
1

SUDS: An Infrastructure for Creating Dynamic
Software Defect Detection Tools

ERIC LARSON

Department of Computer Science and Software Engineering
Seattle University
elarson@seattleu.edu

Abstract SUDS is a powerful infrastructure for creating dynamic software defect detection tools.

It contains phases for both static analysis and dynamic instrumentation allowing users to create

tools that take advantage of both paradigms. The results of static analysis phases can be used to

improve the quality of dynamic defect detection tools created with SUDS by focusing the

instrumentation on types of defects, sources of data, or regions of code. The instrumentation

engine is designed in a manner that allows users to create their own correctness models quickly

but is flexible to support construction of a wide range of different tools. The effectiveness of

SUDS is demonstrated by showing that it is capable of finding bugs and that performance

improves when static analysis is used to eliminate unnecessary instrumentation.

Keywords software testing, software defect detection, software engineering, static analysis,

instrumentation, testing tools

Appears in Automated Software Engineering, Volume 17, Issue 3 (September 2010). The

original publication is available at www.springerlink.com.

http://www.springerlink.com/�

2

1 Introduction

It is increasingly important in the world today to have correctly working software. In order for

software systems to fully protect against malicious users, they must be perfectly implemented in

software – a very difficult task. Most of the defects detected in secure systems are due to

implementation mistakes, many due to using an inherently unsafe language like C. If

programmers are not careful, it is possible for an attacker to overwrite regions of memory in such

a manner they are able to execute arbitrary code and gain access to private data. Therefore it is

necessary to have high quality tools that can detect defects before software is released.

Many tools look for software defects at run-time by inserting instrumentation into the source

code. Often, additional information about the program is stored and used to locate defects.

Dynamic checkers are capable of finding defects that span multiple function boundaries, library

functions, or even process boundaries. The largest drawback to dynamic defect detection is its

dependence on the input. Defects will only be detected if a test is run that exposes the defect.

Another downside is the performance overhead associated when running the program.

This paper describes SUDS, an infrastructure designed to create dynamic software defect

detection tools. Users can create their own defect tools by first determining which programming

constructs or events are relevant to the property being checked. Then, users can insert function

calls to instrumentation routines. A set of provided routines allows the user to pass run-time

information as parameters to the instrumentation routines.

We demonstrate the effectiveness of SUDS by creating three checkers specific to input-

derived variables. The first checker looks for array out-of-bounds and pointer dereference errors.

The second checker detects arithmetic overflow for input data. The last checker makes sure that

string functions are used safely. All three of these checkers keep track of additional state during

run-time and can be extended to find different types of software defects. These checkers found

26 defects in 18 programs.

In addition to standard compiler analyses, SUDS contains support for tainted data propagation

and program slicing. The results of these phases can be used to focus and/or improve the

performance of the instrumented code. In particular, we used these phases to remove

instrumentation that was not needed by our array out-of-bounds checker. We considered data

coming from input to be tainted and we applied program slicing from all array references and

3

pointer dereferences in the program. This improves the run-time performance of the array

checker by 36% on average.

To illustrate the key features of SUDS, consider the example in Fig. 1. An array reference

error occurs at line 7 because the array could be referenced out-of-bounds. The array checker

find the error by assigning ranges to input values as shown in Fig. 1. On lines 2 and 3, variables

a and b get assigned a value from input. The corresponding ranges are set from -∞ to ∞.

Assume the user entered the value 3 for variable a1

In order to find the error, SUDS will instrument this program by adding calls to

instrumentation routines using the instrumentation director interface described in Section

. Then, on line 4, the if statement evaluates to

false. This will limit the range of variable a to be between 0 and 10. Finally on line 7, an error is

detected since the upper bound of a is 10, greater than the maximum allowable index of 4.

3.1. In

the case of the array checker, the instrumentation routines will manipulate additional state

associated with integers and arrays. This additional state is stored in a shadow state table. For

integers, the table stores the allowable range of values. For arrays, the table stores the run-time

size of the array. On array references, the tables are accessed to determine if the array can be

accessed out-of-bounds.

Fig. 2 shows how instrumentation2 Fig. 1 is applied to the program in . The instrumentation

call on line 2 will save the size of the array x. The calls on line 4 and 6 introduce ranges for

variables a and b respectively. The range for a gets narrowed on lines 7 and 8 based on the

actual run-time value of a. On line 14, the array will be checked based on the current range of a

and the size of x.

The other instrumentation calls are unnecessary. The static analysis phases of SUDS can be

used to focus the instrumentation. The array checker focuses on errors that are derived from

1 Any value from 0 to 10 will work.
2 Some details have been elided from this example for clarity. A more complete example is shown in Section 4.1.3.

1
2
3
4
5
6
7
8
9

int a, b, c, d, x[5];
scanf(“%d”, &a);
scanf(“%d”, &b);
if ((a > 10) || (a < 0)) exit(-1);
c = 2;
d = b;
x[a] = 3;
x[c] = 6;
printf(“%d\n”, d);

-∞ ≤ a ≤ ∞
-∞ ≤ b ≤ ∞
0 ≤ a ≤ 10

ERROR!

Fig. 1 Example of an array reference error

4

input values. The tainted data propagation algorithm recognizes that variable c in Fig. 2 never

holds an input value, thus instrumentation associated with variable c is removed. The program

slicing algorithm works backwards from array references and determines which statements the

array references depend on. Statements that do not have any influence on an array reference do

not need instrumentation. In Fig. 2, neither variables b nor d are used in an array reference;

instrumentation calls for these variables can be removed. Fig. 2 shows the instrumentation before

static analysis (left) and after static analysis is applied (right) with the unnecessary

instrumentation calls blocked out.

The main contributions of this paper are as follows:

• Description of SUDS – an infrastructure for creating dynamic defect detection tools.

• A detailed description of three input checkers – all use a shadow state table to track

additional state.

• The use of static analysis to focus dynamic defect detection. Instrumentation is only

applied to relevant statements improving run-time performance.

The remainder of the document is organized as follows. Section 2 provides an overview of

SUDS. Adding instrumentation is described in Section 3. Section 4 presents the instrumentation

models of our three input checkers. Static analysis phases are outlined in Section 5. Results using

SUDS are presented in Section 6. Section 7 contains related work and Section 8 concludes with

directions for future work.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

int a, b, c, d, x[5];
process_array_birth(x, 5*sizeof(int));
scanf(“%d”, &a);
process_new_input(&a, INT_MIN, INT_MAX);
scanf(“%d”, &b);
process_new_input(&b, INT_MIN, INT_MAX);
process_greater_than(&a, a, 10);
process_less_than(&a, a, 0);
if ((a > 10) || (a < 0)) exit(-1);
c = 2;
process_int_remove(&c);
d = b;
process_int_copy(&d, &b);
process_array_ref(x, &a);
x[a] = 3;
process_array_ref(x, &c);
x[c] = 6;
printf(“%d\n”, d);

int a, b, c, d, x[5];
process_array_birth(x, 5*sizeof(int));
scanf(“%d”, &a);
process_new_input(&a, INT_MIN, INT_MAX);
scanf(“%d”, &b);
process_new_input(&b, INT_MIN, INT_MAX);
process_greater_than(&a, a, 10);
process_less_than(&a, a, 0);
if ((a > 10) || (a < 0)) exit(-1);
c = 2;
process_int_remove(&c);
d = b;
process_int_copy(&d, &b);
process_array_ref(x, &a);
x[a] = 3;
process_array_ref(x, &c);
x[c] = 6;
printf(“%d\n”, d);

Fig. 2 Array checker instrumentation before static analysis (left) and after static analysis (right).

5

2 Overview of SUDS

SUDS, like most compilers and defect detection tools, is organized as a series of different

phases. The primary phases are displayed in Fig. 3.

SUDS takes preprocessed source code as an input and parses the code to create an

intermediate representation using an abstract syntax tree (AST). The code then goes through a

simplification phase that converts the source code into an equivalent program that is easier to

analyze in later phases. The static analysis phase consists of several subphases, each performing

a different static analysis algorithm. The last phase within SUDS instruments the program using

the instrumentation director interface. The output of SUDS is instrumented source code which

then can be compiled and linked with an instrumentation model to form an instrumented

program.

A user can either use an existing model or create their own. To create their own

instrumentation model, a user only needs to write the instrumentation model, which is

AST

Simplified
AST

Program (preprocessed
C source code)

Analysis Results

Instrumented
Executable

Instrumented
Source Code

SUDS

Parse Simplify

Analyze

Instrument

Instrumentation
Model

Instrumentation
Director

Compile & Link

Model Interface

Source
Code

Fig. 3 Overview of SUDS

6

completely separate from SUDS, and an instance of the instrumentation director interface (both

drawn as ovals in Fig. 3).

SUDS is written in C++ and processes programs written in the C programming language. The

organization of SUDS is highly modular in that it is relatively straight-forward to add a new

phase or modify an existing phase without internal knowledge of how the other phases work. The

remainder of this section briefly describes each of the phases.

2.1 Parsing

SUDS uses a modified version of the parser from cTool (2004) and operates on the whole

program. The parser supports virtually all C programs with a few exceptions. The most

prominent restriction is that it requires that all functions be declared before being used. In a vast

majority of these exceptional cases, it is possible to rewrite the code with minimal effort. SUDS

supports many, but not all, of the language extensions that exist in popular compilers such as

gcc. Except for addressing these restrictions, no modifications to the program source code are

needed. Functions without source code present, including system calls, are not analyzed by

SUDS. However, instrumentation can be added to statements that call these functions,

summarizing what these functions accomplish with respect to the checker3

2.2 Simplification

.

The next phase in SUDS is to transform the initial AST into an intermediate C representation

similar to the grammar developed by Hendren et al. (1992) and the GIMPLE grammar used in

the gcc compiler (Merrill 2003). It serves a similar purpose as CIL (Necula et al. 2002a). The

intent of simplification is to reduce the complexity of identifying and analyzing relevant program

elements. Complex C statements are broken down into simple statements with at most two

operands and a single assignment to an l-value (such as a=b+c). Side effects and short-circuited

operators (such as &&) are eliminated via program transformations.

There are two advantages to simplifying the program. It simplifies the static analysis phases –

statements can either alter the control of a program or assign data to a memory location but they

cannot do both. The other advantage of the simplification process is that instrumented function

3 In the checkers described in Section 4, instrumentation is added in this manner for common system calls.

7

calls can be restricted to statement boundaries. This is not possible without simplification since

there might be an important event in the middle of a long expression.

2.3 Static Analysis

The static analysis phase consists of several subphases. The initial subphases perform standard

compiler analyses such as computing points-to information and performing data flow analysis.

Two analyses, tainted data propagation and program slicing, allow the user to further focus the

dynamic instrumentation.

The user can specify what data they deem to be tainted. The tainted data propagation

algorithm will determine the set of statements that operate on tainted data. The users can also

specify the slicing criterion – the set of statements that are initially in the slice. The program

slicing algorithm will compute the set of statements that influence the statements in the slicing

criterion. The instrumentation phase can use this information to only apply instrumentation to

interesting statements – typically statements that operate on tainted data and are in the slice.

A more detailed discussion of the static analysis phase is in Section 5. This phase is optional

if SUDS is used strictly as an instrumentation tool as it is not necessary to use any of the static

analysis information when instrumenting the program.

2.4 Instrumentation

The instrumentation engine of SUDS automatically adds instrumentation using an

instrumentation director. The instrumentation director interface of SUDS provides functions for

different programming constructs including expressions, statements, and certain events (such as

the start of a function). Users can add instrumentation to a program by implementing the

functions that correspond to constructs and events that are interesting with respect to the

instrumentation model. In most cases, the added instrumentation is a call to a routine in the

instrumentation model. A suite of helper functions is provided to simplify the process of adding a

call to an instrumentation function with different parameters.

This organization, described in Section 3, facilitates rapid creation of new defect detection

tools and is flexible in that users have access to the internals of SUDS to allow for the creation of

very powerful, specialized instrumentation. In addition, SUDS can be used to create profilers,

coverage tools, debugging aids, and program analyzers.

8

2.5 Instrumentation Models

An instrumentation model consists of routines that are used to find defects. SUDS includes

models for input checking (described in Section 4) that employ a shadow state table that keeps

track of additional state associated with variables, pointers, and arrays. Different instrumentation

routines add, remove, modify, or check entries in the table. The structure of these models allows

users to easily create and implement their own models by using one of the provided models as a

starting point. It is also possible to create much simpler models that merely output information or

inject checks. For instance, an instrumentation model that traces function calls is described in

Section 3.2.

3 Instrumentation Engine

This section describes the instrumentation engine used by SUDS. To accommodate users who

want to design their own models, this phase has been designed in a fashion for both fast creation

of simple models but also generic enough to support a wide range of instrumentation tasks. To

promote the construction of a model quickly, several helper functions that perform common

instrumentation tasks are provided.

3.1 Instrumentation Director Interface

In order for SUDS to produce instrumented code, it needs to know what instrumentation to add

and where to add it. The instrumentation director provides both of these capabilities. An

instance of the instrumentation director interface is created for each instrumentation model. The

base interface, from which instrumentation directors are derived from, consists of several

member functions that correspond to various programming constructs and events. The

instrumentation director is similar to the visitor design pattern in that it visits each node in the

AST. For each node in the AST, the user decides what, if any, instrumentation needs to be added.

To create an instrumentation director, a user implements the functions that correspond to

interesting constructs and events with respect to the instrumentation model. During the

instrumentation phase, SUDS traverses the AST calling the appropriate interface function for

each programming construct or event. This phase is static and makes only one pass through the

program. The output of this phase is an AST containing instrumented source code. This is

immediately followed by a phase that prints the instrumented source to a file.

9

The instrumentation director interface is illustrated using the following interface function:

void instrumentDerefExpr(DerefExpr *expr, bool isLhs,

 Stmt *&before, Stmt *&after);

This function refers to a pointer dereference operation (*) and is called whenever a

dereference expression is encountered. The first two parameters expr and isLhs are input

parameters. The parameter expr refers to the corresponding dereference expression that is under

consideration. Most of the other interface functions will include a pointer to the corresponding

programming construct. These internal data structures can be used in two ways. One use is to

further analyze the data structure to determine which instrumentation function, if any, to call.

Frequently, the type of the expression is analyzed when adding instrumentation. For instance, an

addition operation involving two integers will typically be treated differently than an addition

operation involving a pointer and an integer. The second use of the internal data structures is for

specifying parameters to pass into the instrumentation functions. This process is described in

Section 3.2. The second input parameter isLhs is true if the expression appears on the left-hand

side of an assignment expression and false if it appears on the right-hand side of the expression.

The isLhs parameter is only available for expressions that can appear on the left-hand side.

The last two parameters before and after are output parameters that point to a list of

statements. In order to successfully add instrumentation, it is necessary to add the newly created

statement to either the before list or the after list. If the instrumentation is added to the before list,

it is added before the statement or event in question. When the instrumented program is

executing, the added instrumentation will be executed before the statement. Similarly, it is added

after the statement or event if it is added to the after list. Some interface functions only allow

instrumentation to be added to the before list and others require instrumentation to be added to

the after list only. For example, it is only permissible to add instrumentation after a variable

declaration since it does not make sense to add instrumentation before the variable is born

because the variable is inaccessible before it is born.

In addition to these four parameters, some interface functions have an additional parameter

that represents an offset. This is used for instrumentation that deals with parameter passing and

returning values. Parameter passing is described later in this section.

10

Table 1 shows a table of the various constructs and events that have functions in the

instrumentation director interface. The first two columns refer to statements and expressions

respectively. A few notes regarding these two columns:

• There is a single interface function for all binary (two operands) arithmetic and logical

operators. Within this function, different instrumentation routines may be called based

on the operation.

• The address-arrow expression refers to expressions such as &(a->b). It is an artifact of

the simplification process.

• The va_start and va_end statements as well as the va_arg expression are used in

processing variable length argument lists. In general, support for variable length

argument lists is limited.

The third column of Table 1 refers to events that occur when calling and returning from a

function. When calling a function there are interface functions for both the function call itself

(added to the caller) and the start of the new function (added to the callee). Similarly, when

returning from a function, interface functions exist for the end of the function (added to the

callee) and when the function has returned (added to the caller). In addition, instrumentation can

be added to return statements.

Table 1 Instrumentation Director Interface Functions

Statements Expressions Function Calls Other Events

expression statement
if statement
switch statement
for loop
while loop
do loop (start)
do loop (end)
goto statement
break statement
continue statement
va_start statement
va_end statement

constant
string constant
variable
unary arithmetic / logical
binary arithmetic / logical
relational expression
cast
sizeof
address of
address-arrow &(a->b)
dereference
member selection
arrow
array reference
built-in expression
va_arg expression

function call (caller)
start of function (callee)
return statement (callee)
end of function (callee)
return from function (caller)

function call argument
birth of parameter
death of parameter
return value (callee)
return value (caller)

birth of parameter (main)
death of parameter (main)

system call

start of block
end of block
start of program
end of program
birth of variable
death of variable
label
data member copy

11

The interface function for a function call argument4

There is also an instrumentation routine that corresponds to the death of the parameter. Since

it is implicitly called at the beginning of the program, the function main has separate parameter

functions. This is important for our input checkers described in Section

 is called for each argument passed into a

function allowing the user to specify instrumentation for each argument independently.

Similarly, the birth of parameter interface function is called for each parameter. Both of these

interface functions have an offset parameter that refers to the position in which the parameters

appear in the parameter list. Structure variables also use the offset field. Assume that a structure

is passed into a function. Initially, the function call expression interface function will be called

for the entire structure. Then the function is called for each data member that appears in the

structure definition. Data members that refer to arrays or nested structures are traversed

recursively, applying the interface function to each array entry or data member. The offset is

incremented each time the interface function is applied to an array entry or data member. When

the callee function starts, the same approach is used for the parameters. Together, they can be

used to copy state from an argument to its corresponding parameter. A similar approach is

employed when passing the return value back.

4 since the parameters to

main contain command-line information which is considered to come from input.

There is a separate interface function for system calls or any function where source code is

not present. In most cases, this function will add different instrumentation based the function

being called. The argument and return value interface functions are not called for system calls.

The fourth column describes other events that can occur in a program. It is largely self-

explanatory except perhaps for the data member copy. This function is called for each data

member when a struct is assigned to another struct.

The instrumentation director interface also contains data members that can be used while

creating an instrumentation director instance. Here are a few of the data members that are

available: the current statement, the current function, and the current line number.

3.2 Calling Instrumentation Functions

Once the programming constructs and events that need instrumentation has been determined, the

next step is to write the instrumentation director routines to add the instrumentation. In most

4 We use the terms argument and parameter to refer to actual parameters and formal parameters respectively.

12

cases, the added instrumentation will merely be a single statement that calls an instrumentation

function. Helper routines are provided to simplify this task. The basic flow is as follows:

1. Initialize the call by calling initInstrCall. This function takes no parameters.

2. Add parameters to the function. Table 2 outlines the different routines that are available

depending on the type and use of parameter.

3. Complete the call by calling addInstrCall. This function takes two parameters: a list

to add the instrumentation statement to (either the before or after list) and the name of the

function to call.

This process is best illustrated using an example of an instrumentation director interface. Fig.

4 shows an instrumentation director that is used for an instrumentation model that traces function

calls. In both cases the functions are called with one parameter - the name of the function passed

Table 2 Helper routines for adding parameters to instrumentation function calls

Routine If x is

Then,
add ___

Used For

addStringParm(string x); foo foo Any expression in string form. Useful for constructing
your own expressions by concatenating different stings.

addStringConstantParm(string x);
 foo “foo” Any string used as a constant within the instrumentation

routine.

addIntegerParm(int x); 23 23 Any integer constant.

addExprParm(Expr *x); a[i] a[i] The value of an expression or variable.

addStringExprParm(Expr *x); a[i] “a[i]” The expression as a string - useful for debugging and
diagnostics.

addAddrOfExprParm(Expr *x); a[i] &(a[i]) The address of an expression (assuming it is addressable);
useful for models that track variables by address.

addDeclParm(Decl *x); a a The variable associated with a declaration.

addSizeParm(Type *x); int sizeof(int) The size of a type.

addObjSizeParm(Type *x); int * sizeof(int) The size of the type pointed to (or the size of the element
for arrays).

addFileNameParm(); - - The current file name.

addLineNumParm(); - - The current line number.

addUniqueIdParm(); - -
A unique integer that is incremented after each call to an
instrumentation routine. Used to distinguish between
multiple calls that occur on the same source code line.

13

as a string. The corresponding instrumentation model consists of the instrumentation functions

function_begin and function_end. These functions, written outside of SUDS, simply

display an appropriate message with the function name.

Ultimately, the instrumentation call is stored in the AST as a string that is simply emitted

during the output phase. Alternatively, we could have implemented the instrumentation call

using AST nodes. However, this would require the user to have detailed knowledge of how the

AST is constructed. This is not necessary if strings are used. In addition, users can take

advantage of both the C++ string library and print routines that already exist for variables,

expressions, and statements within SUDS. It is also possible to create inlined instrumentation or

instrumentation code that is an arbitrary set of C statements instead of a single function call.

4 Dynamic Detection of Input-Related Software Defects

In this section, we illustrate how SUDS can be used to detect security defects caused by

improperly bounded inputs. DaCosta et al. (2003) observed that functions near an input source

are more likely to be vulnerable to security exploits. These checkers, based on earlier work

(Larson and Austin 2003), relax the requirement that the user specify a precise set of inputs that

exposes the defect. This is accomplished by shadowing variables derived from input with

variables that represent the range of values. The additional shadow state is stored in a shadow

state table. The table is similar to the object table used by Jones and Kelly (1997) to store

additional information about the objects (such as the size) that pointers point to.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

class instrTrace: public instrDirInterface {

 public:

 void instrumentBeginFunction(FunctionDef *fn, Stmt *&after)
 {
 initInstrCall();
 addStringConstantParm(fn->FunctionName());
 addInstrCall(after, "function_begin");
 }

 void instrumentEndFunction(FunctionDef *fn, Stmt *&before)
 {
 initInstrCall();
 addStringConstantParm(fn->FunctionName());
 addInstrCall(before, "function_end");
 }
};

Fig. 4 Sample instrumentation director instance for tracing function calls

14

Three different checkers are presented here. The array checker, described in Section 4.1, looks

for array reference and pointer dereference errors based on input data. An arithmetic checker is

concerned with arithmetic overflow and other potentially dangerous uses of input data. This

checker is presented in Section 4.2. Finally, the string checker, described in Section 4.3, ensures

that all string operations are safe.

4.1 Array Checker

To prevent a buffer overflow exploit, it is necessary for the program to check input data to ensure

it does not exceed the bounds of any buffer it may be used to reference. However, many

programs either fail to check input data or check the data incorrectly. Such cases are often hard

to find. For example, the code sequence in Fig. 5 contains an off-by-one error. Such a defect may

be difficult to find if the programmer writing the code to check the reference is not aware that the

index is incremented before it is referenced.

Data that comes from input is considered tainted and includes environment variables,

command line inputs, data read from files, and network packets. For each variable that holds

input data, the shadow state table stores the lower and upper bounds. In order for an array

reference to be considered safe, the index must be checked to determine if it can exceed the

bounds of the array. The initial value of the lower and upper bounds are the smallest and largest

values respectively that can be stored in the variable based on the data type of the variable. For

instance, an unsigned int would have an initial lower bound of 0 and an initial upper bound

of UINT_MAX (4,294,967,295).

During execution, control tests and operators may narrow input interval constraints. When an

access to an array occurs, the bounds of the array index are compared with the run-time size of

the referenced array. An error is reported if there is an index that can exceed the bounds of the

array. When a variable is assigned a value that is not dependent on input, the destination variable

is considered untainted, releasing shadow state5

5 Our approach only detects array reference errors when indices are derived from input.

.

1
2
3
4
5
6
7

int a;
unsigned int x;
int array[5] = {1, 2, 3, 4, 5};
scanf("%d", &x);
if (x > 4) exit(-1);
x++;
a = array[x];

Fig. 5 Example of an array reference error. The array is accessed out of bounds if x is four.

15

Internally, the checker uses two shadow state tables. One table tracks tainted integers and the

other tracks arrays (storing the run-time size of the array). The shadow state tables are

implemented using hash tables. Except for array references and pointer arithmetic which access

both tables, the routines used to manage the two tables are separate.

4.1.1 Tracking Integers

The integer shadow state table keeps track of tainted integers and is indexed by address. Integers

that are not tainted (do not store input data) are not stored in the table. An integer becomes

tainted if it comes directly from input (via a call to an input function such as scanf) or is

assigned a value from an expression that involves tainted data.

The data structure used to store integer state contains the following fields:

• address – Address of the variable (same as the index to the shadow state table), stored for

debugging purposes.

• name – Name of the variable. For integers stored in structures, arrays, or in the heap, it

contains a string on how the variable was assigned ("*p" for example). Only used for

debugging and diagnostic purposes.

• lower bound – Lower bound, lowest possible value for the variable.

• upper bound – Upper bound, highest possible value for the variable.

Initially, the upper and lower bounds are assigned based on the type. For unsigned integers,

the lower bound is zero. Otherwise, it is the most negative value the variable can hold, based on

type. Similarly, the upper bound is the largest possible value. Future expressions and

comparisons adjust the bounds, while array references check the bounds against the size of the

array. One potential weakness of modeling integers using ranges as described here is that it is

not always possible to specify the set of possible values using a single range. However this is

not an issue for array checks as it is only necessary to check the lowest and highest possible

values.

For expression statements, there are five instrumentation routines for tracking integers that are

listed in Table 3. The destination variable is the variable used on the left-hand side of the

expression statement. Its shadow state may change as a result of the expression. The source

variables are variables accessed on the right-hand side of the expression statement. An entry is

considered not tainted and removed from the table if it comes from an expression that does not

16

have tainted operands. A basic case occurs when the right-hand side is a constant literal (such as

x = 3)6

For expressions with unary and binary operators, the function depends on the particular

operation. Unary and binary operators can be divided into two categories: arithmetic operations

and bitwise operations. For arithmetic operations, the destination is not tainted if neither source

operand is tainted. An operand is considered not tainted if it is either a variable that is not tainted

(not present in the shadow state table) or is a constant value. The arithmetic operations are

summarized in

. Shadow state is copied for expressions that merely copy an integer from one memory

location to another (such as x = *p).

Table 4 (addition, subtraction, and multiplication) and Table 5 (division and

remainder). In these tables, ticked variables x' and y' refer to tainted integer variables while

unticked variables x and y represent untainted operands. Using structure notation, x'.lb and x'.ub

respectively represent the lower and upper bounds of tainted variable x'.

The negate operator inverts the bounds of the source. Addition and subtraction with an

untainted operand results in adjusting the bounds by the current value of the untainted operand.

6 Since this checker focuses on input-related faults, the checker only detects array out-of-bound errors if the index is
derived from input. By tracking integers that are assigned constants, additional errors may be detected.

Table 3 Instrumentation routines for tracking integers in expression statements

Instrumentation
Routine Description Called when the

right-hand side is…

process_int_remove Removes the destination variable from the table. a constant literal (3)
a sizeof expression (sizeof(int))

process_int_copy

If the source variable is tainted, the shadow state of the
source variable is copied into the shadow state of the
destination variable. If the source variable is not tainted,
the destination variable is removed from the table.

a single variable (x)
an array reference (a[i])
a data member of a struct (b.z)
a pointer dereference (*p)
a cast to another variable ((int) y)

process_int_unary_op
The precise functionality depends on the operator and the
state of the source variable. If the source variable is not
tainted, the destination variable is removed from the table.

any unary operator (-z)

process_int_binary_op
The precise functionality depends on the operator and the
state of the source variable(s). If neither source variable is
tainted, the destination variable is removed from the table.

any binary operator (a + b)

process_int_rel_op

Removes the destination variable from the table since it
stores a Boolean result. The entries for the source
operands may be adjusted based on the operator and
whether the comparison is true or false.

any relational operator (a < b)

17

When adding two tainted variables, the bounds of the destination variable are formed by adding

the bounds of the two source operands together. When subtracting two tainted variables, the

upper bound represents the maximum difference and is found by subtracting the lower bound of

the second operand from the upper bound of the first operand. Similarly, the lower bound

represents the minimum difference and is computed by subtracting the upper bound of the

second operand from the lower bound of the first operand.

Multiplying and dividing by an untainted operand need to take the sign of the untainted

variable into account. If the value is positive, then the upper bound of the destination is

computed using the upper bound of the tainted operand while the lower bound of the destination

Table 4 Rules for computing bounds for addition, subtraction, and multiplication. x' and y' are tainted; x and y are
untainted.

Op
(d' = …)

Destination Lower Bound
(d'.lb = …)

Destination Upper Bound
(d'.ub = …)

'x− ubx '.− lbx '.−

yx +' ylbx + '. yubx + '.

'' yx + lbylbx '. '. + ubyubx '. '. +

yx −' ylbx − '. yubx − '.

'yx − ubyx '.− lbyx '.−

'' yx − ubylbx '. '. − lbyubx '. '. −

yx × '









>×
=
<×

0 '.
00
0 '.

yylbx
y
yyubx









>×
=
<×

0 '.
00
0 '.

yyubx
y
yylbx

' ' yx ×



















×
×
×
×

lbylbx
ubylbx
lbyubx
ubyubx

MIN

 '. '.
 '. '.
 '. '.
 '. '.



















×
×
×
×

lbylbx
ubylbx
lbyubx
ubyubx

MAX

 '. '.
 '. '.
 '. '.
 '. '.

18

is computed using the lower bound. The situation is reversed if the untainted variable is negative.

If the untainted value is zero, the upper and lower bounds are both set to zero for multiplication

and a divide-by-zero error occurs for division. Multiplying two tainted operands requires

computing all four possible products involving the upper and lower bounds of the operands. The

highest product is the upper bound of the destination, while the lowest product is the lowest

bound of the destination.

In integer division, the highest and lowest possible values occur when dividing by either one

or negative one. This is captured in Table 5 using the function spanZero. If the divisor's range

includes both one and negative one, then the upper bound is formed by taking the maximum of

the absolute value of the dividend's upper bound and the absolute value of the dividend's lower

bound. The lower bound is the same value but negated. If the divisor's range does not include

both one and negative one, it implies that the divisor is completely positive or completely

negative. In this situation, the upper and lower bounds can be computed in a similar way to

multiplication by computing the four quotients that involve the upper and lower bounds.

The bounds of the remainder operator can vary from zero to one less than the value of the

divisor when dealing with positive numbers. Using negative numbers is more problematic. Based

on the C99 standard (ISO/IEC 9899:1999), the magnitude of the remainder is computed using

the absolute value of both the dividend and the divisor. The sign of the remainder is identical to

the sign of the dividend.

For bitwise operators (and, or, not, shift), the checker treats the destination variable as

untainted and removes it from the table. The reason for this decision is that the result of a bitwise

operation is likely not to be used in an array operation. The logical and operator '&&' and logical

or '||' operator are removed during simplification – converted to an appropriate if statement.

The logical not operator '!' is still present after simplification and is treated identically to as not

equal to 0 (!x is equivalent to x != 0) and is discussed with the other relational operators

below.

19

Table 5 Rules for computing bounds for multiplication, division, and remainder. x' and y' are tainted; x and y are
untainted. For division rules, spanZero(y') = y'.lb < 0 ∧ y'.ub > 0

Op
(d' = …)

Destination Lower Bound
(d'.lb = …)

Destination Upper Bound
(d'.ub = …)

yx /'









>
=
<

0/ '.
0
0/ '.

yylbx
yERROR
yyubx









>
=
<

0/ '.
0
0/ '.

yyubx
yERROR
yylbx

'/ yx









¬∧≥
¬∧<

−

)'(0 './
)'(0 './

)'()(

yspanZeroxubyx
yspanZeroxlbyx

yspanZeroxabs









¬∧≥
¬∧<

)'(0 './
)'(0 './

)'()(

yspanZeroxlbyx
yspanZeroxubyx

yspanZeroxabs

'/' yx















¬



























−

)'(

 './ '.
 './ '.
 './ '.
 './ '.

)'(
) '.(
) '.(

yspanZero

lbylbx
ubylbx
lbyubx
ubyubx

MIN

yspanZero
ubxabs
lbxabs

MAX















¬




























)'(

 './ '.
 './ '.
 './ '.
 './ '.

)'(
) '.(
) '.(

yspanZero

lbylbx
ubylbx
lbyubx
ubyubx

MAX

yspanZero
ubxabs
lbxabs

MAX

yx % '




≥
<−−

0 '.0
0 '.)1)((

lbx
lbxyabs





≤
>−

0 '.0
0 '.1)(

ubx
ubxyabs

'% yx







≥

<+







−

00

01
) '.(
) '.(

x

x
ubyabs
lbyabs

MAX






≤

>−








00

01
) '.(
) '.(

x

x
ubyabs
lbyabs

MAX

'% ' yx







≥

<+







−

0 '.0

0 '.1
) '.(
) '.(

lbx

lbx
ubyabs
lbyabs

MAX






≤

>−








0 '.0

0 '.1
) '.(
) '.(

ubx

ubx
ubyabs
lbyabs

MAX

20

Relational operators are handled differently in that they narrow the constraints of the source

operands. The destination variable of a relational operation is always considered untainted since

the value is either true or false. Rules for some of the operators are shown in Table 6. These rules

use the actual true or false result of the comparison in determining what bounds to adjust and

how they are adjusted. Consider the less than operator x' < y with a tainted integer x' and an

untainted integer y. If this comparison is true, it is now known that x' < y. This means that the

upper bound of x' must be no greater than one less than y. If the upper bound of x' is greater than

or equal to y, the upper bound is then set to y-1. If the upper bound of x' is already lower than y,

no change is made. If the less than operation is false, it implies that x' ≥ y. In this situation, the

lower bound of x' must be at least y. If the lower bound of x' is lower than y, it is set to y.

Otherwise, no change is made. For comparisons, involving two tainted variables, it is possible

for both source operands to get adjusted. In the case where x' < y' is true, the upper bound of x'

must be lower than the upper bound of y' and the lower bound of y' must be greater than the

lower bound of x'.

Table 6 Rules for computing bounds for relational operators. x' and y' are tainted; y is untainted.

Operation If true If false

yx <' 1 '.:) '.(−=≥ yubxyubxif ylbxylbxif =< '.:) '.(

'' yx <
1 '. '.:) '. '.(

1 '. '.:) '. '.(
+=≤
−=≥

lbxlbylbxlbyif
ubyubxubyubxif

lbylbxlbylbxif

ubxubyubxubyif
 '. '.:) '. '.(

 '. '.:) '. '.(
=<
=>

yx ≤' yubxyubxif => '.:) '.(1 '.:) '.(+=≤ ylbxylbxif

'' yx ≤
lbxlbylbxlbyif

ubyubxubyubxif
 '. '.:) '. '.(

 '. '.:) '. '.(
=<
=>

1 '. '.:) '. '.(

1 '. '.:) '. '.(
+=≤
−=≥

lbylbxlbylbxif
ubxubyubxubyif

yx =='
yubx
ylbx

=
=

 '.
 '.

1 '.:) '.(

1 '.:) '.(
−===
+===
yubxyubxif

ylbxylbxif

'' yx ==
) '., '.('. '.

) '., '.('. '.
ubyubxMINubyubx

lbylbxMAXlbylbx
==
==

no changes

21

The equality operators are handled differently. If an equality comparison to an untainted value

is true, then the lower and upper bounds are set to that value. If the comparison is false, meaning

the variable is not equal to the value, no changes are made unless the value happens to equal one

of the bounds. When a test for equality between two tainted variables is true, the bounds of both

variables are adjusted to the intersection of the ranges before the comparison. If two tainted

variables are determined to be not equal, no changes are made to either variable.

No additional instrumentation is needed for control statements such as if statements and

loops. This is due to the fact that comparisons are removed from control statements and replaced

with a single Boolean variable during simplification. Adjustments to ranges are done at

comparison expression statements which, after simplification, commonly precede control

statements.

Integers can also be passed into functions as parameters and returned from functions as return

values. The state of the function arguments must be propagated into the corresponding

parameters. This is accomplished using a two-step process. First, the state of each function

argument is stored into a separate table that is specifically used for passing parameters. Second,

when the callee function begins, the state of each parameter is initialized using this table. This

table is indexed by the offset value provided by SUDS. Described in Section 3.1, the offset is

used to keep track of which parameter is being used and also accounts for integers within structs

that are passed as parameters. A similar two-step process is used for propagating return values

when the function has completed.

Instrumentation routines are also present to add input state to the table. These routines are

called when a system library function that obtains input is called. In addition, instrumentation

also copies state for functions like memcpy.

4.1.2 Tracking Arrays and Pointers

The array shadow state table stores additional state for arrays and pointers. The table is indexed

by the base address and contains the following four fields:

• base address – Base address of the array or object being pointed to.

• name – Name of the variable, pointer, or expression at creation, used for debugging.

• size – Size of the array or object being pointed to in bytes.

• illegal pointer – Set to true if the pointer could be pointing out of bounds.

22

Entries in this table are added in two situations: when an array is declared (locally or globally)

or when a pointer is assigned a new value. For arrays, the base address (and index of the shadow

state table entry) is the starting address of the array and the size is the number of bytes in the

array.

The different cases where pointers are added to the shadow state table are described in Table

7. In all cases, the base address, and index into the shadow state table, is the value of the pointer

after the operation has completed. When a pointer is assigned to a string constant, the result of a

dynamic memory allocation, or the address of a local variable, it points to the beginning of the

object. The size is set based on how the pointer is initialized. The pointers are not flagged as

illegal since they point to the beginning of the object and not out-of-bounds.

For pointer arithmetic operations, the information from the pointer used as a source operand is

merely copied into the new entry. The index however is the resulting address after the arithmetic

operation. Since pointer arithmetic operations are often used as the first step in referencing

arrays, an additional check is made to see if the pointer could be pointing out-of-bounds. This is

done using the shadow state of the integer i if i is tainted and is described later in this section.

No changes to the table occur when a pointer variable is assigned the result of another pointer

variable. Consider the assignment p = q and assume that q points to address 1000. Since q has

already been assigned the address 1000 from an early statement, there already exists an entry for

address 1000 in the shadow state table. The fact that p now points to address 1000 does not

change the object at address 1000 in any fashion. Similarly, no instrumentation is needed when

Table 7 Adding pointers to the input checker array and pointer shadow state table.

Pointer is assigned to … Size Base Address Illegal Pointer

a string constant size of the string base address of the string false

the result of a malloc/calloc call size of the allocation base address of the allocation false

the address of a variable size of the variable address of the variable false

the result of p + i or p – i where p is
a pointer and i is an integer size of p's entry base address of p's entry

true if the operation,
using i’s shadow state,
exceeds the bounds

23

passing pointers (or arrays which are treated as pointers) into functions7

Entries are removed from the table when an array goes out of scope or when an object is

deallocated. However, entries are not removed in other cases (string constant and address of

variable) for performance purposes. The primary focus of this input checker is to detect out-of-

bounds errors, opposed to temporal memory-access errors where a pointer is pointing to memory

that has been deallocated. By being more careful with removing entries from the table, these

types of errors can be detected.

 or in other cases where

pointer values are simply copied from one memory location to another.

Upon an array reference or a pointer arithmetic operation, both the integer and array shadow

state tables are accessed. First, the array shadow state table is accessed to obtain the size and

base address. The acceptable lower and upper bounds are computed using the size of the array in

bytes (size), base address (baseAddr), current value of the pointer being used in the reference

(currAddr), and the size of the elements of the array (eltSize):

1)(−
−−

=





 −
−=

eltSize
baseAddrcurrAddrsizeub

eltSize
baseAddrcurrAddrlb

If the entry cannot be found in the shadow state table, it means that the pointer is no longer

valid and an error message is emitted. A warning is also displayed if the element size does not

divide evenly.

Once the acceptable bounds are determined, the next step is to get the entry from the integer

shadow state table that corresponds to the index used in the array reference. If the entry is not

present, then the integer is not tainted and no checks are performed. If the entry is present, the

upper and lower bounds are compared to the allowable bounds for the array. For array

references, if it is possible for the array to be accessed out-of-bounds, an error message is emitted

and the program is (optionally) aborted. If the check passes, the program continues execution as

normal. No shadow state for the array or integer is modified during the check.

For pointer arithmetic operations, if it is possible for the pointer to be out-of-bounds, the

illegal pointer flag is set to true but an error is not reported. If a pointer dereference operation is

executed with an illegal pointer, then an error is reported. The rationale for this rule is that a

7 An exception to this rule is when array arguments are passed into main. This is why SUDS has different
instrumentation interface functions for main.

24

program may intentionally have a pointer point out-of-bounds (commonly pointing just beyond

the last array element). This is not a problem unless it is dereferenced.

4.1.3 Array Reference Example

Here we will show how our technique can find the off-by-one error in the code segment from the

example in Fig. 5. In a conventional dynamic defect detection implementation, the defect will

not be detected unless x is four. Fig. 6 displays the original code, the simplified code, and the

simplified code with added instrumentation routines. The first three parameters to the

instrumentation functions are the same for all routines: file name, line number (of the original

source code file), and a unique identifier (in this example the unique ids range from 36 to 48).

In the instrumented version, arrays are added to the table at lines 8 and 21. At line 8, the array

declared at line 3 is added to the table. The last three parameters are used to initialize the shadow

state table entry for this array: name, base address, and the size. An array is added at line 21 for

the string constant that is ultimately used as the format string for the scanf call. The array

elements are initialized individually as a result of simplification starting at line 10. Each of these

assignments is an integer assignment. Since the right-hand side contains a constant, the

destination array element is considered untainted and removed from the table.

At line 23, scanf is executed, placing the value entered by the user into x. When the value is

first read from input, it is given a range to span all possible values. Since x is an unsigned integer

(or more technically T_29 points to an unsigned integer), the initial lower bound is zero and the

initial upper bound is UINT_MAX. At the comparison in line 26, the bounds will be adjusted

depending on what value is actually entered by the user. If the user enters a number greater than

four, the comparison will be true. This will cause the lower bound of x to be set to five. Control

will then flow into the if statement and the program will exit. The more interesting case occurs

when the if statement is false. This means that x must be less than or equal to four; the upper

bound of x is set to four. The lower bound of x remains at zero.

25

 Original Program Program after simplification
1
2
3
4
5
6
7

int a;
unsigned int x;
int array[5] = {1, 2, 3, 4, 5};
scanf("%d", &x);
if (x > 4) exit(-1);
x++;
a = array[x];

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

int a;
unsigned int x;
int array[5];
char *T_28;
unsigned int *T_29;
int T_30;
char *T_31;

array[0] = 1;
array[1] = 2;
array[2] = 3;
array[3] = 4;
array[4] = 5;
T_28 = "%d";
T_29 = &x;
scanf(T_28,T_29);

T_30 = x > 4;
if (T_30) {
 exit(-1);
}

x = x + 1;
a = array[x];

1

Program after instrumentation

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

int a;
unsigned int x;
int array[5];
char *T_28;
unsigned int *T_29;
int T_30;
char *T_31;
process_array_birth("test.c", 5, 36, "array", &(array[0]), 5 * (sizeof(int)));

array[0] = 1;
process_int_remove("test.c", 5, 37, &(array[0]));
array[1] = 2;
process_int_remove("test.c", 5, 38, &(array[1]));
array[2] = 3;
process_int_remove("test.c", 5, 39, &(array[2]));
array[3] = 4;
process_int_remove("test.c", 5, 40, &(array[3]));
array[4] = 5;
process_int_remove("test.c", 5, 41, &(array[4]));
T_28 = "%d";
process_array_birth("test.c", 9, 42, "T_28", T_28, 3);
T_29 = &x;
scanf(T_28,T_29);
process_new_input("test.c", 9, 43, "T_29", T_29, 0LL, 4294967295LL);

T_30 = x > 4;
process_int_rel_op("test.c", 10, 44, 36, "T_30", &(T_30), T_30, &(x), x, 0, 4);
if (T_30) {
 exit(-1);
 end_checker("test.c", 10, 45);
}

x = x + 1;
process_int_binary_op("test.c", 11, 46, 19, "x", &(x), &(x), x, 0, 1);
process_array_ref("test.c", 12, 47, array, sizeof(int), &(x));
a = array[x];
process_int_copy("test.c", 12, 48, "a", &(a), &(array[x]));

Fig. 6 Input checker example

26

When the value of x is incremented at line 33, the lower bound of x is incremented from zero

to one and the upper bound is incremented from four to five. When the array check occurs at line

35, the interval of x is compared to the size of the array. Even though x may have a legal value,

an error message is displayed since it is possible for the input to be five, which exceeds the

bounds of the array.

In this example, the array reference defect could be found even if the user did not enter the

precise failing value of four. However, the defect can only be detected if the array reference is

actually executed. In this case, the defect would be missed if the user entered a value greater than

four as the program exits. This problem is mitigated to a large extent if the program is run with a

test suite that obtains high code coverage.

4.1.4 Limitations

Since our approach is dynamic and relies on the particular control path taken through a program,

it is an unsound approach, meaning that it is possible to miss actual bugs. With respect to a

particular control path, our approach is still unsound. One problem stems from the use of run-

time information for arrays. An example, illustrated in Fig. 7, is where the actual size of the array

is controlled by user input. If the user enters a size from one to nine, the array will overflow as

the upper bound of index is nine on line 13. However if user enters a size input of ten, the

defect will be missed since nine is a legal upper bound. This missed defect occurs despite

executing the exact same control path.

Our technique also is incomplete in that it can produce false alarms, signaled bugs that are not

actual bugs. Symbolic relationships between different variables are not tracked and this can

cause operations that narrow bounds to be missed. Consider the example shown in Fig. 8. The

1
2
3
4
5
6
7
8
9
10
11
12
13

unsigned int size;
unsigned int index;
int *array;

size = getchar();
if (size <= 0 || size > 10) exit();
array = (int *) calloc(size, sizeof(int));

/* initialize array */

index = getchar();
if (index < 0 || index > 9) exit();
y = array[index];

Fig. 7 Example of an unsound path

27

variable a is assigned a value from input at line 6 and thus has a maximal upper bound. Variable

a will still have the same maximal upper bound at the array reference at line 9 since a is not used

in a check or reassigned. This will cause the checker to report an error. However, this is not an

actual defect since b is assigned the same value at line 7 and is checked at line 8. The checks at

line 8 will update the bounds of b appropriately but the bounds of a are unchanged since the

checker does not store the fact that a and b are equal to one another.

It is important to note that the unsoundness and incompleteness are functions of the array

checker itself and not a property of SUDS itself. It is possible to create defect detection tools that

are sound (with respect to the given input) and complete (no false alarms). Since SUDS is a

dynamic defect detection tool, it is not possible to create a checker that is completely sound

(catch every defect) unless every single input combination is tested – an impossible goal for most

programs.

4.2 Arithmetic Checker

The arithmetic checker is used to check other situations where input integer data could be used

dangerously and possibly lead to software defects. Here is a list of checks employed by the

arithmetic checker:

• Unconstrained input is used an addition, subtraction, and multiplication. This likely leads

to overflow.

• Unconstrained size of a memory allocation.

• Divide by zero errors for division and modulus.

The internals of this checker are very similar to that of the array checker detailed in the

previous section. One key difference is that only an integer shadow state table is needed since

none of the checks involve pointers and arrays.

1
2
3
4
5
6
7
8
9

int a;
int b;
int x;
int array[5];

scanf(“%d”, &a);
b = a;
if (b < 0 || b >= 5) exit();
x = array[a];

Fig. 8 Example of a false alarm

28

The integer shadow state table stores tainted integers with each entry containing the following

five fields:

• address – Address of the variable (same as the index to the shadow state table), stored for

debugging purposes.

• name – Name of the variable, only used for debugging and diagnostic purposes.

• lower bound – Lower bound, lowest possible value for the variable.

• upper bound – Upper bound, highest possible value for the variable.

• initial upper bound - Initial upper bound, same as the upper bound when introduced.

 The last field (initial upper bound) is unique to this checker. It tracks the initial upper bound

when the input variable is introduced. It is initialized to the upper bound upon creation and does

not change in subsequent operations. For the two unconstrained checks, an error message is

reported if the upper bound is equal to the initial upper bound since the input has not been

constrained in any way. An example of how this can lead to an error is shown in Fig. 9. The

value of num comes from input on line 5. It is unconstrained in the multiply operation on line 6.

This can lead to overflow if a large value is input by the user. This can cause memory issues

when this overflow value is subsequently used by malloc in line 7.

The lower and upper bounds are updated using the same rules as the array checker (see Tables

4, 5, and 6). For divide and modulus operations, the bounds of the divisor are checked to

determine if zero is included in the range. If zero is in the range, an error is reported.

4.2.1 Limitations

This checker emphasizes simplicity and performance. As a consequence, error reports emitted by

the checker could very well be false alarms. The two unconstrained checks are likely sources of

defects but they have to be checked manually to determine if it is an actual defect. The divide-

by-zero check could also result in a false alarm if the range includes the value zero but the value

was explicitly excluded separately in the program using the not-equal (!=) operator.

1
2
3
4
5
6
7

int num;
int size;
int *array;
printf(“How many elements? “);
scanf(“%d”, &num);
size = num * sizeof(int);
array = malloc(size);

Fig. 9 Example of an unconstrained input error

29

4.3 String Checker

Another common source of security bugs is the improper use of the string library functions in C.

Since the functions provide no checking, the responsibility resides with the programmer. To

complicate matters, there is little consistency on how the different string functions operate. For

instance, strcpy always copies a null character but strncpy will not copy the null character

unless one is present within the specified limit.

Input strings are shadowed by state variables that hold the maximum possible size of the

string. Like integers, strings from external input sources are considered to have an unbounded

maximum size. Comparisons that test the length of an input string can decrease the maximum

string length. When a string copying function is called, the maximum length of the string is

checked to ensure it will fit in the destination. In addition, the shadow state for strings contains a

null flag which is set if the string is guaranteed to contain a null character. The null flag is

checked for all string functions that expect a null-terminated string. On string copies, the null

flag is only set on the destination string if it is copied in a manner that guarantees that a null

character is copied or added to the string.

An example of a defect involving strings is shown in Fig. 10. On line 5, there is a check to

filter out strings that are greater than 16 characters. However, strlen does not count the null

character. This means that if the source string is exactly 16 characters (not including the null

character), it will pass the check though it contains 17 characters, including the null character. As

a result, the null character does not get copied by the strncpy in line 6, creating a potentially

dangerous strcpy on line 8 because the source is not null terminated. This type of problem is

difficult to catch during testing since it requires a source string of exactly 16 characters. Also, the

defect may not manifest in incorrect output when such an input is presented; this is likely the

case if the character after the temp array happens to be a null.

1
2
3
4
5
6
7
8
9
10

char *bad_string_copy(char *src)
{
 char *dest;
 char temp[16];
 if (strlen(src) > 16) return NULL;
 strncpy(temp, src, 16);
 dest = (char *) malloc(16);
 strcpy(dest, temp);
 return dest;
}

Fig. 10 Example of a string defect

30

4.3.1 Tracking Strings

The shadow state table employed by the string checker tracks additional state for all strings and

character arrays (which are potentially used as strings). Entries in the table are indexed by their

base address.

All strings and arrays in the program are tracked with five fields:

• base address - Base address of the string (also the index).

• name - Name of the array or pointer used.

• actual size - Stores the actual run-time size of the array and cannot change.

• maximum string size - Stores the maximum size of the string in the array. It refers to the

largest possible size of a string that a user can supply. Strings that come from input have

an initial maximum string size of infinity (INT_MAX), unless constrained. For arrays that

do not contain strings, the maximum string size is equal to the actual size.

• known null - A flag that is true if the string is known to contain a null character. If it is

false, it is not known whether a null character is present or not. During checking, it is

assumed that the string is not null terminated if this flag is false.

Arrays and pointers are added to the table based on the rules listed in Table 8. For array

declarations and string constants, the actual size and the maximum string size are the same since

they do not hold strings from input. The known null flag is false for locally declared arrays since

they are uninitialized upon declaration. Strings that come from the command line are considered

input and are marked as having an infinite maximum string size since the user could have

supplied a string of any length. In most cases, dynamically allocated arrays are processed

identically to the creation of arrays declared at compile-time. One exception is when the size of

the allocation is dependent on the size of another string. This case is described in the next

section. The result of a pointer arithmetic operation results in copying the state of the pointer to

the destination pointer.

Except for string function calls, the only operation that can modify the state of an existing

pointer is when zero or null is assigned to an array element. This causes the known null flag to be

set. The flag is also set when functions bzero and memset (to zero) are called. Local arrays

are removed from the table when they die; dynamically allocated arrays are removed when they

are freed.

31

4.3.2 Tracking String Lengths

In order to properly adjust the maximum size of a string, it is necessary to track integers that

store string lengths. A shadow state table is used to store any integer that is storing a string

length. Each entry in the shadow state table stores the following:

• name - name of the integer

• string address - starting address of the corresponding string.

• offset - difference between the value in the integer and the actual string length.

This offset field is important as our approach includes the null character in the length of a

string while the strlen function does not. Therefore, the initial offset for a variable assigned

from strlen is -1. Addition and subtraction operations on the string length adjust the offset

appropriately. For example, adding one to a strlen result to account for the null character will

result in an offset of zero. While offsets of -1 and 0 are most common, variables occasionally

store different offsets during concatenation operations.

The maximum length of the string can be reduced when a string length is used in a

comparison. Let n be a variable holding a string length for string s with offset d. Let c be an

integer constant (or any integer variable not holding a string length). Assume there is a

Table 8 Adding arrays and pointers to the string checker shadow state table.

Program Construct Base Address Actual Size Maximum String
Size

Known
Null

local character array declaration base address of the array size of the array size of the array false

global character array
declaration base address of the array size of the array size of the array true

string constant base address of the string size of the string size of the string true

string from the command line
(like argv[2]) base address of the array size of the string INT_MAX true

call to malloc/calloc
(allocation size does not
correspond to a string length)

base address of the
allocation size of the allocation size of the allocation false

call to malloc/calloc
(allocation size corresponds to a
string length)

base address of the
allocation size of the allocation

maximum string size
of string based on the
string length

false

q = p + i or p – i where
p is a pointer and i is an integer The entry for p is copied to a new entry for q.

32

comparison (n ≤ c). If (n ≤ c) is true, the maximum size of string s is adjusted to c + d unless the

maximum size is already smaller. If (n ≤ c) is false, no adjustment is made to s since there is no

restriction on the maximum size.

If an integer n holding a string length for a string s is used as an argument to size to malloc

or calloc, the maximum string size of the newly allocated string will be set using the

maximum string size of s, adjusted by the offset of n. This is commonly done before a string

copy to ensure the destination has enough space to hold the source string.

4.3.3 Processing String Functions

Table 9 shows how some common string library functions are handled. In the table, the variables

s (source string), d (destination string), and fmt (format string) refer to strings. The variable n is

an integer and refers to the size of a copy. The shadow state variables actualSize, maxStringSize,

and knownNull are represented using structure notation such as s.maxStringSize. For functions

that copy strings into a destination buffer, the size of the destination is conservatively determined

by taking the maximum of the actual size and the maximum string size. For brevity, we use

SIZE(s) = MAX(s.actualSize, s.maxStringSize) to represent the size of destination buffers.

Rules 1 and 2 illustrate how string copies are handled. In strcpy, the source must be null

terminated and the size of the maximum string size must fit in the destination. If both the null

check and size check pass, the destination will then have knownNull set to true and

maxStringSize equal to that of the source. In strncpy, an additional check ensures that the

destination size is less than the supplied size (n) parameter. This is done regardless of the size of

the source string since nulls are padded at the end if the source is smaller. The maxStringSize is

set to be the smaller of n and maxStringSize of the source. The knownNull flag is set true only if

the entire string is copied. The strcat functions (Rules 3 and 4) are handled similarly to

strcpy. The key differences are that the destination must be null terminated and the run-time

size of the destination string is subtracted from the size comparison.

When getting a string from input, using gets (Rule 5) always results in an error since there is

no limit placed on the number of characters that can be copied. If the safer fgets is used (Rule

6), the size parameter n is compared to the size of the destination buffer. For scanf and similar

functions (Rule 7), the width is extracted from the format string fmt. An error is reported if no

width is specified. Otherwise, the width is compared against the size of the destination buffer.

33

For fgets and scanf, the destination is guaranteed to be null terminated so knownNull is set

to true.

The function sprintf (Rule 8) is implemented to ensure that the sum of the maximum sizes

of all source strings does not exceed the destination size. In snprintf (Rule 9), the sum of the

maximum sizes of the source strings is compared to the parameter n. If the sum is greater than n,

Table 9 Representative string function rules

 String Function Checks (Assertions) Modified State

1 strcpy(d, s) s.knownNull == TRUE
s.maxStringSize ≤ SIZE(d)

d.maxStringSize = s.maxStringSize
d.knownNull = TRUE

2 strncpy(d, s, n) s.knownNull == TRUE
n ≤ SIZE(d)

d.maxStringSize = MIN(s.maxStringSize, n)
d.knownNull = s.maxStringSize ≤ n

3 strcat(d, s) s.knownNull == TRUE
d.knownNull == TRUE
s.maxStringSize ≤ SIZE(d) - strlen(d)

d.maxStringSize = s.maxStringSize + strlen(d)
d.knownNull = TRUE

4 strncat(d, s, n) s.knownNull == TRUE
d.knownNull == TRUE
MIN(n + 1, s.maxStringSize) ≤
 SIZE(d) - strlen(d)

d.maxStringSize =
 MIN(n + 1, s.maxStringSize) + strlen(d)
d.knownNull = TRUE

5 gets(d) Automatic error!

6 fgets(d, n, stream) n ≤ SIZE(d) d.maxStringSize = n
d.knownNull = TRUE

7 scanf(fmt, d)
Also: fscanf,
sscanf

get width from fmt
width ≤ SIZE(d)

d.maxStringSize = width
d.knownNull = TRUE

8 sprintf(d, fmt, s) s.knownNull == TRUE
sum of all source strings ≤ SIZE(d)

d.knownNull = TRUE

9 snprintf(d, n, fmt, s) s.knownNull == TRUE
n ≤ SIZE(d)

d.maxStringSize = n
d.knownNull =
 (sum of all source strings ≤ SIZE(d))

10 d = strdup(s) s.knownNull == TRUE d.actualSize = s.maxStringSize
d.maxStringSize = s.maxStringSize
d.knownNull = TRUE

11 String functions that
only read strings such
as strcmp and atoi

Check that all input source strings are
null terminated.

Legend:
• s, d, fmt are strings.
• n is an integer and refers to a parameter that restricts the number of characters written into a destination buffer.
• The macro SIZE(s) is equal to MAX(s.actualSize, s.maxStringSize).

34

then there is no guarantee that a null will be copied and knownNull is set to false. The function

strdup (Rule 10) copies maxStringSize and knownNull from the source string to newly created

destination string. String functions that only read strings check to see if all input strings are

properly null terminated (Rule 11).

4.3.4 String Example

A detailed example illustrating how string defects can be found is shown in Fig. 11. The two

buffers buf0 and buf2 have an initial maximum size equal to their static sizes. In line 6, the

input value argv[1] is copied into buf0 using strncpy. While the specified size of 12 does

not cause an overflow, the knownNull flag for buf0 remains false since a null would not have

been copied if argv[1] has at least 12 characters. The strdup in line 7 copies the state values

of argv[2] into buf1. If value is true at line 9, execution will continue to line 10 where the

pointer p is assigned to point to the second element of buf0. This causes p to have the same

shadow state buf0. When p is used in the strcpy, an error is signaled because p which is

pointing to the same string as buf0 may not be null terminated.

In the case where value is false at line 9, a comparison is made based on the length of

buf1. Assuming it is less than or equal to 6, control will be taken to line 14 and the maximum

size of buf1 will be restricted to 7 (6 plus 1 for the null character that strlen does not count).

The knownNull flag is set for buf0 in line 14. In line 15, an error results because the sum of the

maximum sizes of the two source buffers (19) can exceed the size of the destination (18).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

char buf0[12];
char *buf1;
char buf2[18];
char *p;

strncpy(buf0, argv[1], 12);
buf1 = strdup(argv[2]);

if (value) {
 p = buf0 + 1;
 strcpy(buf2, p);
}
else if (strlen(buf1) <= 6){
 buf0[12] = 0;
 sprintf(buf2, “%s%s”, buf0, buf1);
}

buf0: maxStringSize = 12, knownNull = FALSE

buf2: maxStringSize = 18, knownNull = FALSE

buf0: maxStringSize = 12, knownNull = FALSE
buf1: maxStringSize = ∞, knownNull = TRUE

p: maxStringSize = 12, knownNull = FALSE
p.knownNull == FALSE  ERROR

buf1: maxStringSize = 7, knownNull = TRUE
buf0: maxStringSize = 12, knownNull = TRUE
(buf0.maxStringSize + buf1.maxStringSize) >
(buf2.maxStringSize)  19 > 18  ERROR

Fig. 11 Example of detecting string defects

35

4.3.5 Limitations

As with the other two checkers, missed bugs and false alarms are possible. Missed bugs are due

to primarily two reasons. First, the concatenation checks (strcat and strncat) rely on the

run-time length of the string currently in the destination buffer. The size of the string may be a

factor if a defect is detected or not. Second, the checker only looks at the string functions. It is

not able to handle homemade string functions that perform operations using pointer operations.

False alarms are possible due to limitations in the string length processing. As with the

integers in the array checker, some symbolic relationships between variables may be missed

resulting in lost opportunities to narrow the maximum string size of a string. It is also possible

for the knownNull to be set to false incorrectly for similar reasons.

5 Static Analysis

The static analysis phase of SUDS consists of traditional compiler analyses and two additional

analyses (taint analysis and program slicing) that allow the user to focus the instrumentation on

particular types of defect and/or particular statements within a program.

Within the static analysis phase, these subphases are executed in the following order:

• Dummy variable creation: Dynamic memory is modeled by call-site. For each static

call to a system function that allocates memory, a dummy variable is created and the

return value points to the dummy variable.

• Control flow graph: The control flow graph is created intraprocedurally. Basic blocks

that are not reachable from the starting point are excluded from future subphases.

• Call graph: A complete call graph is created including calls made by function pointers.

The call graph and pointer analysis phase are performed together until both algorithms

converge. Functions not reachable from main are excluded from future subphases.

• Pointer analysis: The interprocedural pointer analysis developed by Hind et al. (1999) is

used to compute the set of variables that a pointer can point to. Both flow-sensitive and

flow-insensitive versions of the algorithm are provided (selected by a command-line

switch). Structs, unions, arrays, and dummy heap variables are treated as single variables.

Updates to such variables are done in a weak fashion without killing prior relationships.

• Data-flow analysis: Data-flow analysis is used to determine the set of definitions

generated, killed, and used by each statement. The analysis uses a standard data-flow

36

algorithm that iterates until steady state. For function calls, live definitions are propagated

from the caller to the callee function on a parameter by parameter basis. At return points,

definitions that refer to global variables are propagated to all callers. Other definitions are

only propagated back to the caller if the definition refers to a variable that had at least one

live definition prior to the call. Though the algorithm is not truly context-sensitive, this

last rule restricts the flow of definitions from a call site to a completely different return

point. Any definitions live in the caller just prior to the call are also considered live just

after the call.

• Tainted data propagation: Determines which variables are tainted. See Section 5.1.

• Program slicing: Determines which statements and variables influence an operation or a

particular set of operations. See Section 5.2.

The output of these last two phases can be used by the instrumentation phase to refine the

added instrumentation. This allows the instrumented program to focus on particular types of

defects and statements, decreasing the run-time overhead. This is described in more detail in

Section 5.3.

5.1 Detecting Tainted Data

The tainted data propagation phase detects the set of variables that are considered tainted. The

definition of what is considered tainted initially is easily altered within the source code. Here are

some examples of what different users might consider to be tainted:

• Any data that comes from input

• Any data that comes from the network

• Data that comes from a particular system call

• Data returned from a function call

• Data produced by a particular statement

After the initial marking of tainted data, the tainted data propagation algorithm will mark

variables tainted that are dependent on the initial tainted data.

The algorithm is similar to constant propagation, a compiler optimization that replaces

variables that are known to be constant. The key difference is that SUDS propagates attributes

instead of values. A variable definition will have one of two attributes: tainted or untainted. The

algorithm proceeds iteratively and processes each statement individually during each iteration.

37

For arithmetic and copy operations, all definitions will be marked tainted if any of the uses are

tainted. The definitions for bitwise and relational operations are always considered not tainted.

The analysis is interprocedural in a context-insensitive fashion. For function calls and returns,

the tainted attribute is propagated from argument to parameter and from return statements to

return values.

Once a definition enters the tainted state, it remains in that state for the duration of the

algorithm. The algorithm continues to iterate until steady state (no definitions enter the tainted

state). In the worst case, the algorithm takes O(ds) time where d is the number of definitions and

s is the number of statements. In practice, the algorithm takes less time, typically only needing

between 5-15 iterations. The result of this phase is that definitions are either marked as tainted or

untainted. In addition, statements that generate a tainted definition are marked as tainted. This

information can be used by the instrumentation engine to aid in the instrumentation process.

5.2 Program Slicing

Program slicing (Weiser 1981) can be used to determine the statements that influence the

operation of a particular operation. Like the tainted propagation algorithm, a definition can be

either in one of two states: in the slice or not in the slice.

A backwards slicing algorithm is employed starting with the slicing criterion. The slicing

criterion will differ depending on how it is used. Some examples:

• All array references

• All pointer dereferences

• All string function calls or a particular string function call

• A particular statement

• All statements within a particular function

By default, all definitions that are used in the statement(s) in the criterion are added to the

slice. It is also possible to select only some of the uses to be in the slice. For instance, there are

two sets of uses for a pointer dereference: one set for the pointer being dereferenced and one set

for the memory locations that are potentially being pointed to by the pointer. A user may only

want one of the two sets to be included in the slicing criterion.

After the initial slicing definitions are marked, the slicing algorithm proceeds iteratively. If

any definition generated by a statement is in the slice, then all definitions used by the statement

38

are added to the slice. Indirect uses from control statements are also added to the slice by default:

if any statement in a control statement is in the slice, then the control statement and its uses are

added to the slice. The user can exclude indirect uses by use of a command-line switch. Since the

resulting slice is only used for analysis purposes, no attempt is made to keep the slice an

executable program. The algorithm is interprocedural and context-insensitive.

Once a definition is added to the slice, it remains in the slice for the duration of the algorithm.

The algorithm continues to iterate until steady state (no definitions enter the slice). In the worst

case, the algorithm takes O(ds) time where d is the number of definitions and s is the number of

statements. The result of this phase is a list of definitions and statements in the slice.

5.3 Using Static Analysis Results During Instrumentation

The instrumentation engine can use the results of the static analysis phases to focus the

instrumentation. If both taint propagation and program slicing are used, then an interesting

statement is one that is both tainted and in the slice. During the instrumentation phase,

instrumentation calls are added as normal for interesting statements. However for statements that

are not interesting, a user may decide to call a different instrumentation routine or omit the call

altogether, depending on the instrumentation model. Some checkers may only use tainted data,

others may only use the slicing algorithm, and some may use neither. In the latter case, the static

analysis phase is not needed and subsequently not run.

5.4 Static Analysis Example

To illustrate how static analysis can be used to focus the instrumentation engine, we describe

how the tainted propagation and program slicing algorithms are used in conjunction with the

input array checker described in Section 4.1.

In the tainted propagation algorithm, variables that directly come from a system function that

prompts for input or obtains data from an input source such as a file or network (examples:

scanf, getc, read) are marked as tainted. In addition, we conservatively include return

values from string conversion functions such as atoi since many integers from input start out as

strings and then get converted to integers (integers passed in as command line arguments are a

good example). The initial slicing criterion is the set of statements that contain array references

39

or pointer dereferences since that is what is being checked. We exclude indirect uses from

control statements when performing the slicing.

A statement is considered interesting if it is both tainted (potentially derived from input) and

in the slice (potentially could be used in an array reference or pointer dereference). Since indirect

uses are excluded from the slice, a statement that compares integers is marked as interesting if it

is tainted regardless if it is in the slice or not. Integer instrumentation is only applied to

interesting integer statements. Statements that operate on integers that are deemed not interesting

do not need instrumentation. Since only integers are analyzed, none of the instrumentation used

in the management of the array shadow state table is removed. Left as future work, it would be

possible to extend these analyses to remove unnecessary array instrumentation too

The primary benefit of focusing is the instrumentation for the input checker is to reduce the

amount of run-time overhead. Results of applying the static analyses described in this section can

be found in Section 6.3.

5.5 SUDS as a Static Analysis Tool

The static analysis phases of SUDS can also be used to create static analysis tools. Phases that

attempt to detect defects in the code could be added to SUDS taking advantage of the existing

analyses. Since SUDS has both static analysis and dynamic instrumentation capabilities, it is

possible to create powerful tools that combine static and dynamic techniques. SUDS could also

be used to create other types of static analysis tools. As an example, we implemented a phase

that counts the number of paths in a function (Larson 2009). Using the slicing phase provided by

SUDS, we analyzed the effect of slicing has the number of paths through a program.

6 Results

To demonstrate the effectiveness of SUDS, 18 different programs were used as test subjects for

our three checkers as shown in Table 10. Four of the programs (anagram, ft, ks, and yacr2) are

from the Pointer-Intensive Benchmark Suite (1995). Ten programs are from the SIR repository

(Do et al. 2004), specifically the seven Siemens benchmarks (printtokens, printtokens2, replace,

schedule, schedule2, tcas, and totinfo) and the programs flex, gzip, and space. These programs

each include several versions that contain seeded defects. The remaining four programs include

a calculator (bc), an FTP server (betaftpd) and two web servers (ghttpd and thttpd). Table 10 also

40

includes the number of source code lines as computed using SLOCcount (2004) and statement

coverage of all tests run using gcov.

Results for defect detection, presented in Section 6.1, include defects found in any test or, in

the case of the SIR tests, in any version. A defect is only counted once even if it appears in

multiple tests or versions (for the SIR tests). For the tests in the SIR repository and the Pointer-

Intensive Benchmark Suite, we used the provided test suites to exercise the code. The other

programs (betaftpd, ghttpd, thttpd, and bc) were primarily tested manually and had low code

coverage (41-61%). If a defect was detected by one of our checkers, it was manually inspected to

make sure that it indeed was an actual defect or a false alarm.

The performance results, outlined in Section 6.2, were taken using a representative and

sufficiently long test input. For the SIR tests that had multiple versions, a representative non-

seeded version was used. The same version and input was used throughout the experiments. We

did not use the program ghttpd for performance testing since it forked off multiple processes. We

also did not use tcas or totinfo which executed too fast, regardless of the input, to get meaningful

data. All programs were compiled using GCC with an -O4 optimization level and were run on a

3.2 GHz Xeon processor with 4 GB of RAM. For comparison purposes, we also ran the

benchmarks with Valgrind (Nethercote and Seward 2007), a popular dynamic tool that is used to

catch memory related errors.

Table 10 Programs used as test subjects

Program Description Lines Coverage
anagram anagram generator 354 90%
bc calculator 5,457 52%
betaftpd file transfer daemon 2,949 61%
flex lexical analyzer 8,830 88%
ft spanning tree 1,105 67%
ghttpd web server 608 58%
gzip compression utility 5,232 65%
ks graph partitioning 552 99%
printtokens lexical analyzer 477 96%
printtokens2 lexical analyzer 402 100%
replace pattern matching / substitution 514 96%
schedule priority scheduler 295 99%
schedule2 priority scheduler 298 99%
space specialized interpreter 6,200 92%
tcas aircraft collision avoidance system 136 99%
thttpd web server 6,380 41%
totinfo statistics calculator 346 95%
yacr2 channel router 2,591 88%

41

6.1 Defects Detected

Using our three checkers, we were able to detect 26 defects in the 18 programs, as shown in

Table 11. The string checker found 13 defects, the arithmetic checker detected 9 defects, and the

array checker accounted for 4 defects. There were also 10 false alarms, 6 of them coming from

the string checker.

Of the 13 string checker defects, 8 were due to string copy operations that exceeded the

bounds of the destination buffer. Two defects were the result of a string not being properly null

terminated. Two other defects were due to using fgets and gets improperly; simply using

gets is a defect. The last defect was due to using uninitialized data to guide a loop. The six

false alarms were quite different in how they were triggered. Two cases were due to manual

string copy operations that caused the checker to think that a string was not null terminated when

it was. Two other false alarms were due to relationships between pointers that are not tracked.

Another false alarm occurred when the size of the destination buffer was based on the sum of

two string lengths – our checker does not support the addition of two string length variables.

Finally, our checker always assumes that the null character is in the last position; this assumption

led to another false alarm.

Table 11 Defects Detected

 Defects detected False alarms detected
 array arith string array arith string
anagram 0 0 1 0 0 0
bc 0 0 0 1 0 0
betaftpd 0 0 2 0 0 1
flex 0 0 2 1 0 3
ft 0 2 0 0 0 0
ghttpd 0 0 4 0 0 1
gzip 0 0 2 0 0 0
ks 2 0 0 0 0 0
printtokens 0 0 0 0 0 0
printtokens2 0 0 0 0 0 0
replace 0 0 1 0 0 0
schedule 0 1 0 0 0 0
schedule2 1 1 0 0 0 0
space 0 0 1 0 1 0
tcas 1 1 0 0 0 0
thttpd 0 0 0 0 0 1
totinfo 0 2 0 0 0 0
yacr2 0 2 0 1 0 0
TOTAL 4 9 13 3 1 6
 TOTAL DEFECTS: 26 TOTAL FALSE ALARMS: 10

42

Seven of the nine bugs reported by the arithmetic checker were due to arithmetic overflows.

The other two defects were due to use of a negative divisor in a modulus operation and a

dangerous use of malloc. The lone false alarm was due to an atoi conversion. The checker

assumes that integers from string conversion functions such as atoi come from input and start

unconstrained. In this particular case, the number of digits in the string supplied to atoi was

properly constrained such that arithmetic overflow could not occur.

The array checker detected four array overflow bugs that were related to input. In all of these

cases, the indices were not constrained prior to the check. In two of the three false alarms, the

limits were not reduced when casting from a larger-sized integer to a smaller-size integer. Our

checker currently does not handle this situation and can be addressed by making appropriate

modifications to the checker. The third false alarm is due to reading the input file twice. It is read

once to set the array sizes and a second time to initialize the array values. Our tool has no

mechanism for determining that the input is actually constrained when it is read the second time.

Valgrind found 20 defects using the programs, not including memory leaks. Of the 20 defects,

19 were not detected by any of the SUDS checkers. This clearly indicates the checkers for SUDS

and Valgrind are complimentary. Most of the errors detected by Valgrind were either using

uninitialized values or illegal pointer dereferences. The three checkers do not specifically look

for uninitialized values like Valgrind. The one bug that was detected both by Valgrind and our

checker was the use of an uninitialized string. The string checker caught this particular bug

because the uninitialized string was used in a string function and was not null terminated. The

pointer dereference errors mostly occurred in operations that are in loops or sections of code that

have several pointer operations. The string checker would miss such bugs as it looks primarily at

the string functions. The array checker would only catch these bugs if the pointer arithmetic

operations used input data.

On the other hand, Valgrind did not find 25 of the bugs we found. First of all, Valgrind does

not check for arithmetic overflow so it is not expected it missed those bugs. In the other cases,

there was not a test case that exposed the particular fault. For instance, to find a string copy bug,

it is necessary to execute the string copy with a string that is longer than the destination in order

for Valgrind to find it. Since our string checker uses ranges, it is not necessary to have a precise

test case to expose the bug - the primary advantage of using our input checkers.

43

Tests in the SIR repository contain seeded faults. The SUDS checkers and Valgrind missed

most of these seeded faults as many of these faults are program logic errors (incorrect output for

a particular input). This is expected as the SUDS checkers and Valgrind are looking for common

programming mistakes that can apply to any program. However, SUDS can be used to create

checkers that look for errors that are specific to a particular program.

6.2 Performance Results

To analyze performance, we compared the run-time performance of the three checkers with an

uninstrumented baseline version and with Valgrind. For the array checker, we used two versions:

an unoptimized version and an optimized version that removed unnecessary instrumentation

based on the static analysis phases of SUDS. The results are shown in Table 12. The baseline

column shows how fast the program runs, in seconds, without any instrumentation. For each of

the checkers and Valgrind, the running time and ratio with respect to the baseline are displayed.

The amount of slow-down experienced by the checkers varied more by the program than by

the type of checker. Except for gzip and yacr2, the arithmetic and string checker had similar

performance slowdowns with average slowdowns of 45.9x and 38.3x respectively. Not

Table 12 Run-time performance results

Base
line

(secs)

array (unopt) array (opt) arith string Valgrind

Time
(secs)

Ratio
Time
(secs)

Ratio
Time
(secs)

Ratio
Time
(secs)

Ratio
Time
(secs)

Ratio

anagram 0.06 3.36 56.0 2.65 44.2 2.10 35.0 2.25 37.5 2.95 49.2

bc 0.40 10.44 26.1 9.38 23.5 6.70 16.8 7.65 19.1 17.62 44.1

betaftpd 0.04 0.54 13.5 0.49 12.3 0.42 10.5 0.48 12.0 2.41 60.3

flex 0.01 0.44 44.0 0.34 34.0 0.38 38.0 0.35 35.0 1.12 112.0

ft 0.17 7.24 42.6 4.80 28.2 5.37 31.6 4.56 26.8 5.23 30.8

gzip 0.01 1.02 102.0 0.18 18.0 0.83 83.0 1.02 102.0 0.82 82.0

ks 0.04 4.34 108.5 3.68 92.0 3.59 89.8 2.47 61.8 2.18 54.5

printtokens 0.01 0.28 28.0 0.06 6.0 0.25 25.0 0.23 23.0 0.67 67.0

printtokens2 0.01 0.36 36.0 0.18 18.0 0.36 36.0 0.34 34.0 0.78 78.0

replace 0.01 0.34 34.0 0.12 12.0 0.28 28.0 0.25 25.0 0.91 91.0

schedule 0.02 0.10 5.0 0.06 3.0 0.07 3.5 0.08 4.0 2.42 121.0

schedule2 0.03 0.28 9.3 0.20 6.7 0.21 7.0 0.21 7.0 4.01 133.7

space 0.05 0.12 2.4 0.10 2.0 0.10 2.0 0.10 2.0 5.26 105.2

thttpd 0.14 2.00 14.3 1.53 10.9 1.46 10.4 1.32 9.4 4.24 30.3

yacr2 0.07 20.10 287.1 12.18 174.0 19.01 271.6 12.29 175.6 4.17 59.6

 Mean 53.9 Mean 32.3 Mean 45.9 Mean 38.3 Mean 74.6

 Max 287.1 Max 174.0 Max 271.6 Max 175.6 Max 133.7

 Min 2.4 Min 2.0 Min 2.0 Min 2.0 Min 30.3

44

surprisingly, the unoptimized array checker was the slowest with an average slowdown of 53.9x

while the optimized array checker was the fastest exhibiting an average slowdown of 32.3x. The

array checker is slower because it requires heavy instrumentation for both arrays and integers.

The string checker tracks information for arrays but only tracks the relatively few integers that

hold string lengths. The arithmetic checker only requires instrumentation for integers. The

optimized array checker reduces the amount of instrumentation and is discussed in more detail in

Section 6.3.

The programs schedule, schedule2, and space exhibited the least amount of slowdown in all

three of the checkers, running two to nine times as slow as the uninstrumented versions. On the

other end of the spectrum, gzip and ks saw their run time increase 80-100 times and yacr2 slowed

down by a factor of over 270x for both the array (unoptimized) and arithmetic checkers. There

was more disparity between the three checkers with these slower running programs. The reason

for the major slowdown is that these programs have many instrumentation calls in processing

loops that not only take time to process but also prevent the compiler from optimizing the code

within these loops.

When comparing the performance results to that of Valgrind, our checkers suffer a similar

order of magnitude of slowdown for most of the programs. In the cases where our checkers

exhibited the least amount of slowdown, Valgrind had very high ratios. This is partly due that

Valgrind requires some start-up time to set up its memory checking. The amount of set-up in our

checkers is minimal. Conversely, Valgrind was much faster in the programs that saw the most

slowdown with our checkers. We hypothesize that this is due to the fact that since Valgrind

operates at the assembly-code level, it can process an optimized executable produced by the

compiler. On the other hand, SUDS adds instrumentation calls before the compiler optimizes the

code. This prevents many compiler optimizations since the compiler must be conservative when

optimizing code across the unknown instrumentation calls.

6.3 Performance Optimizations

When static analyses are used to eliminate unnecessary instrumentation for the array checker, the

performance improved by 36% on average. The program gzip saw the biggest improvement

going from a slowdown of 102x to 18x, an improvement of 82%. Both print token programs and

replace saw increases of over 50%. Programs that exhibited less slowdown in the unoptimized

45

version tended to have little improvement: betaftpd went from 13.5x to 12.3x and space went

from 2.4x to only 2.0x.

To better explain these results, Table 13 shows the breakdown of how many integer

definitions (from a compiler point of view) are tainted (come from input data) and how many are

used in the slice (lead to an array reference or pointer dereference). The last column shows the

percentage of interesting statements – statements that are both tainted and in the slice. On

average, 17.6% of integers are both tainted and in the slice. This means that the remaining 82.4%

of the integers do not require any instrumentation. In two of the programs (printtokens and

replace), none of the integers were tainted meaning that all of the instrumentation associated

with integers was useless and not necessary. These benchmarks saw large performance

improvements when the analyses were applied within SUDS.

Table 14 summarizes the number of instrumentation calls that were added statically (compile-

time) and executed dynamically (run-time). The first column shows the number of statements in

each program after the simplification process. By looking at the static number of instrumentation

calls added, it is quite apparent where the slowdown is coming from. In each program, over half

of the simple statements require instrumentation on average. In printtokens2, 1,018

Table 13 Breakdown of tainted and dangerous integers

Tainted In Slice

Interesting
(Tainted &

In Slice)
anagram 18.8% 70.1% 12.5%

bc 42.9% 81.0% 35.6%

betaftpd 35.6% 73.1% 28.5%

flex 28.9% 83.8% 23.7%

ft 23.9% 51.0% 12.6%

gzip 0.02% 76.2% 0.02%

ks 29.6% 74.7% 23.8%

printtokens 0.0% 83.4% 0.0%

printtokens2 45.0% 71.1% 29.9%

replace 0.0% 72.1% 0.0%

schedule 22.2% 55.6% 16.0%

schedule2 23.6% 50.0% 20.8%

space 14.2% 71.8% 10.7%

thttpd 40.5% 80.3% 29.1%

yacr2 26.4% 81.4% 20.6%

Average 23.4% 71.7% 17.6%

Maximum 45.0% 83.8% 35.6%

Minimum 0.0% 50.0% 0.0%

46

instrumentation calls were added to the 1,048 simplified statements. The static size of these

programs is approaching double the size of the original program. Dynamically, this results in

millions of additional function calls to instrumentation routines.

When unnecessary instrumentation is removed, the number of static instrumentation sites and

dynamic instrumentation is greatly reduced. 43.4% of the static sites and 40.7% of the dynamic

calls are removed from this process. The greatest improvement was shown by gzip: 71% of the

static sites and 85% of the dynamic instrumentation calls were removed. It only had one integer

that was interesting. The programs printtokens and replace also saw large decreases. These

programs had no tainted integers. The remaining instrumentation is due to tracking arrays as the

static analyses were not run with respect to arrays8

8 One could argue that it is not even necessary to run the array checker for printtokens and replace since they had no
tainted integers.

.

Table 14 Instrumentation Counts

Simple
Stmts

Static Instrumentation Sites Dynamic Instrumentation Sites
Unopt. Opt. Impr Unoptimized Optimized Impr

anagram 830 497 249 49.9% 47,932,765 33,817,372 29.4%

bc 14,503 9,773 3,719 61.9% 196,133,882 168,515,562 14.1%

betaftpd 4,782 3,038 2,440 19.7% 4,676,847 3,730,672 20.2%

flex 22,453 14,121 6,045 57.2% 7,968,578 6,296,356 21.0%

ft 1,886 937 475 49.3% 98,234,559 51,688,831 47.4%

gzip 12,566 7,419 2,146 71.1% 20,493,901 3,072,848 85.0%

ks 1,326 685 430 37.2% 93,319,877 74,045,793 20.7%

printtokens 1,745 1,314 295 77.5% 5,804,428 1,460,252 74.8%

printtokens2 1,048 1,018 900 11.6% 6,126,142 3,352,032 45.3%

replace 1,394 848 346 59.2% 6,692,472 2,523,927 62.3%

schedule 541 209 149 28.7% 1,460,728 767,920 47.4%

schedule2 571 244 175 28.3% 4,763,440 3,080,383 35.3%

space 11,652 5,509 4,114 25.3% 1,127,569 718,052 36.3%

thttpd 12,503 7,911 5,791 26.8% 23,149,256 16,000,043 30.9%

yacr2 5,612 3,481 1,849 46.9% 301,184,379 180,742,566 40.0%

 Avg 43.4% Avg 40.7%

 Max 77.5% Max 85.0%

 Min 11.6% Min 14.1%

47

7 Related Work

7.1 Instrumentation Infrastructures

The most similar tool to SUDS is CIL (Necula et. al. 2002a). CIL is a source-to-source code

translator outputting intermediate level code that is similar to the simplified code produced by

SUDS. CIL is often used a pre-processor for other tools simplifying the analysis needed by these

tools. However, CIL can also be extended to create a custom source-to-source translator in a

similar way as SUDS. Unlike CIL, SUDS has support for adding instrumentation making it easy

for user to add instrumentation to the outputted code. SUDS also has built-in data analyses,

including taint analysis and slicing.

There are several tools used to instrument programs. ATOM (Srivastava and Eustace 1994)

and Pin (Luk et al. 2005) are primarily used for performance analysis and gathering statistics

about programs but could be used to detect lower-level software bugs such as invalid memory

accesses. Valgrind (Nethercote and Seward 2007) is another infrastructure used to supervise

programs and has specialized functionality for detecting software defects. The Phoenix compiler

framework (Microsoft Corporation) allows developers to implement plug-ins that can insert

code. The buffer overflow detector Marple (Le and Soffa 2008) and an efficient memory

protection scheme using "baggy bounds" (Akritidis et. al. 2009) were both implemented using

Phoenix. Unlike SUDS, these tools operate on either assembly code or low level intermediate

code. Such tools typically do not require source code and thus do not suffer from a lack of source

code from libraries. However, the bug-finding capabilities of these tools are limited to properties

that can be expressed easily using assembly code semantics. Since SUDS operates close to the

source code level, it is possible to create checkers for high-level programming constructs and

program specific properties.

7.2 Software Defect Detection

Software defect detection tools are either dynamic (run-time analysis), static (compile-time

analysis), or use both. Memory access errors are a popular target for dynamic defect detection.

These tools detect memory bugs by keeping track of the state of dynamically allocated memory

using a table to keep track of the state of memory. In Purify (Hastings and Joyce 1992), the table

is implemented using a bitmap array making accesses fast. However, the limited amount of

48

information gained from a small number of bits restricts in the types of defects that can be

detected. Jones and Kelly (1997) use an object table, similar to our shadow state table, to store

state on which region of memory a pointer is allowed to point to. Haugh and Bishop (2003)

check all of the interesting string library functions by comparing the allocated sizes of the arrays.

This approach is similar to our string library maximum size checks. Their tool tracks coverage to

ensure that each interesting string function is executed once. Our technique can potentially find

more defects because it checks for proper null termination and array references. Lhee and Chapin

(2002) intercept array references and checks to see if they exceed the bounds. Sizes of heap

allocated arrays are stored in a table. Safe C (Austin et al. 1994) stores extra state with each

pointer that stores the bounds of the object the pointer is referring to. Accesses are compared to

the bounds to see if there is a defect. Insure++ (Parasoft Corporation 2006) is a commercially

available product that detects memory errors dynamically.

A weakness of dynamic bug detection is that the effectiveness of the checker is dependent on

the input. This weakness can be mitigated by running the checker on a test suite that obtains high

coverage. The three checkers implemented in SUDS reduce this weakness further by modeling

variables using ranges making it not necessary to have the precise data value to cause the failure.

In static software bug detection, one approach is to use symbolic execution (King 1976). In

symbolic execution, the symbolic execution engine traverses all of the paths representing values

derived from input symbolically. PREfix uses symbolic execution (Bush et. al. 2000) to detect

memory faults. The array checker ARCHER (Xie et al. 2003) also employs symbolic execution.

An extension that provides symbolic execution support (Anand et al. 2007) has been added to

Java Pathfinder (Java Pathfinder, Visser et al. 2003).

Constraint systems are common in detecting string-related errors. Wagner et al. (2000)

developed a system that collects constraints on buffers in C programs and then uses a constraint

solver to determine if any of the constraints have been violated. CSSV (Dor et al. 2003) converts

the program into an integer program and then analyzes the program for potential errors. HAMPI

(Kieżun et al. 2009) is a solver for string constraints that can be used to find SQL injection

vulnerabilities.

Another popular technique used in static bug detection is model checking (McMillian 1993).

In model checking, the program is modeled as a finite state machine. The model checker then

determines if there is a legal set of transitions that cause the program to enter an error state.

49

Examples of model checking systems include SPIN (Holzmann 1997), SLAM (Ball and

Rajamani 2002), Java Pathfinder (Java Pathfinder, Visser et al. 2003), MOPS (Chen and Wagner

2002), and CMC (Musuvathi et al. 2002).

Commercially available products that perform static bug detection include CodeSonar

(GrammaTech) and Coverity Static Analysis (Coverity). Employees at Coverity recently

discussed (Bessey et al. 2010) some of the challenges of using static analysis in the real world

with real customers.

A primary issue with static techniques is scalability. In symbolic execution, there are too

many paths to simulate. In constraint solving, the resulting constraint system may be too large.

In model checking, the finite state machine may either be too large to explore or too simple

resulting in many false alarms. To address this issue, research groups have looked at combining

static and dynamic bug detection techniques to create powerful tools. KLEE (Cadar et al. 2008)

uses symbolic execution to find errors in UNIX utility programs. Upon finding an error, KLEE

will generate actual concrete input values that will trigger the failure. Then, the original program

can be run with the actual inputs to determine if the bug was real or a false positives. CCured

(Necula et al. 2002b) uses a static verifier to prove as many dangerous operations safe as

possible using a type system. Then instrumentation is added to catch any bugs for operations that

cannot be proved safe. In work by Bodden et al. (2008), a static verification phase can prove that

a run-time invariant or assertion will never result in an error condition. In absence of a proof,

locations that where violations can occur are marked. Ringenburg and Grossman (2005) combine

static analysis with run-time information to determine format-string attacks. White-lists, a set of

allowable addresses, is generated at run-time by adding instrumentation calls. The

instrumentation calls can either be added manually or automatically using an extension of CIL

(Necula et al. 2002a). Bodik et al. (2000) use a lightweight static analysis to determine if run-

time array bounds checks are redundant with earlier checks.

7.3 Dynamic Test Generation

Another way to combine static analysis is to generate test cases based on the analysis. DART

(Godefroid et al. 2005), CUTE (Sen et al. 2005), PathCrawler (Williams et al. 2005), and Pex

(Tillmann and de Halleux 2008) use a combination of symbolic and concrete execution.

Instrumentation calls are added to perform symbolic execution that tracks constraints for integers

50

and pointers. Splat (Xu et al. 2008) targets string operations. Lengths of strings are represented

symbolically. Symbolic execution is used to generate input tests. In Symbolic Pathfinder for Java

(C. Păsăreanu et al. 2008), programs execute in concrete mode and can transition into symbolic

mode based on specified conditions. Godefroid et al. (2008a) make a distinction between active

property checking which uses symbolic values and passive property checking which uses

concrete values. When implemented within a dynamic test generation environment, active

property checkers were able to find defects in several Windows programs. Tikir and

Hollingsworth (2002) describe an instrumentation technique for obtaining coverage for testing.

Fuzz testing (Forrester et al. 2000) has also benefited from run-time information and analysis.

Fuzz testing randomly applies input values to different programs. It can find many errors in

handling invalid input but struggles at producing legal complex inputs. Whitebox fuzz testing,

starting with an input, will track control decisions made during the execution. Subsequent inputs

are generated by negating one of the predicates used in making a control decision. The goal is to

have tests that exercise most of the program paths. SAGE (Godefroid et al. 2008b) applies

whitebox fuzzing to Windows programs and uses a sophisticated pointer reasoning algorithm

(Elkarablieh et al. 2009). BuzzFuzz (Ganesh et al. 2009) uses whitebox testing for programs that

have complex structured files as input. They use tainting to determine which control points in

the program are influenced by the input file. SmartFuzz (Molnar et. al 2009) uses directed fuzz

testing to find integer arithmetic and conversion errors.

Dynamic test generation and whitebox fuzzing are complimentary to the checkers used by

SUDS. The goal of dynamic test generation is to generate interesting inputs. It is still necessary

to check if the generated tests pass or fail – checkers and/or test oracles are still necessary.

Dynamic test generation tends to focus on the control flow of the program in their attempt to

cover all interesting paths. They still may miss bugs that depend on a specific data value. By

using the range analyses provided by the array and string checkers, this issue can be minimized.

7.4 Taint Analysis

Taint analysis is a specialized information flow problem (Myers 1999, Myers and Liskov 2000).

Support for taint analysis has been developed for many programming languages including Perl

(perlsec 2009), Java (Haldar et al. 2005), and PHP (Nguyen-Tuong et al. 2005). Finding security

property violations is a common use for taint analysis. Shankar et al. (2001) uses static taint

51

analysis to find string errors. Their approach is implemented by extending the C type system

using type qualifiers. Dynamic taint analysis has been used by Newsome and Song (2005) to

prevent unauthorized access or corruption and by Chess and West (2008) to detect potential

misuse of strings. Dytan (Clause, Li, and Orso 2007b) is a dynamic taint analysis framework

that works on the assembly code level. The framework has been used to find illegal memory

accesses (Clause, Doudalis et al. 2007a) and to aid debugging by finding relevant inputs given a

particular failure (Clause and Orso 2009).

7.5 Program Slicing

Program slicing (Weiser 1981) is a popular program analysis technique. Tip (1995) provides a

survey on the different types of slicing techniques while Binkley et al. (2007) provide results

from a large scale empirical study on slicing. CodeSurfer (GrammaTech) is a commercial

product that performs program slicing. Program slicing is commonly used once a defect has been

detected. Pan et al. (2006) use slicing metrics to classify defects. Memory slicing (Xin and Zhang

2009) is a dynamic slicing technique looks at the dependencies between memory locations. This

results in fewer, but more precise, dependencies making it easier for debuggers to comprehend.

Delta debugging (Zeller 2002) relies on the use of computing cause-effect chains which borrows

many ideas from program slicing.

8 Conclusions and Future Work

SUDS is a powerful and flexible infrastructure for creating dynamic defect detection tools. An

instrumentation interface allows users to create defect detection tools. Static analysis phases,

tainted data propagation and program slicing, allow the tools to focus on types of defects,

sources of data, and/or particular statements. Using three checkers that look for input-related

defects, SUDS was able to find 26 defects across 18 programs. Using the static analyses, the run-

time performance of the array checker improved by 36%.

SUDS, like all software tools, is constantly evolving. The next step for SUDS is to

incorporate static defect detection capabilities by including technique(s) that are more

sophisticated than data-flow analysis. One possibility is to create a new phase that generates

constraints and uses a solver to detect defects. We also will explore the ability to plug in existing

tools within the SUDS infrastructure. Another direction is to modify SUDS to that it can process

other languages in addition to C. Since it is similar to C, C++ would be a likely first candidate.

52

The key challenges of analyzing C++ code is handling polymorphism and templates when

instrumenting the program. Since the instrumentation is applied statically, it has to be generic

with respect to dynamic binding. The instrumentation routines will be responsible for looking at

the run-time type and applying the appropriate instrumentation based on that type. Other object-

oriented languages such as Java and C# could be handled in a similar fashion.

The ultimate goal of SUDS is to explore new techniques that effectively combine static and

dynamic approaches. As a first step in that work, we feel it is necessary to analyze what makes

certain bugs hard to find (or prove the absence of bugs) statically and what makes certain bugs

hard to find dynamically. By understanding what lies at the heart of static and dynamic

techniques, we can take advantage of the best of both paradigms.

References

Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy Bounds Checking: An Efficient and Backwards-Compatible

Defense against Out-of-Bounds Errors. In: 2009 USENIX Security Conference. (2009)
Anand, S., Păsăreanu, C., Visser, W.: JPF-SE: A Symbolic Execution Extension to Java Pathfinder. In: Proceedings

of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems. (2007)
Austin, T., Breach, S., Sohi, G.: Efficient Detection of All Pointer and Array Access Errors. In: Proceedings of the

conference on Programming Language Design and Implementation. (1994)
Ball, T., and Rajamani, S. K.: The SLAM Project: Debugging System Software via Static Analysis. In: Proceedings

of the symposium on Principles of Programming Languages. (2002)
Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, H., Kamsky, A., McPeak, S., Engler,

D.: A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World. In:
Communications of the ACM. (2010)

Binkley, S., Gold, N., Harman, M.: An Empirical Study of Static Program Slice Size. In: ACM Transactions on
Software Engineering and Methodology (TOSEM). (2007)

Bodden, E., Lam, P., Hendren, L.: Finding Programming Errors Earlier by Evaluating Runtime Monitors Ahead-of-
Time. In: Proceedings of the International Symposium on Foundations of Software Engineering. (2008)

Bodik, R., Gupta, R., Sarkar, V.: ABCD: Eliminating Array Bounds Checks on Demand. In: Proceedings of the
Conference on Programming Language Design and Implementation. (2000)

Bush, W., Pincus, J., Sielaff, D.: A static analyzer for finding dynamic programming errors. In: Software Practice
and Experience. (2000)

Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In: Proceedings of the 8th USENIX Symposium on Operating Systems Design and
Implementation. (2008)

Chen, H., Wagner, D.: MOPS: an Infrastructure for Examining Security Properties of Software. In: Proceedings of
the 9th ACM conference on Computer and Communications Security. (2002)

Chess, B.,West, J.: Dynamic taint propagation: Finding vulnerabilities without attacking. In: Information Security
Technical Report, Vol. 13, No. 1. (2008)

Clause, J., Doudalis, I., Orso, A., Prvulovic, M.: Effective Memory Protection Using Dynamic Tainting. In:
Proceedings of the international conference on Automated Software Engineering. (2007a)

Clause, J., Li, W., Orso, A.: Dytan: A Generic Dynamic Taint Analysis Framework. In: Proceedings of the
International Symposium on Software Testing and Analysis. (2007b)

Clause, J., Orso, A.: PENUMBRA: Automatically Identifying Failure-Relevant Inputs Using Dynamic Tainting. In:
Proceedings of the International Symposium on Software Testing and Analysis. (2009)

Coverity http://www.coverity.com
cTool http://ctool.sourceforge.net

http://doi.acm.org/10.1145/503272.503274�

53

Do, H., Elbaum, S., Rothermel, G.: Infrastructure support for controlled experimentation with software testing and
regression testing techniques. In: Proceedings of the International Symposium on Empirical Software
Engineering. (2004)

Dor, N., Rodeh, M., Sagiv, M.: CSSV: Towards a Realistic Tool for Statically Detecting All Buffer Overflows in C.
In: Proceedings of the conference on Programming Language Design and Implementation. (2003)

DaCosta, D., Dahn, C., Mancoridis, S., Prevelakis, V.: Characterizing the ‘Security Vulnerability Likelihood’ of
Software Functions. In: Proceedings of the International Conference on Software Maintenance. (2003)

Elkarablieh, B., Godefroid, P., and Levin, M.: Precise Pointer Reasoning for Dynamic Test Generation. In:
Proceedings of the International Symposium on Software Testing and Analysis. (2009)

Forrester, J., Miller, B.: An Empirical Study of the Robustness of Windows NT Applications Using Random
Testing. In: Proceedings of the 4th USENIX Windows Systems Symposium. (2000).

Ganesh, V., Leek, T., Rinard, M.: Taint-based Directed Whitebox Fuzzing. In: Proceedings of the International
Conference on Software Engineering. (2009).

Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing. In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation. (2005)

Godefroid, P., Levin, M., Molnar, D.: Active property checking In: Proceedings of the 8th ACM International
Conference on Embedded Software. (2008a)

Godefroid, P., Levin, M., Molnar, D.: Automated Whitebox Fuzz Testing In: Proceedings of the 15th Annual
Network and Distributed System Security Symposium. (2008b)

GrammaTech, Inc. http://www.grammatech.com
Hastings, R., Joyce, B: Purify: Fast Detection of Memory Leaks and Access Errors. In: Proceedings of the 1992

Winter Usenix Conference. (1992)
Haldar, V., Chandra, D., and Franz, M.: Dynamic Taint Propagation for Java. In: Proceedings of the 21st Annual

Computer Security Applications Conference. (2005).
Haugh, E., Bishop, M.: Testing C Programs for Buffer Overflow Vulnerabilities. In: Proceedings of the 10th

Network and Distributed System Security Symposium. (2003)
Hendren, L., Donawa, C., Emami, M., Gao, G., Justiani, Sridharan, B.: Designing the McCAT Compiler Based on a

Family of Structured Intermediate Representations. In: Proceedings of the 5th International Workshop on
Languages and Compilers for Parallel Computing. (1992)

Hind, M., Burke, M., Carini, P., Choi, J.: Interprocedural Pointer Alias Analysis. In: ACM Transactions on
Programming Languages and Systems. (1999)

Holzmann, G.: The Model Checker SPIN. In: IEEE Transactions of Software Engineering. (1997)
ISO/IEC 9899:1999: Programming languages — C (1999)
Java Pathfinder http://babelfish.arc.nasa.gov/trac/jpf
Jones, R., Kelly, P.: Backwards-compatible bounds checking for arrays and pointers in C programs. In: Proceedings

of the 3rd International Workshop on Automated Debugging. (1997)
Kieżun, A., Ganesh, V., Guo, P., Hooimeijer, P., Ernst, M.: HAMPI: A Solver for String Constraints. In:

Proceedings of the International Symposium on Software Testing and Analysis. (2009)
King, J.: Symbolic execution and program testing. In: Communications of the ACM. (1976)
Larson, E., Austin, T.: High Coverage Detection of Input-Related Security Faults. In: Proceedings of the 12th

USENIX Security Symposium. (2003)
Larson, E: A Plethora of Paths. In: Proceedings of the 17th IEEE International Conference on Program

Comprehension. (2009)
Le, W., Soffa, M. L.: Marple: a Demand-Driven Path-Sensitive Buffer Overflow Detector. In: Proceedings of the

International Symposium on Foundations of Software Engineering. (2008)
Lhee, K., Chapin, S.: Type-Assisted Dynamic Buffer Overflow Detection. In: Proceedings of the 11th USENIX

Security Symposium. (2002)
Luk, C., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V., Hazelwood, K.: Pin:

Building Customized Program Analysis Tools with Dynamic Instrumentation. In: Proceedings of the Conference
on Programming Language Design and Implementation. (2005)

McMillan, K.: Symbolic Model Checking. (1993)
Merrill, J.: GENERIC and GIMPLE: A new tree representation for entire functions. In: Proceedings of the GCC

Developers Summit. (2003)
Microsoft Corporation: Phoenix Compiler and Shared Source Common Language Infrastructure.

http://research.microsoft.com/en-us/collaboration/focus/cs/phoenix.aspx

54

Molnar, D., Li, X., Wagner, D.: Dynamic Test Generation To Find Integer Bugs in x86 Binary Linux Programs. In:
Proceedings of the 2009 USENIX Security Conference. (2009)

Musuvathi, M., Park, D., Chou, A., Engler, D., Dill, D. CMC: A Pragmatic Approach to Model Checking Real
Code. In: Proceedings of the 5th symposium on Operating Systems Design and Implementation (2002).

Myers, A. C.: JFlow: practical mostly-static information flow control. In: Proceedings of the symposium on
Principles of Programming Languages. (1999)

Myers, A. C., Liskov, B.: Protecting privacy using the decentralized label model In: ACM Transactions of Software
Engineering Methodology, Vol. 9, No. 4. (2000)

Necula, G., McPeak, S., Rahul, P., Weimer, W.: CIL: Intermediate Language and Tools for Analysis and
Transformation of C Programs. In: Proceedings of the International Conference on Compiler Construction.
(2002a)

Necula, G., McPeak, S., Weimer, W.: CCured: Type-Safe Retrofitting of Legacy Code. In: Proceedings of the
Symposium on Principles of Programming Languages. (2002b)

Nethercote, N. and Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation. In:
Proceedings of the conference on Programming Language Design and Implementation. (2007)

Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis and Signature Generation of
Exploits on Commodity Software. In: Proceedings of the 12th Annual Network and Distributed System Security
Symposium. (2005)

Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically hardening web applications
using precise tainting In: Proceedings of the 20th IFIP International Information Security Conference (2005)

Pan, K., Kim, S., Whitehead, E. J.: Bug classification using program slicing metrics In: Proceedings of the Sixth
IEEE International Workshop on Source Code Analysis and Manipulation, pp. 31-42 (2006)

Parasoft Corporation: Automating C/C++ Runtime Error Detection with Parasoft Insure++
http://www.parasoft.com/jsp/printables/InsureWhitePaper.pdf

Păsăreanu, C., Mehlitz, P., Bushnell, D., Gundy-Burlet, K., Lowry, M., Person, S., Pape, M.: Combining Unit-level
Symbolic Execution and System-level Concrete Execution for Testing NASA Software. In: Proceedings of the
International Symposium on Software Testing and Analysis. (2008)

perlsec - Perl Security http://search.cpan.org/dist/perl/pod/perlsec.pod
Pointer-Intensive Benchmark Suite (1995) http://www.cs.wisc.edu/~austin/ptr-dist.html
Ringenburg, M., Grossman, D.: Preventing Format-String Attacks via Automatic and Efficient Dynamic Checking.

In: Proceedings of the conference on Computer and Communications Security. (2005)
Sen, K., Marinov, D., Agha, G.: CUTE: A Concolic Unit Testing Engine for C. In: Proceedings of the Symposium

on the Foundations of Software Engineering. (2005)
Shankar, U., Talwar, K., Foster, J., Wagner, D.: Detecting Format-String Vulnerabilities with Type Qualifiers In:

Proceedings of the 10th USENIX Security Symposium. (2001)
SLOCcount http://www.dwheeler.com/sloccount
Srivastava, A., Eustace, A.: ATOM: A System for Building Customized Program Analysis Tools. In: Proceedings of

the Conference on Programming Language Design and Implementation. (1994)
Tikir, M., Hollingsworth, J.: Efficient Instrumentation for Code Coverage Testing. In: Proceedings of the ACM

SIGSOFT International Symposium on Software Testing and Analysis. (2002)
Tillmann, N., de Halleux, J.: Pex – White Box Test Generation for .NET. In: Proceedings of the 2nd International

Conference on Tests and Proofs. (2008)
Tip, F.: A Survey of Program Slicing Techniques. In: Journal of Programming Languages (1995).
Visser, W., Havelend, K., Brat, G., Park S., Lerda, F. Model Checking Programs. In: Automated Software

Engineering Journal (2003).
Wagner, D., Foster, J., Brewer, E., Aiken, A. A First Step Towards Automated Detection of Buffer Overrun

Vulnerabilities. In: Proceedings of the Network and Distributed System Security Symposium. (2000)
Weiser, M: Program slicing. In: Proceedings of the 5th International Conference on Software Engineering (1981)
Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: Automatic generation of path tests by combining static

and dynamic analysis. In: Proceedings of Fifth European Dependable Computing Conference. (2005)
Xie, Y., Chou, A., Engler, D. ARCHER: Using Symbolic, Path-sensitive Analysis to Detect Memory Access Errors.

In: Proceedings of the 9th European Software Engineering Conference held jointly with 11th international
symposium on Foundations of Software Engineering. (2003)

Xin, B. and Zhang, X.: Memory Slicing. In: Proceedings of the International Symposium on Software Testing and
Analysis. (2009)

55

Xu, R., Godefroid, P., Majumdar, R.: Testing for buffer overflows with length abstraction. In: Proceedings of the
International Symposium on Software Testing and Analysis. (2008)

Zeller, A.: Isolating cause-effect chains from computer programs In: Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering, pp. 1-10. (2002)

	Introduction
	Overview of SUDS
	Parsing
	Simplification
	Static Analysis
	Instrumentation
	Instrumentation Models

	Instrumentation Engine
	Instrumentation Director Interface
	Calling Instrumentation Functions

	Dynamic Detection of Input-Related Software Defects
	Array Checker
	Tracking Integers
	Tracking Arrays and Pointers
	Array Reference Example
	Limitations

	Arithmetic Checker
	Limitations

	String Checker
	Tracking Strings
	Tracking String Lengths
	Processing String Functions
	String Example
	Limitations

	Static Analysis
	Detecting Tainted Data
	Program Slicing
	Using Static Analysis Results During Instrumentation
	Static Analysis Example
	SUDS as a Static Analysis Tool

	Results
	Defects Detected
	Performance Results
	Performance Optimizations

	Related Work
	Instrumentation Infrastructures
	Software Defect Detection
	Dynamic Test Generation
	Taint Analysis
	Program Slicing

	Conclusions and Future Work
	References

