ANNA Guide
by Dr. Eric Larson

Seattle University
Table of Contents

2Acknowledgments

31.
ANNA Architecture

31.1
Memory Organization

31.2
Register Set

31.3
Execution of Programs

41.4
Instruction Formats

52.
ANNA Instruction Set

83.
ANNA Assembler Reference

83.1
Running the Assembler

83.2
Assembly Language Format Rules

103.3
Error Checking

114.
ANNA Simulator Reference

114.1
Running the Simulator

114.2
Simulator Commands

135.
Style Guide

135.1
Commenting Convention

135.2
Register Usage

135.3
Other Style Guidelines

Acknowledgments
This document is based on the documentation provided for the ANT assembly language developed at Harvard University, created by the ANT development team consisting of Daniel Ellard, Margo Seltzer, and others. Many elements in presenting their assembly language are used in this document. For more information on ANT, see http://ant.eecs.harvard.edu/index.shtml.
The ANNA assembly language borrows ideas from many different assembly languages. In particular:

· The ANT assembly language from Harvard University. In addition, several of the simulator commands were ideas from the ANT tool suite.
· The LC2K assembly language used in EECS 370 at the University of Michigan.
· The simple MIPS-like assembly language suggested by Bo Hatfield (Salem State College), Mike Rieker (Salem State College), and Lan Jin (California State University, Fresno) in their paper Incorporating Simulation and Implementation into Teaching Computer Organization and Architecture. Their paper appeared at the 35th ASEE/IEEE Frontiers in Education Conference in October 2005.
The name ANNA comes from my daughter Anna, who was 6 months at the time when this document was created.
1. ANNA Architecture
This section describes the architecture of the 16-bit ANNA (A New Noncomplex Architecture) processor. ANNA is a very small and simple processor. It contains 8 user-visible registers and an instruction set containing 16 instructions.

1.1 Memory Organization

· Memory is word-addressable where a word in memory is 16 bits or 2 bytes.

· The memory of the ANNA processor consists of 216 or 64 K words.
· Memory is shared by instructions and data. No error occurs if instruction memory is overwritten by the program (your programs should avoid doing this).
· ANNA is a load/store architecture; the only instructions that can access memory are the load and store instructions. All other operations access only registers.

1.2 Register Set

· The ANNA processor has 8 registers that can be accessed directly by the programmer. In assembly language, they are named r0 through r7. In machine language, they are the 3-bit numbers 0 through 7.

· Registers r1 through r7 are general purpose registers. These registers can be used as both the source and destination registers in any of the instructions that use source and destination registers; they are read/write registers.

· The register r0 always contains the constant zero, If an instruction attempts to write a value to r0 the instruction executes in the normal manner, but no changes are made to the register.

· The program counter (or PC) is a special 8-bit register that contains the offset (or index) into memory of the next instruction to execute. Each instruction is 2 bytes long. Note that the offset is interpreted as an unsigned number and therefore ranges from 0 to 216 - 1. The PC is not directly accessible to the program.

1.3 Execution of Programs

Programs are executed in the following manner:

1.3.1 Initialization

1. Each location in memory is filled with zero.

2. All of the registers are set to zero.

3. The program counter (PC) is set to zero.

4. The program is loaded into memory from a file. See section 6 for information about the program file format.

5. The fetch and execute loop (described in Section 4.2) is executed until the program halts via the halt instruction.
1.3.2 The Fetch and Execute Loop

1. Fetch the instruction at the offset in memory indicated by the PC.

2. Set PC (PC + 1.

3. Execute the instruction.

(a) Get the value of the source registers (if any).

(b) Perform the specified operation.

(c) Place the result, if any, into the destination register.

(d) Update the PC if necessary (only for branching or jumping instructions).
1.4 Instruction Formats

Instructions adhere to one of the following three instruction formats:

R-type (add, sub, and, or, not, jalr, in, out)

	15
	
	
	12
	11
	
	9
	8
	
	6
	5
	
	3
	2
	
	0

	Opcode
	Rd
	Rs1
	Rs2
	Unused

I6-type (addi, shf, lw, sw)

	15
	
	
	12
	11
	
	9
	8
	
	6
	5
	
	
	
	
	0

	Opcode
	Rd
	Rs1
	Imm4

I8-type (lli, lui, bez, bgz)

	15
	
	
	12
	11
	
	9
	8
	7
	
	
	
	
	
	
	0

	Opcode
	Rd
	Unused
	Imm8

Some notes about the instruction formats:

· The Opcode refers to the instruction type. is always in bits 15-12.

· The fields Rd, Rs1, Rs2 refer to any general purpose registers. The three bits refer to the register number. For instance 0x5 will represent register r5.

· The immediate fields represent an unsigned value. The immediate field for lui is specified using a signed value but the sign is irrelevant as the eight bits are copied directly into the upper eight bits of the destination register.
· Some instructions do not need all of the fields specified in the format. The value of the unused fields are ignored and can be any bit pattern.

· The same register can serve as both a source and destination in one command. For instance, you can double the contents of a register by adding that register to itself and putting the result back in that register, all in one command.
2. ANNA Instruction Set
In the descriptions below, R(3) refers to the content of register r3 and M(0x45) refers to the content of memory location 0x45. The descriptions do not account for the fact that writes to register r0 are ignored – this is implicit in all instructions that store a value into a general-purpose register.

	add
	Add
	0 0 0 0
	Rd
	Rs1
	Rs2
	unused

Two's complement addition. Overflow is not detected.

R(Rd) (R(Rs1) + R(Rs2)
	sub
	Subtract
	0 0 0 1
	Rd
	Rs1
	Rs2
	unused

Two's complement subtraction. Overflow is not detected.

R(Rd) (R(Rs1) - R(Rs2)
	and
	Bitwise and
	0 0 1 0
	Rd
	Rs1
	Rs2
	unused

Bitwise and operation.

R(Rd) (R(Rs1) & R(Rs2)

	or
	Bitwise or
	0 0 1 1
	Rd
	Rs1
	Rs2
	unused

Bitwise or operation.

R(Rd) (R(Rs1) | R(Rs2)
	not
	Bitwise not
	0 1 0 0
	Rd
	Rs1
	unused
	unused

Bitwise not operation.

R(Rd) (~R(Rs1)
	shf
	Bit shift
	0 1 0 1
	Rd
	Rs1
	Imm6

Bit shift. It is either left if Imm6 is positive or right if the contents are negative. The right shift is a logical shift with zero extension.

if (Imm6 > 0)

R(Rd) (R(Rs1) << Imm6
else

R(Rd) (R(Rs1) >> Imm6
	lli
	Load lower immediate
	0 1 1 0
	Rd
	
	Imm8

The lower bits (7-0) of Rd are copied from the immediate. The upper bits (15- 8) of Rd are set to bit 7 of the immediate to produce a sign-extended result.
R(Rd[15..8]) (Imm8[7]
R(Rd[7..0]) (Imm8
	lui
	Load upper immediate
	0 1 1 1
	Rd
	
	Imm8

The upper bits (15- 8) of Rd are copied from the immediate. The lower bits (7-0) of Rd are unchanged. The sign of the immediate does not matter – the eight bits are copied directly.
R(Rd[15..8]) (Imm8
	lw
	Load word from memory
	1 0 0 0
	Rd
	Rs1
	Imm6

Loads word from memory using the effective address computed by adding Rs1 with the signed immediate.

R(Rd) (M[R(Rs1) + Imm6]
	sw
	Store word to memory
	1 0 0 1
	Rd
	Rs1
	Imm6

Stores word into memory using the effective address computed by adding Rs1 with the signed immediate.

M[R(Rs1) + Imm6] (R(Rd)

	bez
	Branch if equal to zero
	1 0 1 0
	Rd
	
	Imm8

Conditional branch – compares Rd to zero. If Rd is zero, then branch is taken with indirect target of PC + 1 + Imm8 as next PC. The immediate is treated as a signed value.
if (R(Rd) == 0)
PC (PC + 1 + Imm8
	bgz
	Branch if greater than zero
	1 0 1 1
	Rd
	
	Imm8

Conditional branch – compares Rd to zero. If Rd is strictly greater zero, then branch is taken with indirect target of PC + 1 + Imm8 as next PC. The immediate is treated as a signed value.
if (R(Rd) > 0)

PC (PC + 1 + Imm8
	addi
	Add immediate
	1 1 0 0
	Rd
	Rs1
	Imm6

Two's complement addition with a signed immediate. Overflow is not detected.

R(Rd) (R(Rs1) + Imm6
	jalr
	Jump and link register
	1 1 0 1
	Rd
	Rs1
	unused
	unused

Jumps to the address stored in register Rd and stores PC + 1 in register Rs1. It is used for subroutine calls. It can also be used for normal jumps by using register r0 as Rs1.

R(Rs1) (PC + 1

PC (R(Rd)
	in
	Get word from input
	1 1 1 0
	Rd
	unused
	unused
	unused

Get a word from user input.

R(Rd) (input

	out
	Send word to output
	1 1 1 1
	Rd
	unused
	unused
	unused

Send a word to output. If Rd is r0, then the processor is halted.
output (R(Rd)
3. ANNA Assembler Reference
3.1 Running the Assembler

The ANNA assembler has two panes: an editor pane and an output window. Use the editor pane to type in programs. The output window displays informational messages. The editor has support for standard Windows operations such as cut, copy, paste, print, and undo.

To assemble the program, select the Assemble option from the Assemble menu. You will be asked to save the file if it has been modified since it was last saved. All assembly code files must be saved with a .ac suffix.

On success, the assembler with output a file with machine code. The machine code file will have the same name in the same directory as the assembly code file, except that it will have .mc suffix. The file consists of a hexadecimal representation of the machine code for your program with the first line referring to the first instruction of the assembly file.
If the assembly file contains a syntax error, the first such error will be displayed in the output window. The line where the error occurs will be selected in the editor pane.

3.2 Assembly Language Format Rules
When writing assembly language programs, each line of the file must be one of…

· blank line (only white space)

· comment line (comment optionally preceded by white space)

· instruction line

An instruction line must contain exactly one instruction. Instructions cannot span multiple lines nor can multiple instructions appear on the same line. An instruction is specified by the opcode and the fields required by the instruction. The order of the fields is the same as the order of the fields in machine code (from left to right). For example, the order of the fields for subtract are sub Rd Rs1 Rs2. The opcode and fields are separated by white space. Only fields that are necessary for the instruction can be specified. For instance, the in instruction only requires Rd to be specified so it is incorrect to specify any other fields.
Additional rules:

· Opcodes are specified in completely lower case letters.

· A register can be any value from: r0, r1, r2, r3, r4, r5, r6, r7.
· Register r0 is always zero. Writes to register r0 are ignored.
3.2.1 Comments

Comments are specified by using '#'. Anything after the '#' sign on that line is treated as a comment. Comments can either be placed on the same line after an instruction or as a standalone line.
3.2.2 Assembler directives

In addition to instructions, an assembly-language program may contain directions for the assembler. There are two directives in ANNA assembly:

.halt: The assembler will emit an out instruction with Rd equal to r0 (0xF000)

that halts the processor. It has no fields.

.fill: Tells the assembler to put a number into the place where an instruction would normally be stored. It has one field: the 16-bit signed immediate to be emitted. For example, the directive ".fill 32" puts the value 32 where the instruction would normally be stored.
3.2.3 Labels

Each instruction may be preceded by an optional label. The label can consist of letters, numbers, and underscore characters and is immediately followed by a colon (the colon is not part of the label name). No whitespace is permitted between the first character of a label and the colon. A label must appear on the same line as an instruction. Only one label can appear before an instruction.
3.2.4 Immediates

Many instructions and the .fill directive contains an immediate field. An immediate can be specified using decimal values, hexadecimal values, or labels.

· Decimal values are signed. The value of the immediate must not exceeds the range of the immediate (see chart below).

· Hexadecimal values must begin with "0x" and may only contain as many digits (or fewer) as permitted by the size of the immediate. For instance, if an immediate is 8 bits, only two hex digits are permitted. Immediates with fewer than the number of digits will be padded with zeros on the left.

· Labels used as immediates must be preceded by an '&' sign. The address of the label instruction is used to compute the immediate. The precise usage varies by instruction:

.fill directive: The entire 16-bit address is used as the 16-bit value.
lui and lli: A 16-bit immediate can be specified. The appropriate 8 bits of the address (upper 8 bits for lui, lower 8 bits for lli) are used as an immediate.

bez and bgz: The appropriate indirect address is computed by determining the difference between PC+1 and the address represented by the label. If the difference is larger than the range of an 8-bit immediate, the assembler will report an error.
addi, shf, lw, sw: Labels are not permitted for 6-bit immediates.

This table summarizes the legal values possible for immediate values:

	Opcode
	Decimal Min
	Decimal Max
	Hex Min
	Hex Max
	Label Usage

	.fill
	-32,768
	32,767
	0x8000
	0x7fff
	address

	lui, lli
	-32,768
	32,767
	0x80
	0x7f
	address

	bez, bgz
	-128
	127
	0x80
	0x7f
	PC-relative

	addi, shf, lw, sw
	-32
	31
	0x00
	0x3f
	not allowed

3.3 Error Checking
Here is a list of the more common errors you may encounter:
· improperly formed command line

· use of undefined labels

· duplicate labels

· immediates that exceed the allowed range
· invalid opcode

· invalid register

· invalid immediate value

· illegally formed instructions (not enough or too many fields)
4. ANNA Simulator Reference

4.1 Running the Simulator
The first step to using the simulator is to load a program by clicking the Load button. This will prompt the user for the location of a .mc (machine code) file that was generated from the ANNA assembler. The program will be displayed in the code pane.

4.2 Running a Program

The other four control buttons control the execution of a program.

RESET: Resets the program to its original state. Registers all contain 0 (including PC), and memory only contains the data loaded from the machine code file.
STOP: Forces a breakpoint – used to stop execution of a program in an infinite loop.

CONTINUE: Runs the program until the program halts, hits a breakpoint, or is stopped by the user pressing the stop button.
NEXT: Executes one instruction.

Additional notes:
· When asked to enter a value using the in instruction, you must enter a 16 bit signed decimal value (-32,768 to 32,767) or hexadecimal value (0x8000 to 0x7fff).

· Output values from the out instruction will appear in the output window.

· When the program executes a halt instruction, it enters halt mode. In halt mode, you cannot execute an instruction or continue execution until you reset the program.
· The shortcut keys 'Alt-R', 'Alt-C', and 'Alt-N' can be used to reset, continue, and execute next instruction respectively. Menu items also exist for these commands under the Simulate menu.
4.3 Displaying Data
The register pane displays the current value of all the registers including the PC.
The memory pane can display the contents of up to five memory addresses. To view the contents of a memory address, simply type the address in one of the five address boxes. The current value will then be displayed in the corresponding value box. The address must be specified in decimal (unsigned value from 0 to 65,535) or hexadecimal (0x0 to 0xffff). The value will be updated appropriately while the program runs.
4.4 Setting Breakpoints

Breakpoints provide a way to stop execution at any point in the program. The typical use is to set a breakpoint at the start of an interesting part of the program, and then to select CONTINUE to run the program up to that point. The program will execute until the instruction at the address of the breakpoint is about to be executed, and then stop.
Up to four breakpoints can be set. To set a breakpoint, simply type an address in one of the breakpoint boxes and check the "En" (enable) box next to it. When the PC is equal to any of the enabled breakpoints, the simulator will stop. Breakpoints are also illustrated with an arrow in the code display for ease of reference.

There are three buttons in the breakpoint pane:

Enable all – Enables all breakpoints.

Disable all – Disables all the breakpoints.

Clear all – Clears all the breakpoints.

Additional notes:

· Breakpoints are automatically cleared when a new program is loaded.

· To change the value of a breakpoint, it must be first disabled.

· The breakpoint address must be specified in decimal (unsigned value from 0 to 65,535) or hexadecimal (0x0 to 0xffff).

5. Style Guide
5.1 Commenting Convention

Your program should include the following comments:

· A block comment with your name, name of the program, and a brief description of the program.

· For each function (including the "main" body): indicate what the code does and how each register is used.

· For each function, make special mention of what registers (or memory) are used as input parameters (including the return address) and/or output parameters. Also mention which registers are used as callee-save registers (all other registers will be assumed to be caller-save registers).

· Place a brief comment for each logical segment of code. Since assembly language programs are notoriously difficult to read, good comments are absolutely essential!
· You may find it helpful to add comments that paraphrase the steps performed by the assembly instructions in a higher-level language.
· A comment that indicates the start of each section (code, data, stack). If a section is not needed in the program, the comment can be omitted.

· Place a brief comment for every variable in the data section.

5.2 Register Usage
· You are free to assign registers as you see except that register r7 must be the stack pointer if you are using a stack.

· Do not use registers to store global variables. Exception: stack pointer – register r7.

5.3 Other Style Guidelines

This section lists some additional style guidelines
· Make label names as meaningful as possible. It is expected that some labels for loops and branches may be generic.

· Use labels instead of hard coding addresses. You do not want to change your immediate fields if you add a line.

· Do not assume an address will appear "early" in the program. An lli instruction with a label should always be followed with an lui instruction with the same label.

· Indent all lines so lines with labels are not staggered with the rest of the code.

· Use .halt to halt the program.

· There is no reason to use .fill in the code section. There is no reason to use anything but .fill in the data section.

PAGE
12

