we first test that the norm
condition N(α) ≤ x2 + y2 ≤ N((1 + i)α) is satisfied, then we check to see if x + yi is a
Gaussian prime. If no Gaussian prime is found, the code returns −1.

The next piece of code inputs a value of N and verifies Conjecture 1.4 for all Gaussian
integers a+ bi with 1 ≤ a, b ≤ N .

de f ConjVer i fy1 (N) :
f o r a in [ 1 . .N ] :

f o r b in [ 1 . .N ] :
i f PrimeBox (a , b) == −1:

p r i n t ( a , b )
re turn f a l s e

re turn true

We implemented this code with N = 105. The output verified Conjecture 1.4 for these
values.

Finally, we wrote code to verify Conjecture 1.4 for all Gaussian integers a + 0i with
1 ≤ a ≤ N .

de f PrimeLine (N) :
F i r s tPr imeL i s t = [ ]
f o r a in [ 1 . .N ] :

b = 1
primeFound = f a l s e
whi l e not ( primeFound ) and b<=a :

i f i s p r i m e ( aˆ2+b ˆ 2 ) :
primeFound = true
F i r s tPr imeL i s t . append ( ( a , b ) )

e l s e :
b+=1

i f not ( primeFound ) :
p r i n t a

re turn F i r s tPr imeL i s t

For each value 1 ≤ a ≤ N , the list FirstPrimeList stores the coordinates of the Gaussian
prime a+ bi with minimal b. If such a Gaussian prime with b ≤ a is not found, the value of a
is printed. For N = 108, no such counterexamples were found. The data from FirstPrimeList
for N = 106 and N = 108 are shown in Figures 5 and 6. In Figure 6, we see the exceptional
prime at 17449677 + 598i.
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Figure 5: The first Gaussian prime with real part a for a ≤ 106.

A.2 Doubling as multiplication by 2

Here is the code that implements the algorithm used in Proposition 2.4.

de f PrimeBox (N) :
y = N
whi le y>1:

x = N
whi le x >= y /2 :

k=0
primeFound=f a l s e
whi l e not ( primeFound ) :

i f i s p r i m e ( ( x+k)ˆ2+y ˆ 2 ) :
primeFound=true

k+=1
i f x == c e i l ( ( x+k ) / 2 ) :

x=0
e l s e :

13



Figure 6: The first Gaussian prime with real part a for a ≤ 108.

x = c e i l ( ( x+k )/2)
p r i n t (x , y )
y = c e i l ( y/2)

For each value of x and y, the code begins by finding the first k such that (x+ k) + yi is
prime. Since we avoid the coordinate axes, we need only check that the norm is prime. If
x = dx+k

2
e, the algorithm halts as k = x. We set x = 0 here because it will guarantee that

x < y
2

at the next pass through the inner while loop. In the notation of Proposition 2.4, the
command to print (x, y) shows the value of the prime x1 + yi for each given y value. It is
implicit from the code that the primes x1 + yi, x2 + yi, . . . , xt + yi satisfying the conditions
of Lemma 2.3 exist. The code is initialized at y = N and proceeds as long as y > 1.

The output of this code for all values of y with N = 10100 are available online at [5]. The
values for N = 10100 and y ≤ 1010 are shown in Table A.2.
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y x1 + yi y
2
< x1 < y?

613636684 306818419 + 613636684i yes
306818342 153409213 + 306818342i yes
153409171 76704660 + 153409171i yes
76704586 38352319 + 76704586i yes
38352293 19176180 + 38352293i yes
19176147 9588140 + 19176147i yes
9588074 4794121 + 9588074i yes
4794037 2397050 + 4794037i yes
2397019 1198534 + 2397019i yes
1198510 599283 + 1198510i yes
599255 299664 + 599255i yes
299628 149873 + 299628i yes
149814 74969 + 149814i yes
74907 37540 + 74907i yes
37454 18759 + 37454i yes
18727 9380 + 18727i yes
9364 4709 + 9364i yes
4682 2365 + 4682i yes
2341 1196 + 2341i yes
1171 610 + 1171i yes
586 309 + 586i yes
293 168 + 293i yes
147 118 + 147i yes
74 49 + 74i yes
37 28 + 37i yes
19 14 + 19i yes
10 7 + 10i yes
5 4 + 5i yes
3 8 + 3i no
2 3 + 2i yes

Table 1: Primes x1 + yi for N = 10100 and y ≤ 1010 output by the code PrimeBox
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