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Abstract. A graph on n vertices is said to admit a prime labeling if we can label its vertices

with the first n natural numbers such that any two adjacent vertices have relatively prime labels.

Here we extend the idea of prime labeling to the Gaussian integers, which are the complex numbers

whose real and imaginary parts are both integers. We begin by defining an order on the Gaussian

integers that lie in the first quadrant. Using this ordering, we show that several families of trees

admit a prime labeling with the Gaussian integers.

1. Introduction

A graph on n vertices admits a prime labeling if its vertices can be labeled with the first n

natural numbers in such a way that any two adjacent vertices have relatively prime labels. Many

families of graphs are known to admit prime labelings – such as paths, stars, caterpillars, complete

binary trees, spiders, palm trees, fans, flowers, and many more [1], [2]. Entringer conjectured that

any tree admits a prime labeling, however this conjecture has not been proven for all trees. In this

paper we extend the study of prime labelings to the Gaussian integers.

In order to extend the notion of a prime labeling to Gaussian integers, we must first define

what we mean by “the first n Gaussian integers.” In Section 2, we define a spiral ordering on

the Gaussian integers that allows us to linearly order the Gaussian integers. This spiral ordering

preserves many familiar properties of the natural ordering on N. For example, the spiral ordering

alternates parity, and consecutive odd integers in the spiral ordering are relatively prime. We

discuss further properties of the spiral ordering in Section 2. In Section 3, we apply the properties

of the spiral ordering to prove that several families of trees admit a prime labeling with the Gaussian

integers under the spiral ordering.

2. Background and Definitions

2.1. Background on Gaussian Integers. We begin with some relevant background on Gaussian

integers to provide a foundation for our work.

The Gaussian integers, denoted Z[i], are the complex numbers of the form a+bi, where a, b ∈ Z
and i2 = −1. A unit in the Gaussian integers is one of ±1,±i. An associate of a Gaussian integer

α is u ·α where u is a Gaussian unit. The norm of a Gaussian integer a+ bi, denoted by N(a+ bi),
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is given by a2 + b2. A Gaussian integer is even if it is divisible by 1 + i and odd otherwise. This

is because Gaussian integers with even norms are divisible by 1 + i.

Definition 2.1. A Gaussian integer, π, is prime if its only divisors are ±1, ±i, ±π, or ±πi.

Besides this definition of Gaussian primes, we have the following characterization theorem for

Gaussian primes. Further information on the Gaussian integers can be found in Rosen’s Elementary

Number Theory [3].

Theorem 2.2. A Gaussian integer α ∈ Z[i] is prime if and only if either

• α = ±1± i,

• N(α) is a prime integer congruent to 1 mod 4, or

• α = p+ 0i or α = 0 + pi where p is a prime in Z and |p| ≡ 3 mod 4.

Definition 2.3. Let α be a Gaussian integer and let β be a Gaussian integer. We say α and β are

relatively prime or coprime if their only common divisors are the units in Z[i].

2.2. Background on Graphs. We also need some definitions relating to graphs before we can

dive into Gaussian prime labeling.

Definition 2.4. A graph G = (V,E) consists of a finite, nonempty set V of vertices and a set

E of unordered pairs of distinct vertices called edges. If {u, v} ∈ E, we say u and v are connected

by an edge and write uv ∈ E for brevity.

A graph is commonly represented as a diagram representing a collection of dots (vertices) con-

nected by line segments (edges).

Definition 2.5. The degree of a vertex is the number of edges incident to that vertex.

Definition 2.6. A tree is a connected graph that contains no cycles.

Definition 2.7. An internal node of a tree is any vertex of degree greater than 1. A leaf or

endvertex of a tree is a vertex of degree 1.

For more information on graph theory, we refer to Trudeau’s Introduction to Graph Theory [4].

2.3. Prime Labeling with Gaussian Integers. Our goal is to extend the study of the prime

labeling of trees to the Gaussian integers. Because the Gaussian integers are not totally ordered,

we must first give an appropriate definition of “the first n Gaussian integers.” We propose the

following ordering:

Definition 2.8. The spiral ordering of the Gaussian integers is a recursively defined ordering

of the Gaussian integers. We denote the nth Gaussian integer in the spiral ordering by γn. The
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ordering is defined beginning with γ1 = 1 and continuing as:

γn+1 =



γn + i, if Re(γn) ≡ 1 mod 2, Re(γn) > Im(γn) + 1

γn − 1, if Im(γn) ≡ 0 mod 2, Re(γn) ≤ Im(γn) + 1, Re(γn) > 1

γn + 1, if Im(γn) ≡ 1 mod 2, Re(γn) < Im(γn) + 1

γn + i, if Im(γn) ≡ 0 mod 2, Re(γn) = 1

γn − i, if Re(γn) ≡ 0 mod 2, Re(γn) ≥ Im(γn) + 1, Im(γn) > 0

γn + 1, if Re(γn) ≡ 0 mod 2, Im(γn) = 0

This is illustrated below.
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Figure 1. Spiral Ordering of Gaussian Integers

Under this ordering, the first 10 Gaussian integers are

1, 1 + i, 2 + i, 2, 3, 3 + i, 3 + 2i, 2 + 2i, 1 + 2i, 1 + 3i, . . . ,

and we write [γn] to denote the set of the first n Gaussian integers in the spiral ordering.

We exclude the imaginary axis to ensure that the spiral ordering excludes associates. Consecutive

Gaussian integers in this ordering are separated by a unit and therefore alternate parity, as in the

usual ordering of N. However, several properties of the ordinary integers do not hold. In the set of

the first N(1 + 2i) · k numbers, (k ∈ N), it is not guaranteed that there are exactly k multiples of

1 + 2i (or any other residue class mod 1 + 2i). Furthermore, odd integers with indices separated by

a power of two are not guaranteed to be relatively prime to each other.

This definition of the spiral ordering for the Gaussian integers leads to the following definition

of prime labeling of trees with Gaussian integers.
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Definition 2.9. A Gaussian prime labeling of a graph G on n vertices is a labeling of the

vertices of G with the first n Gaussian integers in the spiral ordering such that if two vertices are

adjacent, their labels are relatively prime. When it is necessary, we view the labeling as a bijection

` : V (G)→ [γn].

2.4. Properties of the Spiral Ordering. We define several pieces of the Gaussian spiral ordering.

Corners of the spiral ordering occur when the spiral turns from north to east or east to north,

from south to east or east to south, or from north to west or west to north. Branches of the spiral

occur when the spiral travels along a straight path going north, south, east, or west. Steps along

the real axis and the Re(z) = 1 line are not counted as branches.

Our first goal is to determine the index of an arbitrary Gaussian integer, a + bi, in the spiral

order based on which type of branch or corner it lies on. We use I(a + bi) to denote the index of

a+ bi in the spiral ordering. First note that there are three types of corners:

• real corners at Gaussian integers on the real axis,

• Re(z) = 1 corners at Gaussian integers on the Re(z) = 1 line, and

• interior corners at Gaussian integers on the line Re(z)− Im(z) = 1.

Gaussian integers at real corners are even when Re(z) is even and is odd otherwise. Gaussian

integers at Re(z) = 1 corners are even when Im(z) is odd and are even otherwise.

Similarly the branches come in four types:

• up-oriented branches, which contain Gaussian integers between odd corners on the real axis

and interior corners,

• down-oriented branches, which contain Gaussian integers between interior corners and even

corners on the real axis,

• right-oriented branches, which contain Gaussian integers between even corners on the Re(z) =

1 line and interior corners, and

• left-oriented branches, which contain Gaussian integers between interior corners and odd

corners on the Re(z) = 1 line.

Lemma 2.10. Corners in the spiral ordering lie on either the real axis, the Re(z) = 1 line, or the

line Im(z) = Re(z)− 1. Their indices are found through the following equations:

I(a+ bi) =



a2, if b = 0, a ≡ 0 mod 2 — Even corners on the real axis

(a− 1)2 + 1, if b = 0, a ≡ 1 mod 2 — Odd corners on the real axis

(b+ 1)2, if a = 1, b ≡ 0 mod 2 — Odd corners on the Re(z) = 1 line

b2 + 1, if a = 1, b ≡ 1 mod 2 — Even corners on the Re(z) = 1 line

(a− 1)2 − a, if b = a− 1 — Interior corners

Proof. Observe that Gaussian integers of the form a + 0i, with a even, or 1 + bi, with b even, are

the corner nodes in squares composed of a2 or (b+ 1)2 nodes respectively. The spiral-ordering path
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will pass through each of these nodes once and will end on an even corner on the real axis if the

number of nodes is even, and an odd corner on the Re(z) = 1 line if the number of nodes is odd.

Therefore, the index of an even corner on the real or an odd corner on the Re(z) = 1 line will be

the number of nodes in that square.

Odd corners on the real axis and even corners on the Re(z) = 1 line will always have the index

following the corresponding even corners of the real axis and odd corners on the Re(z) = 1 line.

The interior corners are of the form (b + 1) + bi. If b is even, then the corner is b nodes before

an odd corner on the Re(z) = 1 line. If b is odd, the corner is b nodes before an even corner on the

Re(z) = 1 line. In either case, since a = b+ 1, the index of the corner will be a2 − b. �

Theorem 2.11. Let a + bi be a Gaussian integer with a > 0 and b ≥ 0. Then its index in the

spiral ordering, I(a+ bi), is given by the following formula:

I(a+ bi) =



(a− 1)2 + 1 + b, if a ≡ 1 mod 2, a ≥ (b+ 1) — Up-oriented branches

(b+ 1)2 − a+ 1, if b ≡ 0 mod 2, a ≤ (b+ 1) — Left-oriented branches

b2 + a, if b ≡ 1 mod 2, a ≤ (b+ 1) — Right-oriented branches

a2 − b, if a ≡ 0 mod 2, a ≥ (b+ 1) — Down-oriented branches

Proof. Each branch references the corners of the spiral ordering. If a + bi lies on an up-oriented

branch, then a is odd. Consider the odd corner on the real axis at a + 0i. By Lemma 2.10, the

index of this corner is (a− 1)2 + 1. Therefore the index of a+ bi is (a− 1)2 + 1 + b.

If a+ bi lies on a left-oriented branch, then b is even. Consider the odd corner on the Re(z) = 1

line at 1 + bi. By Lemma 2.10, the index of this corner is (b+ 1)2. Therefore the index of a+ bi is

(b+ 1)2 − (a− 1) = (b+ 1)2 − a+ 1.

If a+ bi lies on a right-oriented branch, then b is odd. Consider the even corner on the Re(z) = 1

line at 1 + bi. By Lemma 2.10, the index of this corner is b2 + 1. Therefore the index of a + bi is

b2 + 1 + (a− 1) = b2 + a.

If a+ bi lies on a down-oriented branch, then a is even. Consider the even corner on the real axis

at a+ 0i. By Lemma 2.10, the index of this corner is a2. Therefore the index of a+ bi is a2− b. �

Now that we have a formula for the index of a Gaussian integer in the spiral ordering, we prove

several lemmas about Gaussian integers that will be useful in proving that various families of trees

have Gaussian prime labelings.

Lemma 2.12. Let α be a Gaussian integer and u be a unit. Then α and α+u are relatively prime.

Proof. Suppose that there exists a Gaussian integer λ such that λ|α and λ|(α + u). This means

that λ must also divide u = (α+u)−α. But the only Gaussian integers that divide u are the units,

so λ must be a unit. Thus α and α+ u are relatively prime. �

The following corollary is immediate because consecutive Gaussian integers in the spiral ordering

have a difference of one unit.
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Corollary 2.13. Consecutive Gaussian integers in the spiral ordering are relatively prime.

Lemma 2.14. Let α be an odd Gaussian integer, let c be a positive integer, and let u be a unit.

Then α and α+ u · (1 + i)c are relatively prime.

Proof. Suppose that α and α + u · (1 + i)c share a common divisor γ. It follows that γ divides

u · (1 + i)c = (α+ u · (1 + i)c)− α. However, the only divisors of u · (1 + i)c in Z[i] are (1 + i) or its

associates and the units in Z[i]. Since α is odd, it is not divisible (1 + i) or its associates because

those numbers are all even. Therefore, γ must be a unit. Hence α and α+ u · (1 + i)c are relatively

prime. �

Corollary 2.15. Consecutive odd Gaussian integers in the spiral ordering are relatively prime.

Proof. Consecutive odd Gaussian integers in the spiral ordering differ by two units. The only

possible differences between them are therefore 1 + i, 2, or one of their associates. Since 2 =

−i(1 + i)2, all of these differences are of the form u · (1 + i)c so the result follows from Lemma

2.14. �

Lemma 2.16. Let α be a Gaussian integer and let π be a prime Gaussian integer. Then α and

α+ π are relatively prime if and only if π 6 | α.

Proof. Assume that there exists a Gaussian integer γ such that γ | α and γ | α + π. Then γ must

also divide (α + π) − α = π. But π is prime, so either γ = u or γ = π · u for some unit u. If

γ = π · u, then α and α+ π have a common factor of π and are not relatively prime. If γ is a unit,

then α and α + π have only a common factor of a unit and are relatively prime. Therefore α and

α+ π are relatively prime if and only if π 6 | α. �

Lemma 2.17. Let p ∈ N be a prime integer congruent to 3 mod 4 and let α = a+ bi be a Gaussian

integer such that p | α. Then the index of α in the spiral ordering is congruent to 0 or 2 mod p.

Proof. By Theorem 2.2, p is prime in Z[i], so if p | a+ bi, then p | a and p | b. So a ≡ b ≡ 0 mod p.

From Theorem 2.11, we can calculate the index I(α) of α and examine it modulo p. There are four

cases to consider. In Case 1, I(α) = (a− 1)2 + 1 + b ≡ (−1)2 + 1 + 0 mod p ≡ 2 mod p. In Case 2,

I(α) = (b+ 1)2 − a+ 1 ≡ 12 − 0 + 1 mod p ≡ 2 mod p. In Case 3, I(α) = b2 + a ≡ 02 + 0 mod p ≡
0 mod p. In Case 4, I(α) = a2 − b ≡ 02 − 0 mod p ≡ 0 mod p. Therefore I(α) ≡ 0 mod p or

I(α) ≡ 2 mod p for any α such that p | α. �

3. Results - Trees by Family

We can now use the properties of the spiral ordering from the previous section to construct a

Gaussian prime labeling for several classes of trees. For each class of tree considered, we will give

a definition, an example figure, and then provide our proof of the existence of a Gaussian prime

labeling. We consider stars, paths, spiders, n-centipedes, (n, k,m)-double stars, (n, 2)-centipedes,

and (n, 3)-firecrackers.
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3.1. Results on stars, paths, spiders, n-centipedes, and (n, k,m)-double stars.

Definition 3.1. The star graph, Sn, on n vertices is the graph with

V (Sn) = {v1, v2, . . . , vn}, and E(Sn) = {v1vk : 2 ≤ k ≤ n}.

Figure 2. The star graph on 11 vertices

Theorem 3.2. Any star graph admits a Gaussian prime labeling.

Proof. Label vertex vj with γj . The center vertex v1 is then labeled with γ1 = 1, which is relatively

prime to all Gaussian integers. Therefore this is a Gaussian prime labeling. �

Definition 3.3. The path graph, Pn, on n vertices is the graph with

V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {vjvj+1 : 1 ≤ j ≤ n− 1}.

Figure 3. The path on 9 vertices

Theorem 3.4. Any path admits a Gaussian prime labeling.

Proof. Label vertex vj with γj . By Corollary 2.13 consecutive Gaussian integers in the spiral

ordering are relatively prime, so this is a prime labeling of the path. �

Definition 3.5. A spider graph is a tree with one vertex of degree at least 3 and all other vertices

having degree 1 or 2.
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v1

Figure 4. Example of a spider graph

Theorem 3.6. Any spider tree admits a Gaussian prime labeling.

Proof. Let T be a spider tree and suppose the center vertex v1 has degree k. Then if we remove v1

from T we are left with paths L1, L2, . . . , Lk with lengths a1, a2, . . . , ak respectively. So label v1

with 1 and label L1 with the next a1 consecutive Gaussian integers γ2, γ3, . . . , γ1+a1 , then label

L2 with the next a2 consecutive Gaussian integers, and so on. By Corollary 2.13 this is a Gaussian

prime labeling. �

Definition 3.7. The n-centipede tree, cn, is the graph with

V (cn) = {v1, v2, . . . , v2n},

and

E(cn) = {v2k−1v2k : 1 ≤ k ≤ n} ∪ { v2k−1v2k+1 : 1 ≤ k ≤ n− 1}.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

Figure 5. The 6-centipede tree

Theorem 3.8. Any n-centipede tree admits a Gaussian prime labeling.

Proof. Label vertex vk with γk. This is a Gaussian prime labeling because consecutive Gaussian

integers in the spiral ordering are relatively prime by Corollary 2.13 and consecutive odd Gaussian

integers in the spiral ordering are relatively prime by Corollary 2.15. �

Definition 3.9. Let n, k, m be integers with k ≤ m. The (n, k,m)-double star tree, DSn,k,m,

is the graph with

V (DSn,k,m) = {v1, . . . , vn, vn+1, . . . , vn+k−1, vn+k, . . . , vn+k+m−2},
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and

E(DSn,k,m) = {vjvj+1 : 1 ≤ j ≤ n− 1, v1vn+j : 1 ≤ j ≤ k − 1, vnvn+k+j : 0 ≤ j ≤ m− 2}.

In the (n, k,m)-double star tree we have a path of length n whose endvertices v1 and vn are the

central vertices for stars on k and m vertices respectively (not including the other vertices on the

path).

v1 vn

Figure 6. The (6, 6, 11)-double star tree

Theorem 3.10. Any (n, k,m)-double star tree has a Gaussian prime labeling.

Proof. Label vn with γ1 = 1, v1 with γ2 = 1 + i, and v2, . . . , vn−1 with the consecutive Gaussian

integers γ3, . . . , γn. We now label the k − 1 remaining vertices adjacent to v1 with odd Gaussian

integers. If n is odd, label vn+1, . . . , vn+k−1 with γn+2, γn+4, . . . , γn+2k−2. If n is even, label

vn+1, . . . , vn+k−1 with γn+1, γn+3, . . . , γn+2k−3. Label the remaining vertices adjacent to vn ar-

bitrarily with the remaining Gaussian integers in [γn+k+m−2]. This is a Gaussian prime labeling

because1 + i is relatively prime to all odd Gaussian integers, 1 is relatively prime to all Gaussian

integers, and the path is labeled with consecutive Gaussian integers. �

Remark: When n = 1, this is a star graph and when k = m = 0 it is a path. When k = m and

n = 2, it is a firecracker graph.

3.2. Results on (n, 2)-centipede trees.

Definition 3.11. The (n, 2)-centipede tree, cn,2, is the graph with

V (cn,2) = {v1, v2, . . . , v3n},

and

E(cn,2) ={v3k−1v3k−2, v3k−1v3k : 1 ≤ k ≤ n} ∪

{v3k−1v3k+2 : 1 ≤ k ≤ n− 1}.

The (n, 2)-centipede tree has n vertices on its spine with indices that are congruent to 1 mod 3.

Each vertex on the spine has two leaf nodes adjacent to it. We call each spine vertex v3k−1 and its

leaves v3k−2 and v3k the kth segment of the tree.
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Figure 7. The (6,2)-centipede tree

Before we prove a result about (n, 2)-centipede trees, we will prove a lemma about Gaussian

integers whose indices are three places apart in the spiral ordering.

Lemma 3.12. Let k ∈ Z with k ≥ 2, and consider the Gaussian integers γ3k−1 and γ3k+2. Then

δ = γ3k+2 − γ3k−1 ∈ {±3, ±3i, 1, i, 2− i, −2 + i, 1− 2i, −1 + 2i}. Further, each of these values

of δ does arise for some k.

Proof. In the spiral ordering, Gaussian integers whose indices differ by 3 are three units apart. The

possible combinations of three units are 3, 1, 1+2i, 2+ i, and their associates. First, we know that

the orientation of the spiral ordering will rule out −2− i,−1−2i,−1, and −i. If γ3k−1 and γ3k+2 lie

on the same branch, then they differ by ±3 or ±3i. Otherwise there is a corner between them and

we consider three possibilities: γ3k−1 and γ3k+2 are separated by a corner on the real axis, γ3k−1

and γ3k+2 are separated by a corner on the line Re(z) = 1, or γ3k−1 and γ3k+2 are separated by an

interior corner.

Around corners on the real axis, we know γ3k−1 is of the form a + 0i, a + i, or a + 2i for some

even integer a. If γ3k−1 = a+ 0i, by Theorem 2.11, we know its index is a2 which is not congruent

to (3k − 1) ≡ 2 mod 3. Therefore γ3k−1 6= a+ 0i. If γ3k−1 = a+ i, then by Theorem 2.11 we know

that 3k − 1 = a2 − 1 which is possible when a ≡ 0 mod 3. In this case γ3k+2 = (a + 1) + i, so

δ = 1. If γ3k−1 = a + 2i, by Theorem 2.11, we know that 3k − 1 = a2 − 2 which is possible when

a2 ≡ 1 mod 3. In this case γ3k+2 = (a+ 1) + 0i, so δ = 1− 2i. The possible values of δ for corners

on the real axis are thus 1 and 1− 2i.

Around corners on the line Re(z) = 1, we know that γ3k−1 is of the form 1 + bi, 2 + bi, or 3 + bi

for some even integer b or else γ3k−1 and γ3k+2 would lie on the same branch. If γ3k−1 = 1 + bi, by

Theorem 2.11 its index would be (b+ 1)2, which is not congruent to (3k− 1) ≡ 2 mod 3. Therefore

γ3k−1 6= 1 + bi. If γ3k−1 = 2 + bi, then Theorem 2.11 says that 3k − 1 = (b + 1)2 − 1, which is

possible when b ≡ 2 mod 3. In this case γ3k+2 = 2 + (b + i) and so δ = i. If γ3k−1 = 3 + bi, then

Theorem 2.11 says that 3k − 1 = (b + 1)2 − 2, which is possible when b ≡ 0 mod 3. In this case

γ3k+2 = 1 + (b + i) and so δ = −2 + i. The possible values of δ for corners on the line Re(z) = 1

are thus i and −2 + i.
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Around interior corners there are two possible orientations. Either the spiral is moving from an

up-oriented branch to a left-oriented branch or the spiral is moving from a right-oriented branch to a

down-oriented branch. Consider the up-left interior corner. We know γ3k−1 has the form a+(a−2)i

or a+ (a− 3)i as γ3k−1 and γ3k+2 would lie on the same branch otherwise. If γ3k−1 = a+ (a− 2)i,

Theorem 2.11 says that 3k − 1 = (a− 1)2 + 1 + a− 2 = (a− 1)2 + (a− 1) which is possible when

a ≡ 1 mod 3. In this case γ3k+2 = (a − 2) + (a − 1)i and so δ = −2 + i. If γ3k−1 = a + (a − 3)i,

Theorem 2.11 says that 3k − 1 = (a − 1)2 + 1 + a − 3 = (a − 1)2 + (a − 1) − 1 which is possible

when a ≡ 0 mod 3 or a ≡ 1 mod 3. In this case γ3k+2 = (a− 1) + (a− 1)i and so δ = −1 + 2i. By

symmetry, the possible δ values for a right-down interior corner are 2− i and 1− 2i. The possible

values of δ for interior corners are thus −2 + i, 2− i, −1 + 2i, and 1− 2i. �

Theorem 3.13. Any (n, 2)-centipede tree admits a Gaussian prime labeling.

Proof. Begin by labeling vertex vj with γj . We call the set of nodes {v3k−1}nk=1 which have degree

greater than one the spine of the tree, and the other nodes the leaves. Each spine-leaf pair in the

same segment will be relatively prime because they are labeled by consecutive Gaussian integers,

but there will be adjacent nodes down the spine that are not relatively prime.

Consider the possible separations of pairs of nodes on the spine. Let δk = γ3k+2 − γ3k−1. By

Lemma 3.12, δk ∈ {±3, ±3i, 1, i, 2− i, −2+ i, 1−2i, −1+2i}. This presents a problem whenever

δk is not a unit, but it divides both γ3k+2 and γ3k−1. To solve this problem, we will swap the labels

of some spine nodes with the labels of one of their leaf neighbors.

γ2

γ3

γ1

γ5

γ6

γ4

γ8

γ9

γ7

γ11

γ12

γ10

γ14

γ15

γ13

γ17

γ18

γ16

Figure 8. Initial labeling of the (6,2)-centipede

Swap each even γ3k−1 with γ3k and consider the new labeling. In each segment of the caterpillar

where a swap occurred, the node on the spine will still be relatively prime to its leaves, as one is

consecutive to it and the other is a consecutive odd to it.



12 STEVEN KLEE, HUNTER LEHMANN, AND ANDREW PARK

γ3

γ2

γ1

γ5

γ6

γ4

γ9

γ8

γ7

γ11

γ12

γ10

γ15

γ14

γ13

γ17

γ18

γ16

Figure 9. Labeling of the (6,2)-centipede after the swap

Now we verify that the labels of the nodes along the spine are relatively prime. Along the spine,

we will have a sequence of odd Gaussian integers with indices 3, 5, 9, 11, . . . , 6k+3, 6k+5, . . .. Every

other pair of Gaussian integers in this sequence (γ3, γ5 for example) is a pair of consecutive odds

and by Corollary 2.15 is relatively prime. The other pairs (γ5, γ9 for example) are odds that are

four indices apart. We claim that in this labeling these labels will always be relatively prime.

First, let k > 1 be odd so that we are considering a segment with an even node on the spine

and consider δk := γ3k−1 − γ3k−4 and δ′k := γ3k − γ3k−4. Note that choosing k to be odd restricts

the possibilities from Lemma 3.12 further because of the parities of types of corners. Now δk ∈
{±3, ±3i, 1, 2− i, −2 + i, 1− 2i}. Because γ3k−1 is even and has an index congruent to 2 mod 3

we also know that γ3k−1 either does not lie on a corner in the spiral ordering or lies on an even

corner on the line Re(z) = 1.

If δk is equal to 3,−3, 3i, or −3i then γ3k−1 and γ3k lie on the same branch. Thus γ3k− γ3k−1 =

1,−1, i, or −i respectively. Therefore δ′k = 4,−4, 4i, or −4i respectively. If δk = 1, then δ′k = 1 + i.

This occurs around corners on the real axis. If δk = 2 − i, then δ′k = 2 − 2i because this occurs

around interior corners of the spiral. If δk = −2 + i then δ′k = −1 + i because this occurs around

Re(z) = 1 corners. If δk = 1 − 2i, then δ′k = 1 − i. All of these δ′k are powers of 1 + i, so by

Lemma 2.14 the odds along the spine are now relatively prime. Thus this is a prime labeling of the

(n, 2)-centipede. �

3.3. Results on (n, 3)-firecracker trees. The proof that (n, 2)-caterpillar trees admit a Gaussian

prime labeling relied on an initial natural labeling that was slightly modified to give a prime labeling.

In this section we use a similar technique to show that certain firecracker trees also admit prime

labelings.

Definition 3.14. The (n, 3)-firecracker tree, Fn,3 is the graph with

V (Fn,3) = {v1, v2, . . . , v3n},

and

E(Fn,3) = {v3k−2v3k−1, v3k−1v3k : 1 ≤ k ≤ n} ∪ { v3k−2v3k+1 : 1 ≤ k ≤ n− 1}.
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Figure 10. The (6, 3)-firecracker tree

We call the n vertices v1, v4, v7, . . . , v3n−2 the spine of the tree. The set of vertices v3k−2, v3k−1, v3k

for some k is called the kth level of the tree.

Lemma 3.15. Let α = a+ bi be a Gaussian integer. Then 1 + 2i | α if and only if 5 | a+ 2b and

2 + i | α if and only if 5 | 2a+ b.

Proof. Suppose 1 + 2i | α. Then a+bi
1+2i = (a+bi)·(1−2i)

(1+2i)·(1−2i) = (a+2b)+(b−2a)i
5 ∈ Z[i]. Hence 5 | a + 2b.

Conversely, suppose 5 | a + 2b such that a + 2b = 5m. It follows that a = 5m − 2b so b − 2a =

b− 2(5m− 2b) = 5b− 10m, and 5 | b− 2a. Therefore 5 | (a+ 2b) + (b− 2a)i, so 5 | (a+ bi)(1− 2i),

and (1 + 2i)(1− 2i) | (a+ bi)(1− 2i). Hence 1 + 2i | α.

The argument for 2 + i is similar. �

This lemma is illustrated in Table 1, which shows the mod 5 residues of a multiple of 1 + 2i or

2 + i.

Re(α) Im(α)

0 0

1 2

2 4

3 1

4 3

(a) 1 + 2i | α

Re(α) Im(α)

0 0

1 3

2 1

3 4

4 2

(b) 2 + i | α

Table 1. Components of multiples of 1 + 2i and 2 + i reduced mod 5

Lemma 3.16. For k ∈ N, let δk = γ3k+1 − γ3k−2 and assume that δk is not a unit. If δk | γ3k−2
and δk | γ3k+1 then one of the following six conditions holds:

(1) δk = −1 + 2i and γ3k−2 = a+ (a− 3)i for a ≡ 1 mod 5 and a odd,

(2) δk = 2− i and γ3k−2 = (a− 2) + (a− 1)i for a ≡ 3 mod 5 and a even,

(3) δk = 1− 2i and γ3k−2 = (a− 1) + 2i for a ≡ 0 mod 5 and a odd,

(4) δk = 1 + 2i and γ3k−2 = a+ 0i for a ≡ 0 mod 5 and a even,

(5) δk = −2 + i and γ3k−2 = 3 + bi for b ≡ 1 mod 5 and b even,
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(6) δk = 2 + i and γ3k−2 = 1 + bi for b ≡ 3 mod 5 and b even.

Proof. First, by Lemma 2.17 δk is not equal to 3 or one of its associates. Because γ3k−2 and γ3k+1

are three indices apart in the spiral ordering and δk is not 1, 3, or any of their associates, δk must

be 1+2i, 2+ i, or one of their associates. We also know that δk 6= −1−2i,−2− i by the orientation

of the spiral ordering. Now we consider the remaining associates according to the location of γ3k−2

in the spiral ordering.

Case 1: Interior corners on up-left branches. This case corresponds to δk = −1+2i or δk = −2+i.

If δk = −2 + i, then γ3k−2 = a+ (a− 2)i for some a because it is one step below the interior corner

a + (a − 1)i. Then Theorem 2.11 says that its index is (a − 1)2 + (a − 2) + 1, which is always

congruent to 0 or 2 mod 3. This contradicts that the index is 3k − 2 ≡ 1 mod 3. Therefore this δk

does not occur.

If δk = −1 + 2i = i(2 + i), then by Theorem 2.11 γ3k−2 = a + (a − 3)i for some odd a because

it is two steps below the interior corner a + (a − 1)i. Using Table 1 we see that we must have

a ≡ 1 mod 5 for this to occur.

Case 2: Interior corners on right-down branches. This case corresponds to δk = 2 − i or δk =

1− 2i. If δk = 1− 2i, then γ3k−2 = (a− 1) + (a− 1)i for some a because it is one step left of the

interior corner a+ (a− 1)i. Theorem 2.11 says that its index is (a− 1)2 + (a− 1), which is always

congruent to 0 or 2 mod 3. Again this contradicts that the index is 3k − 2 ≡ 1 mod 3. So this δk

does not occur.

If δk = 2 − i = −i(1 + 2i), then by Theorem 2.11 γ3k−2 = (a − 2) + (a − 1)i for some even a

because it is two steps left of the interior corner a + (a − 1)i. Using Table 1 we see that we must

have a ≡ 3 mod 5 for this to occur.

Case 3: Corners on the real axis. This case corresponds to δk = 1 − 2i or δk = 1 + 2i. If

δk = 1− 2i = −i(2 + i) then γ3k+1 = a+ 0i and γ3k−2 = (a− 1) + 2i for some odd a (by Theorem

2.11) with a ≡ 0 mod 5 (by Table 1).

If δ = 1 + 2i, then γ3k−2 = a + 0i and γ3k+1 = (a + 1) + 2i for some even a (by Theorem 2.11)

with a ≡ 0 mod 5 (by Table 1).

Case 4: Corners on the line Re(z) = 1. This case corresponds to δk = 2 + i or δk = −2 + i.

If δk = −2 + i = i(1 + 2i), then by Theorem 2.11 γ3k−2 = 3 + bi for some even b because it is 2

away from the corner on the Re(z) = 1 line at 1 + bi. Using Table 1 we see that we must have

b ≡ 1 mod 5 for this to occur.

If δk = 2 + i, then by Theorem 2.11 γ3k−2 = 1 + bi for some even b because it is a corner on the

Re(z) = 1 line. Using Table 1 we see that we must have b ≡ 3 mod 5 for this to occur. �

Theorem 3.17. Any (n, 3)-firecracker tree has a Gaussian prime labeling.

Proof. A natural first attempt at labeling the (n, 3)-firecracker is to label it consecutively by labeling

vj with γj for all j. This is a nearly prime labeling, so we make a handful of swaps of labels to
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resolve the issues that appear and give a fully prime labeling. The full labeling procedure is as

follows.

We define an initial labeling `1 of the (n, 3)-firecracker so that `1(vj) = γj . Now we define a new

labeling ` in the following way. Let δk = `1(v3k+1)− `1(v3k−2). Consider each k where δk is not a

unit, δk | `1(v3k−2), and δk | `1(v3k+1). By Lemma 3.16 we know that δk ∈ {−1 + 2i, 2 − i, 1 −
2i, 1 + 2i, −2 + i, 2 + i}. If δk = −1 + 2i, 2− i, 1 + 2i, or −2 + i, then we set `(v3k−2) = γ3k and

`(v3k) = γ3k−2. If δk = 1 − 2i, then we set `(v3k+1) = γ3k+3 and `(v3k+3) = γ3k+1. If δk = 2 + i,

then we set `(v3k−2) = γ3k, `(v3k) = γ3k−2, `(v3k−5) = γ3k−3, and `(v3k−3) = γ3k−5. For all other

vj , keep `(vj) = `1(vj) = γj .

Because the effect of each above change is to swap the labels of vertices at the ends of a particular

level, adjacent vertices on the same level are still labeled with consecutive Gaussian integers in the

spiral ordering, which are relatively prime. Therefore, we only need to show that this new labeling

has created a prime labeling on the spine. To show the vertices along the spine are now relatively

prime, we examine each edge along the spine. If neither vertex on a given edge is affected by the

relabeling, then the labels are relatively prime. Otherwise we must inspect each relabeled vertex

to make sure its new label is relatively prime to its neighbors on the spine. To do this, we consider

each δk in turn. Note that the conditions from Lemma 3.16 force k to be large enough that if

δk | γ3k+1 and δk | γ3k−2 then γ3k+1 and γ3k+3 are on the same branch and γ3k−2 and γ3k−5 are on

the same branch and so neither γ3k+3 or γ3k−5 was relabeled.

If δk = −1+2i, then `(v3k−2) = γ3k. By Lemma 3.16 γ3k lies at an interior corner a+(a−1)i with

a ≡ 1 mod 5. Since `(v3k−2) = γ3k and `(v3k+1) = γ3k+1 are relatively prime, we need only check

whether `(v3k−2) and `(v3k−5) are relatively prime. Then δ′ := `(v3k−2)− `(v3k−5) = γ3k− γ3k−5 =

5i, so their only possible common factors are 1 + 2i and 2 + i. Consulting Table 1, we see that

because Re(γ3k) ≡ 1 mod 5 and Im(γ3k) ≡ 0 mod 5 neither 1+2i or 2+i divides γ3k and so `(v3k−2)

and `(v3k−5) are relatively prime.

If δk = 2 − i, then `(v3k−2) = γ3k. Note that γ3k lies at an interior corner a + (a − 1)i for

some a ≡ 3 mod 5 by Lemma 3.16. Here δ′ := `(v3k−2) − `(v3k−5) = γ3k − γ3k−5 = 5, so the

only possible common factors are again 1 + 2i and 2 + i. Consulting Table 1, we see that because

Re(γ3k) ≡ 3 mod 5 and Im(γ3k) ≡ 2 mod 5 neither 2 + i nor 1 + 2i divides γ3k and thus `(v3k−2)

and `(v3k−5) are relatively prime.

If δk = 1 − 2i then γ3k+1 = a + 0i for some odd a ≡ 0 mod 5 and `(v3k+1) = γ3k+3. Since

`(v3k+1) = γ3k+3 and `(v3k+4) = γ3k+4 are consecutive, they are relatively prime and we need only

consider the new δ′ := `(v3k+1) − `(v3k−2) = γ3k+3 − γ3k−2 = (a + 2i) − ((a − 1) + 2i) = 1. So

`(v3k−2) and `(v3k+1) are also relatively prime.

If δk = 1 + 2i, then γ3k−2 = a + 0i for some even a ≡ 0 mod 5 and `(v3k−2) = γ3k. Since

`(v3k−2) = γ3k and `(v3k+1) = γ3k+1 are consecutive, they are relatively prime and we only consider
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the new δ′ := `(v3k−2)− `(v3k−5) = γ3k− γ3k−5 = 1− 2i. Because γ3k−2 is a multiple of both 1 + 2i

and 2 + i, it follows that γ3k is a multiple of neither. So `(v3k−2) and `(v3k−5) are relatively prime.

If δk = −2 + i, then `(v3k−2) = γ3k = 1 + bi for some b ≡ 1 mod 5. Since `(v3k+1) = γ3k+1

and `(v3k−2) = γ3k are consecutive, they are relatively prime and we need only look at δ′ :=

`(v3k−2) − `(v3k−5) = γ3k − γ3k−5. Consulting Table 1, we see that because Re(γ3k) = 1 and

Im(γ3k) ≡ 1 mod 5 neither 1 + 2i or 2 + i divides γ3k. So `(v3k−2) and `(v3k−5) are relatively prime.

If δk = 2 + i, then `(v3k−2) = γ3k = 2 + (b+ 1)i for some b ≡ 3 mod 5. We also have `(v3k+1) =

γ3k+1 = 3 + (b + 1)i, `(v3k−8) = γ3k−8 = 7 + bi, and `(v3k−5) = γ3k−3 = 2 + bi. We now have the

sequence of labels on the spine of γ3k−8, γ3k−3, γ3k, γ3k+1. First, γ3k and γ3k+1 are consecutive

and thus relatively prime. Also, γ3k−3 and γ3k have a difference of i and are thus relatively prime.

Finally, δ′ := `(v3k−5) − `(v3k−8) = γ3k−3 − γ3k−8 = −5. Consulting Table 1 we see that because

Re(γ3k−3) = 2 and Im(γ3k−3) ≡ 3 mod 5 neither 1 + 2i or 2 + i divides γ3k−3, so γ3k−3 and γ3k−8

are also relatively prime.

Thus ` is a prime labeling of the (n, 3)-firecracker tree. �
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