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Abstract

In this paper we consider a family of simple graphs known as PS ear-decomposable

graphs. These graphs are one-dimensional specializations of the more general class

of PS ear-decomposable simplicial complexes, which were introduced by Chari as a

means of understanding matroid simplicial complexes. In this paper we outline a

shifting algorithm for PS ear-decomposable graphs that allows us to explicitly show

that the h-vector of a PS ear-decomposable graph is a pure O-sequence.

1 Introduction

This paper concerns the combinatorial structure of a certain family of simple graphs known

as PS ear-decomposable graphs. PS ear-decomposable graphs and more generally, PS ear-

decomposable simplicial complexes, were introduced by Chari [1] and provide a unified frame-

work for proving a number of combinatorial results about the combinatorial structure of

matroid simplicial complexes.
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In the late 1970’s, Stanley [3] conjectured that the h-vector of a matroid simplicial

complex is a pure O-sequence. Since Chari [1] was able to use the structure of PS ear-

decomposable simplicial complexes to prove a number of results on h-vectors of matroid com-

plexes, it is natural to conjecture [1, Conjecture 3] that the h-vector of a PS ear-decomposable

simplicial complex is a pure O-sequence.

In this paper, we focus our attention on the family of PS ear-decomposable graphs,

which contains the family of all rank-two matroids. For any PS ear-decomposable graph Γ,

we define a canonical PS ear-decomposable graph S(Γ) with the same number of vertices

and edges as Γ, called a shifted PS ear-decomposable graph. Having defined this shifted

PS ear-decomposable graph, it is easy to find a corresponding pure multicomplex whose

F -vector is the h-vector of S(Γ). This approach of defining a shifting algorithm as a means

of preserving combinatorial data while simplifying the algebraic or geometric structure of

a simplicial complex is not new, and we refer to the work of Kalai [2] and the references

therein for further information. It is our hope that the shifting approach presented in this

paper could be generalized to higher-dimensional PS ear-decomposable simplicial complexes

as an alternative approach to solving Stanley’s conjecture.

The remainder of the paper is structured as follows. In Section 2, we provide the necessary

background on PS ear-decomposable graphs and pure multicomplexes. In Section 3 we define

our shifting algorithm on PS ear-decomposable graphs and use this construction to prove

that the h-vector of a PS ear-decomposable graph is a pure O-sequence.

2 Background and definitions

We will be interested in studying two families of combinatorial objects in this paper. The

first is the family of PS ear-decomposable graphs, and the second is the family of pure

multicomplexes.

2.1 Graphs and PS ear-decompositions

In this paper we only consider finite, simple graphs, which we typically denote by Γ. The

most natural combinatorial data that can be counted for a graph Γ are its number of vertices

and edges, which we denote by f0(Γ) and f1(Γ) respectively. Here the subscripts indicate

that a vertex is zero-dimensional and an edge is one-dimensional when we draw a graph.

We are interested in studying an integer linear transformation of these numbers called the
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h-numbers of Γ, which are defined by

h0(Γ) = 1,

h1(Γ) = f0(Γ)− 2, and

h2(Γ) = f1(Γ)− f0(Γ) + 1.

Notice that f1(Γ) = h0(Γ) + h1(Γ) + h2(Γ) and f0(Γ) = h1(Γ) + 2 so that knowing the

h-numbers of Γ is equivalent to knowing the number of vertices and edges in Γ. We

encode the h-numbers of Γ in a vector called the h-vector, which is defined as h(Γ) =

(h0(Γ), h1(Γ), h2(Γ)).

Following Chari [1], we will study a certain family of simple graphs known as PS ear-

decomposable graphs, which are defined inductively as follows.

A PS cycle is a graph that is either a 3-cycle or a 4-cycle. A PS ear is a graph that is

either a path of length two or a path of length one (a single edge). We call these PS ears of

Type 1 and PS ears of Type 2 respectively. The boundary of a PS ear is defined as the set

of vertices that are only incident to a single edge. It may seem counterintuitive to define an

ear of Type 1 as a path of length two and an ear of Type 2 as a path of length one, but it

will be more natural to consider ears of Type 1 first in our constructions later in the paper.

Table 2.1 illustrates all possible PS cycles and PS ears. The boundary vertices of the PS

ears are colored white, while all other vertices are colored black.

PS cycle h-vector PS ear
h-vector

contribution

Type 1:

(1, 1, 1) (0, 1, 1)

Type 2:

(1, 2, 1) (0, 0, 1)

Table 1: PS cycles and ears

Definition 2.1 [1, Section 3.3] A graph Γ is PS ear-decomposable if it can be decomposed

as a union of the form Γ = Σ0 ∪ Σ1 ∪ · · · ∪ Σm, so that
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1. Σ0 is a PS cycle,

2. Σj is a PS ear for all 0 < j ≤ m, and

3. the intersection Σj ∩
⋃

i<j Σi consists precisely of the boundary vertices of Σj for all

0 < j ≤ m.

One advantage to studying PS ear-decomposable graphs is that their h-vectors can also

be computed inductively in terms of the ears of the decomposition. Specifically, adding an

ear of Type 1 adds one vertex and two new edges to the graph, so it contributes (0, 1, 1)

to the h-vector. Similarly, adding an ear of Type 2 adds one edge and zero vertices to the

graph, so it contributes (0, 0, 1) to the h-vector.

Example 2.2 Consider the following graph Γ.

v1

v2

v3

v4

v5

v6

We exhibit the following PS ear-decomposition of Γ.

v1

v2

v3

∪

v2

v3

v4 ∪

v4

v2 v5

∪
v4

v6v3

∪

v5

v6

∪ v1 v4

Since Γ has 6 vertices and 11 edges, we can directly compute h(Γ) = (1, 4, 6). We can

also compute h(Γ) in terms of the given PS ear-decomposition as

h(Γ) = (1, 1, 1) + (0, 1, 1) + (0, 1, 1) + (0, 1, 1) + (0, 0, 1) + (0, 0, 1) = (1, 4, 6).

Remark 2.3 Not all graphs are PS ear-decomposable (e.g. a tree), and some graphs may

admit several combinatorially distinct PS ear-decompositions.
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2.2 Multicomplexes

A collection of monomials M in the variables {x0, x1, . . . , xm} is called a multicomplex if,

whenever µ ∈ M and ν divides µ, then ν ∈ M as well. We say that M is a multicomplex

of rank d if d is the maximal degree of any monomial in M. A multicomplex M is pure of

rank d if each monomial in M divides into some monomial of degree d in M.

For a given multicomplexM of rank d, we gather combinatorial data onM in the form

of the F -vector, written F (M) = (F0(M), F1(M), . . . , Fd(M)), where Fj(M) counts the

number of monomials of degree j in M. An integer vector F = (F0, F1, . . . , Fd) is a (pure)

O-sequence if there is a (pure) multicomplex M such that F = F (M).

Example 2.4 The vector F = (1, 3, 1) is an O-sequence, but not a pure O-sequence. The

multicomplex M = {1, x0, x1, x2, x0x1} has F -vector F (M) = (1, 3, 1); but F is not a pure

O-sequence since a pure multicomplex with one monomial of degree two supports at most two

monomials of degree one.

Example 2.5 The vector (1, 4, 6) is a pure O-sequence. The following table exhibits a pure

multicomplex whose F -vector is (1, 4, 6).

degree monomials

2 x20 x21 x22 x23 x0x1 x0x2

1 x0 x1 x2 x3

0 1

3 h-vectors of PS ear-decomposable graphs

Stanley [3] conjectured that the h-vector of any matroid simplicial complex is a pure O-

sequence. We will not define matroid simplicial complexes or their h-vectors here, but we refer

to Stanley’s book [4] for further details. Chari [1] proved that any matroid simplicial complex

is PS ear-decomposable, a definition that specializes to the given Definition 2.1 for graphs.

The family of graphs that are matroid simplicial complexes are somewhat uninteresting as

they correspond to the family of complete multipartite graphs, while the family of PS ear-

decomposable graphs is larger, as is exhibited in Example 2.2. Our main contribution in

this paper is to show that Stanley’s conjecture continues to hold for PS ear-decomposable

graphs.

Theorem 3.1 Let Γ be a PS ear-decomposable graph on n + 3 vertices. Then there is a

pure multicomplex M such that h(Γ) = F (M). Moreover, there is a canonical PS ear-

decomposable graph S(Γ) such that
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1. h(Γ) = h(S(Γ)),

2. the vertices of S(Γ) are labeled as {u, v, x0, x1, . . . , xn}, and

3. the multicomplexM arises naturally from the PS ear-decomposition of S(Γ) as a pure

multicomplex on {x0, x1, . . . , xn}.

Proof: We will prove Theorem 3.1 in two main steps. The first step is motivated by

the observation that the h-vector of a PS ear-decomposable graph Γ depends only on the

types of ears that are used in the PS ear-decomposition of Γ and is independent of the how

these ears are attached. We begin by defining the graph S(Γ), which we call a shifted PS

ear-decomposable graph.

Let Γ be a PS ear-decomposable graph on n + 3 vertices with PS ear-decomposition

Γ = Σ0 ∪ Σ1 ∪ · · · ∪ Σm. For any 0 < j < m, let Γj := Σ0 ∪ Σ1 ∪ · · · ∪ Σj. We define a new

PS ear-decomposable graph S(Γ) satisfying conditions 1 and 2 of Theorem 3.1 by induction

on the number of ears in the PS ear-decomposition of Γ.

If Σ0 is a 3-cycle, we define S(Γ)0 to be a 3-cycle whose vertices are labeled u, v, and

x0. On the other hand, if Σ0 is a 4-cycle, we define S(Γ)0 to be 4-cycle whose vertices are

cyclically labeled u, v, x0, and x1 as shown below.

x1

x0

u

v

For 0 < j ≤ m, suppose we have inductively constructed a PS ear-decomposable graph

S(Γ)j−1 that satisfies conditions 1 and 2 of Theorem 3.1. Suppose the vertices of S(Γ)j−1 are

labeled as {u, v, x0, x1, . . . , xi}. If Σj is a PS ear of Type 1, we obtain S(Γ)j from S(Γ)j−1

by adding a new vertex labeled xi+1 that is adjacent to vertices u and v. Otherwise, if Σj is

a PS ear of Type 2, observe that there is a missing edge in S(Γ)j−1 because (1) S(Γ)j−1 has

the same number of vertices and edges as Γj−1 and (2) Γj is obtained from Γj−1 by adding

a single edge. To form S(Γ)j, we add the lexicographically smallest missing edge to S(Γ)j−1

according to the alphabet order u < v < x0 < x1 < · · · < xn. Recall that an edge {a, b}
with a < b precedes an edge {c, d} with c < d lexicographically if either a < c, or a = c and

b < d. By our construction it is clear that h(Γj) = h(S(Γ)j).

In order to complete the proof of Theorem 3.1, we need to show that h(S(Γ)) is a pure

O-sequence. Again, this will follow by induction on the number of ears in the PS ear-

decomposition of Γ. For each 0 ≤ j ≤ m, we will construct a pure multicomplex Mj such

that F (Mj) = h(S(Γ)j).
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We begin with the PS cycle Σ0. If Σ0 is a 3-cycle, then h(Σ0) = (1, 1, 1), which is the F -

vector of the pure multicomplexM0 = {1, x0, x20}. On the other hand, if Σ0 is a 4-cycle, then

h(Σ0) = (1, 2, 1), which is the F -vector of the pure multicomplex M0 = {1, x0, x1, x0x1}.
Inductively, for 0 < j ≤ m, suppose we have constructed a pure multicomplex Mj−1 on

variables {x0, . . . , xi} such that F (Mj−1) = h(S(Γ)j−1). We define a pure multicomplexMj

such that F (Mj) = h(S(Γ)j) as follows:

1. If Σj is a PS ear of Type 1, define Mj := Mj−1 ∪ {xi+1, x
2
i+1}. Clearly F (Mj) =

F (Mj−1) + (0, 1, 1), and hence h(S(Γ)j) = F (Mj). Moreover, it is clear that Mj is

a pure multicomplex since Mj−1 was a pure multicomplex, and we have added a new

monomial of degree one and its square.

2. If Σj is a PS ear of Type 2, define Mj :=Mj−1 ∪ X , where we define X according to

the following rule.

(a) If the missing edge added to S(Γ)j−1 has the form {xk, x`}, then X := {xkx`}.
In this case, Mj is a multicomplex because the monomials of degree one that

divide xkx`, which are xk and x`, belong to Mj−1 by construction; and Mj is

pure because we have simply added another monomial of maximal degree.

(b) If the missing edge added to S(Γ)j−1 is {u, x0} then X := {x20}; if the missing

edge is {v, x1}, then X := {x21}. This only arises in the case that Σ0 is a 4-cycle.

The monomials x20 and x21 do not belong toM0 in this case; but their divisors, x0

and x1 respectively, do. Thus Mj is a multicomplex, and it is pure because we

have only added a monomial of maximal degree to Mj−1.

In either case, it is again clear that F (Mj) = F (Mj−1) + (0, 0, 1) so that h(S(Γ)j) =

F (Mj).

This construction of the resulting pure multicomplex M is well-defined because we do not

allow multiple edges in our graphs. In the case that Σ0 is a 3-cycle, a monomial x2k is

introduced when the corresponding vertex labeled xk is introduced, and this only happens

when an ear of Type 1 is attached. Otherwise, all other monomials that are introduced have

the form xkx` with k 6= ` and correspond to an edge {xk, x`} being introduced to the graph.

The same argument applies when Σ0 is a 4-cycle except that x20 and x21 are introduced to

the multicomplex when the edges {v, x0} and {u, x1} are introduced. �

Here, we say that the graph S(Γ) is shifted for the following reason. At each step in

the PS ear-decomposition, an ear is attached in such a way that its boundary vertices are

the lexicographically smallest pair of vertices that support the required type of ear when we

order the vertices u < v < x0 < · · · < xn.
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Example 3.2 Let Γ be the PS ear-decomposable graph presented in Example 2.2. The shifted

PS ear-decomposable graph S(Γ) is shown in Figure 3.2. We exhibit the PS ear-decomposition

outlined in Theorem 3.1, as well as the corresponding pure multicomplex encoded by S(Γ) in

Figure 3.2.

x0

u

v

x1 x2 x3

Figure 1: The shifted graph S(Γ)

Ears x0

v

u

∪

v

u

x1 ∪

v

x2

u

∪

v

x3

u

∪

x0

x1

∪

x0

x2

Monomials {1, x0, x20} ∪ {x1, x21} ∪ {x2, x22} ∪ {x3, x23} ∪ {x0x1} ∪ {x0x2}

Figure 2: Decomposing the shifted graph S(Γ)
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