
MDAT: A Multithreading Debugging and Testing Tool
Eric Larson

Seattle University
901 12th Avenue

Seattle, WA 98122
(206) 296-5513

elarson@seattleu.edu

Rochelle Palting
Seattle University
901 12th Avenue

Seattle, WA 98122
rcpalting@gmail.com

ABSTRACT
MDAT is a multithreaded testing and debugging tool designed for
students learning to program with multiple threads. MDAT
automatically generates random schedules to allow students to
more thoroughly test their programs. The design of MDAT takes
full control over the scheduling allowing a failing run to be
reproduced. To assist debugging, MDAT includes an output trace
that shows the status of all threads, locks, and semaphores in the
program and has an interactive mode that allows students to try
out their own schedules. MDAT was effective at detecting
deadlock and mutual exclusion violations in student submissions
of the unisex restroom problem.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent programming.
D.2.5 [Software Engineering]: Testing and Debugging –
debugging aids, testing tools.
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

General Terms
Reliability, Verification.

Keywords
concurrency, synchronization, multithreading, testing, debugging

1. INTRODUCTION
One of the primary challenges of developing multithreaded
applications is testing and debugging, especially for students who
are first learning how to program with multiple threads. Testing
and debugging are particularly important when designing
programs that use synchronization primitives, such as locks and
semaphores, as their programs may suffer from race conditions or
deadlock. The paper presents MDAT – a multithreaded testing
and debugging tool designed for students learning to program
with multiple threads.
Students are often given problems such as the unisex restroom
problem: There is a single restroom that can be used by both men
and women but not at the same time. There is no limit to how
many people can be in the restroom at once but they all have to be
the same gender. This problem serves as a running example
throughout the paper. There are two versions of this problem: the
initial version as described above and the restricted version which

is the same as the initial version with the added restriction of
having at most four people in the restroom at once.
It is difficult to test for race conditions and deadlock as they are
often dependent on how the operating system schedules the
individual threads. As a result, it is necessary to execute the same
test with the same inputs multiple times to test different operating
system schedules. This is a confusing concept to comprehend for
students who are used to deterministic results each time a test is
run. A further complication is that the schedules exercised by the
operating system are very unlikely to be very aggressive in terms
of finding race conditions. Since the first programs written by
students are often small, the program rarely gets interrupted due to
the expiration of a time slice. Instead the program runs until it
encounters a system call (such as acquiring a lock or printing
something to the screen). This means that it is highly unlikely for
a program to get interrupted in the middle of a series of statements
such as this:
countFemale++;
if (countFemale == 1)
 sem_wait(&male);

A common mistake for beginners is to not protect shared variables
such as countFemale with a lock. However, a race condition
may only surface if the operating system interrupts the thread after
the if statement but before the wait statement (such that another
thread can alter countFemale making the condition false). As
noted earlier, the small size of these programs makes it highly
unlikely that the thread will get interrupted in between those
statements even for long-running programs.
Our MDAT tool alleviates these testing challenges in two ways.
First, MDAT instruments the program by placing calls to invoke
the scheduler after each statement allowing for more varied and
aggressive schedules. Second, MDAT can be run to automatically
test the program using a user-controlled number of random
schedules. This permits students to easily test their programs
several times without manual intervention.
If an error does occur in a multithreaded program, it can be
difficult to debug. First, the bug may be dependent on a particular
schedule and it may be difficult to reproduce that schedule. In
addition, using a debugger to examine the state of different
threads, locks, and semaphores can be intimidating to students
who are new to multithreading programming.
MDAT addresses these concerns by having full control of
scheduling. The tool is designed such that only one thread
executes at a time so the underlying operating system has no
decisions to make on what threads to execute. This permits the
schedules produced by MDAT to be fully reproducible. When
schedules are randomly generated, a random seed is displayed.
The user can generate the exact same schedule using that random
seed. In addition, MDAT creates a trace that displays the status of
each thread, lock, and semaphore after each scheduler invocation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’13, March 6-9, 2013, Denver, Colorado, USA.
Copyright © 2013 ACM 978-1-4503-1868-6/13/03…$15.00.

Using this trace, a programmer can follow the steps that led to a
particular problem.
For further testing and debugging, MDAT features an interactive
mode that allows students to select which threads to run while
displaying the program status on the screen. This mode
encourages students to try different scenarios within their
programs. More importantly, students can simply play around
with their program increasing their comprehension on how
multithreaded programs and synchronization primitives behave.
MDAT also has several benefits for the instructor. Using the
interactive mode, MDAT can be used as an instructional aid in
classroom presentations to demonstrate how locks and
semaphores work. The interactive mode could also be used in a
lab setting where students are given a buggy program and must
devise a schedule that exposes the bug. MDAT can also help with
evaluating student work. The instructor can run MDAT on student
submissions to see if MDAT can find any errors. However,
manual inspection of the submissions is still necessary since not
every schedule is run. Exhaustively running all possible schedules
is not computationally feasible.

2. MDAT OVERVIEW
The architecture of MDAT is shown in Figure 1. MDAT is
designed for UNIX-based systems and programs written in the C
programming language using the pthreads threading library.

InstrumentorSource Code Instrumented
Source Code

Mutual
Exclusion
Checker

Run MDAT
Script

MDAT Library

Thread
Manager

Lock
Manager

Semaphore
Manager

Scheduler Trace
Facility

Figure 1. MDAT Architecture

The primary component of MDAT is the MDAT library which
contains replacements for each of the lock and semaphore
functions. The separation of the MDAT library permits it to be
used with existing multithread applications with minimal effort.
When writing a multithreaded program using MDAT, a student
would use the corresponding MDAT functions instead of the

normal pthreads functions commonly used in UNIX as shown in
Table 1. To maximize realism, the argument lists for the MDAT
functions are identical to those of the pthreads except for
mdat_mutex_init and mdat_sem_init. These functions
have an additional string argument that serves as the name of that
entity that is subsequently used in the trace.

Table 1. MDAT Lock and Semaphore Functions
Pthreads function name MDAT function name

pthread_mutex_init mdat_mutex_init

pthread_mutex_lock mdat_mutex_lock

pthread_mutex_unlock mdat_mutex_unlock

sem_init mdat_sem_init

sem_wait mdat_sem_wait

sem_post mdat_sem_post

MDAT only supports locks and semaphores as synchronization
primitives. Furthermore, it only supports the basic operations
shown in Table 1. Other operations such as
pthread_mutex_trylock are not supported. This decision
reflects what we covered in the class. In particular, only the basic
lock and semaphore operations are taught. This choice is
consistent with operating system textbooks which often only use
these basic operations when introducing synchronization using
locks and semaphores.
The MDAT library interface contains four additional functions:

• mdat_init: Initializes the MDAT library.

• mdat_thread_start: Registers a thread. Must be called
by each thread at the beginning.

• mdat_thread_finish: Notifies MDAT that the thread
has finished and not to schedule the thread any longer. Must
be called by each thread once it completes.

• mdat_invoke_scheduler: Forces MDAT to invoke the
scheduler and select a thread to run out of the threads that are
ready (including the currently executing thread). In random
mode, it will select a thread at random. In interactive mode, a
prompt will be given to the user.

The calls to mdat_invoke_scheduler are automatically
added by the Instrumentor, not by the programmer. The
instrumentor adds a call to mdat_invoke_scheduler after
each statement in the program. Furthermore, the instrumentor
splits complex statements into two or more basic statements
adding a call to mdat_invoke_scheduler after each one.
This allows the tool to catch some, but not all, concurrency issues
that arise if students incorrectly assume each statement is atomic.
Splitting the statements further is left as future work.
The instrumentor only needs to be run on files that contain code
that can be run concurrently. Optionally, a list of functions can be
supplied to the instrumentor such that it will only instrument the
functions specified on the list. To improve the debugging
capabilities, mdat_invoke_scheduler has a location
argument, a unique integer that is assigned by the instrumentor to
each call it adds. As shown in Section 3, the location appears in
the trace allowing the user to see where each thread is currently
executing in the program. In addition to
mdat_invoke_scheduler calls, the scheduler is invoked at
the end of lock, unlock, wait, and post operations.

Internally, the MDAT library contains the following:

• Scheduler: The scheduler permits only one thread to be
executed at a time. It also detects deadlock if no threads are
able to run.

• Thread Manager: Manages all of the threads. Keeps tracks of
which threads are ready to run and which threads are waiting
due to a lock or semaphore.

• Lock Manager: Manages the locks. Keeps track of which
thread holds each lock and which threads, if any, are waiting
for each of the locks.

• Semaphore Manager: Manages the semaphores. Stores the
current values of each semaphore and which threads, if any,
are waiting for a post operation.

• Trace Facility: Responsible for displaying important events
and the current state in the trace file.

The scheduler is implemented using signals. When a thread is not
executing, it calls sigwait which causes the thread to wait until
it receives the Linux user-defined signal SIGUSR1. When a
thread switch occurs, the thread that is currently active sends the
next thread to execute the SIGUSR1 signal using
pthread_kill. To avoid issues at start up, all threads must call
mdat_thread_start to register with MDAT. All threads
must register before execution can start. Once all the threads have
registered, the thread selected to start (chosen randomly or by the
user in interactive mode) will begin execution. All other threads
will wait for their turns using sigwait. A thread must call
mdat_thread_finish when it completes. This lets the
scheduler know not to schedule that particular thread anymore.
The thread manager, lock manager, and semaphore manager are
essentially tables that keep track of the threads, locks, and
semaphores respectively. The various operations update these
tables accordingly. An important field in the thread manager is the
current state of each thread: running, ready, waiting for a lock,
waiting for a semaphore, or completed. The scheduler will only
select from threads that are running or ready. If no thread is
running or ready, the scheduler will report deadlock and abort the
program. The state of each lock (locked or unlocked) is tracked by
the lock manager. If a thread needs to wait due to a lock that is
already acquired by a different thread, the state of the thread is
updated and the scheduler is invoked to choose a different thread.
The semaphore manager works in a similar fashion.
While the MDAT library can check for deadlock, it cannot check
for mutual exclusion violations as these are specific to the
programming task. The Mutual Exclusion Checker checks for
these types of violations relying on output statements that are
produced by the program. The mutual exclusion checker will need
to be modified based on the mutual exclusion requirements of the
program. For example, a checker for the reader / writer problem
would ensure that a writer has exclusive access in the critical
section. The checker implementation for the unisex restroom
problem is described in Section 4.
Finally, the Run MDAT Script is a Python script that will run the
program a user-specified number of times. This allows students to
test their programs on as many random schedules as they desire.

Once an error is detected, either due to deadlock or a mutual
exclusion violation, the script will stop. The random seed for each
run is displayed, and the trace files of the failing run are saved so
students are able to reproduce the failing run.

3. USER INTERFACE
To use MDAT, simply compile the instrumented source code
produced by the instrumentor and link with the MDAT library.
We altered our source code such that the MDAT configuration
could be controlled using command line arguments. For instance,
one command line switch directs MDAT to run in interactive
mode. The command line arguments are parsed and passed into
MDAT using mdat_init.
An excerpt of a trace is shown in Figure 2. For consistency, the
trace and interactive outputs are identical except when interactive
mode prompts the user for a thread. The first three lines are
informational messages. Messages are displayed any time a thread
is switched or a synchronization function is executed. The status
table that follows is divided into three sections: threads, locks, and
semaphores. For each thread, the current location is given – the
unique identifier of the last mdat_invoke_scheduler call
executed by that thread. Looking at the first line of Figure 2,
thread 6 executed mdat_invoke_scheduler with unique
identifier 7 and this is reflected in the status table that follows.
Programmers, using the instrumented source code, can follow
along using this location field.
Within the thread section of the status table, the status column
shows the current state of the thread. It can be one of the
following states: ready, running, waiting-lock, waiting-sem, or
completed. If the thread is waiting, the name of the lock or
semaphore it is waiting on is displayed in the last column.
The lock section displays the name of each lock, the status of the
lock (which includes the thread currently holding the lock if it is
held), and a list of threads waiting for that lock. The semaphore
section is similar. It displays the name of the semaphore, its
current value, and a list of threads waiting for that semaphore. We
chose to use a semaphore implementation that decrements for
every wait operation allowing the value to be negative. For
example, genderBlock in Figure 2 has a value of -1.
When running in interactive mode, a prompt appears anytime
there is a choice regarding threads. At the start, the user is
prompted on which thread should start running first. Each time the
scheduler is invoked, the user is prompted on which thread to run
next. Only the threads that are ready are acceptable; the user is
asked to select a different thread if their selected thread is waiting
or has already completed. If threads are waiting, the user is also
prompted on which thread to wake up when a lock is released or a
semaphore is incremented. Referring back to Figure 2, thread 2
releases lock maleMutex. MDAT randomly chose to wake up
thread 4 but it could have selected threads 0, 8 or 10. In
interactive mode, the user would have been given the choice to
wake up either thread 0, 4, 8, or 10. Note that selecting a thread to
wake up is independent of the choice of which thread to schedule
next. Even though the lock was transferred to thread 4, thread 6
was selected to run next.

4. UNISEX RESTROOM
IMPLEMENTATION
The unisex restroom problem can be structured like many classic
synchronization problems and divided into four sections:

• Entry section (person is entering the restroom)

• Critical section (person is using the restroom)

• Exit section (person is leaving the restroom)

• Remainder section (person is outside drinking more water)
The critical and remainder sections are actually uninteresting in
enforcing mutual exclusion – all of the work is done in the entry
and exit sections. The students were given these four functions.
Each of the functions started with an output statement that logged
the start of the function. The resulting log was then used by the
checker. Students could only add code to the entry and exit
sections after the output statement. Students also had to add code

to a fifth function that initialized shared variables, locks, and
semaphores. These five functions are resided in a standalone file.
Students were also given a driver file that is responsible for
setting up the threads. Each thread executes the four sections in
order for a user-specified number of times. The driver file can be
reused for other programs and the classical synchronization
problems that are set up using these four sections.
The mutual exclusion checker is invoked after a run has
concluded and uses the log to determine if a mutual exclusion
violation has occurred. The log consists of entries that describe
which section each thread has entered along with the gender of
that thread. To enforce the mutual exclusion rule, the checker uses
two counters: one for the number of males in the restroom and one
for the number of females. The checker scans the log entries in
order. When someone enters the critical section, the appropriate
counter is incremented. When someone leaves the critical section,
the appropriate counter is decremented. Mutual exclusion occurs
if both counters are non-zero at the same time.

[Call 7] Switching from thread 6 to thread 2
Thread 2 is releasing lock maleMutex
Transferring lock maleMutex from thread 2 to thread 4

THREAD ID	LOCATION	STATUS	WAITING ON
0	7	waiting-lock	maleMutex
1	3	waiting-lock	femaleMutex
2	9	running	
3	21	completed	
4	17	ready	
5	6	waiting-sem	genderBlock
6	7	ready	
7	21	completed	
8	7	waiting-lock	maleMutex
9	21	completed	
10	17	waiting-lock	maleMutex

LOCK NAME	STATUS	WAITING THREADS
femaleMutex	held by 5	1
maleMutex	held by 4	0 8 10

SEMAPHORE NAME	VALUE	WAITING THREADS
occupancy	2	
genderBlock	-1	5

[mdat-mutex-unlock] Switching from thread 2 to thread 6
Thread 6 tried to acquired held lock maleMutex - thread 6 must wait

THREAD ID	LOCATION	STATUS	WAITING ON
0	7	waiting-lock	maleMutex
1	3	waiting-lock	femaleMutex
2	9	ready	
3	21	completed	
4	17	ready	
5	6	waiting-sem	genderBlock
6	7	waiting-lock	maleMutex
7	21	completed	
8	7	waiting-lock	maleMutex
9	21	completed	
10	17	waiting-lock	maleMutex

LOCK NAME	STATUS	WAITING THREADS
femaleMutex	held by 5	1
maleMutex	held by 4	0 6 8 10

SEMAPHORE NAME	VALUE	WAITING THREADS
occupancy	2	
genderBlock	-1	5

Figure 2. Example of MDAT trace file

Students were also asked to write a second implementation to the
restricted version of the unisex restroom problem such that at
most four people could be in the restroom at once. To support this
restriction, the checker was modified to flag an error if either
gender’s counter is greater than four. A command line switch was
also added to the checker so this check could be turned off or on
depending on which version of the problem was being worked on.

5. RESULTS
To assess the potential impact of MDAT, we used the student
submissions of the unisex restroom problem that were assigned in
the Fall 2011 and Fall 2012 offerings of the first author’s
Operating Systems and Networks class. Students had to provide
solutions for both the initial problem and the more restrictive
version. Solutions did not need to ensure fairness or lack
starvation but they could not be overly restrictive (such as
allowing only one person in the restroom at once).
In the Fall 2011 offering, students did not have access to the
MDAT library at the time; they had to test and debug their
programs themselves manually. However, as part of their
assignment, students had to create a mutual exclusion checker that
they could use to help test their programs. The assignments were
graded manually looking for mutual exclusion violations and
possible cases of deadlock. Once MDAT was completed (which
occurred well after the completion of the course), 21 submissions
were converted so they could run with MDAT.
In the Fall 2012 offering, students did have access to MDAT.
There were 28 submissions for the assignment. To reduce copying
from the previous offering, the problem was changed to an
identical problem with a different situation: prohibiting old
children and young children from simultaneously being on a play
structure at once. For clarity, the remainder of this section is
written in the context of the unisex bathroom problem. Students
were also given a survey at the end of the assignment to provide
feedback on their experience using MDAT.
We ran the submissions from both quarters using MDAT for 200
different randomly-generated schedules with 12 threads and 10
rounds per run. The results are shown in Table 2.
Table 2. Results of using MDAT on Student Submissions

MDAT reported...
Fall 2011

(w/o MDAT)
Fall 2012
(MDAT)

No errors (correct solution) 6 23

No errors (incorrect solution) 0 1

Deadlock (all 200 runs) 10 0

Deadlock (some runs) 1 0

Mutual exclusion violation (all 200 runs) 1 1

Mutual exclusion violation (some runs) 0 2

Both deadlock & mutual exclusion 2 1

Hung due to incorrect spin loop 1 0
The fact that 15 of the 21 submissions are incorrect in the Fall
2011 offering clearly demonstrate the need for such a tool. While
using MDAT, only 5 of the 28 submissions were incorrect in the
Fall 2012 offering. MDAT was able to detect four of the five
faulty submissions. In the incorrect submission that was not
detected by MDAT, the synchronization was too restrictive in that
it only allowed one person to use the restroom at once. MDAT
does not catch this particular problem but the mutual exclusion
checker could be modified to warn the user of this situation.

In addition, in virtually all of the cases, very few runs are needed
to catch the error. This implies the aggressive scheduling with
more opportunities to switch threads has a significant impact on
finding multithreaded problems. The only exception to this are the
two solutions from Fall 2012 that encountered mutual exclusion
violations on only some of the runs. In both cases, mutual
exclusion violations were only detected in 4 of the 200 runs.
For the Fall 2011 offering, we compared the results returned from
MDAT with our manual grading of the assignments. Quite
embarrassingly, the manual grading of these assignments only
caught 6 of the 14 deadlock cases. Manual grading did properly
detect the three mutual exclusion violations and deemed the six
solutions with no errors to be correct.
Now consider the restricted version of the problem where the
restroom has a maximum capacity of four people. Solutions that
got the initial part wrong were not considered further since the
corresponding solution to the restricted version of the problem
was incorrect for the same initial reason. Of the 29 solutions that
remained, MDAT did not find any errors. Of these 29 solutions,
27 solutions correctly implemented the restriction. Two solutions
(both from the Fall 2012 offering) were incorrect in that it was
possible to have more than four people use the restroom but
MDAT did not generate a random schedule for this scenario.
To address the lack of data, we used a solution of the initial
unrestricted version of the problem with the more restrictive
mutual exclusion checker. Since the solution lacks a mechanism
for restricting capacity, it is capable of allowing more than four
people in the restroom. The solution was run 10,000 times. Only 1
of the 10,000 runs reported a case where four people were in the
restroom at once. In this particular situation, using a randomized
scheduler was not effective.
The students in the Fall 2012 offering were asked a variety of
questions regarding their experience using MDAT. Here is the set
of YES / NO questions and their responses:

• Q1. Did MDAT detect deadlock? 24 YES, 2 NO
• Q2. Did MDAT detect a case where men and women used

the restroom at the same time? 16 YES, 9 NO
• Q3. Did MDAT detect a case where more than four people

used the restroom at once? 8 YES, 16 NO
• Q4. Did you look at the output trace? 22 YES, 4 NO
• Q5. Did you use interactive mode? 17 YES, 9 NO

Considering the number of correct solutions that were ultimately
received, MDAT was successful in detecting errors. We found it
surprising that eight students encountered an error with more than
four people using the restroom at once given how rare it was
encountered when evaluating the final submissions.
Students who answered yes to Q4 were asked to gauge the
usefulness of the output trace on a five point scale from 1 (very
useless) to 5 (very useful). They were also asked to provide
comments on the trace. The same two questions were posed to
those who answered yes to Q5 asking them to assess the
usefulness of the interactive mode. The results of the two multiple
choice questions are listed in Table 3.
Table 3. Usefulness of MDAT Features

(Very Useless) (Very Useful)

1 2 3 4 5

output trace 1 3 7 4 7

interative mode 0 2 0 7 7

Usefulness of …

The usefulness of the output trace was mixed. While some
students found the trace to be useful, several felt that the trace
was hard to follow, very dense, and a lot of data to scroll through.
One comment that really stood out was “Once I understood what I
was looking at it was useful, but that took a long time to do.”
Based on Table 3, the students who used interactive mode found it
to be useful. Looking at the comments, some students used
interactive mode to get a better understanding of how context
switching, locks, and semaphores worked. Other students found
interactive mode to be very helpful in debugging and testing their
implementations. One student noted that using output statements
he/she added to the code was more helpful.
Lastly, students were asked what improvements should be made
to MDAT. Several students suggested on reducing the level of
detail on the trace output. Another common suggestion was to
better correlate the position on the trace to the source code and to
the errors reported by the mutual exclusion checker. In particular,
it was difficult to find an error detected by the mutual exclusion
checker in the trace.

6. RELATED WORK
The design of MDAT was inspired from CHESS [1]. CHESS is a
multithreaded testing tool that systematically generates different
schedules for testing, an improvement over simply randomly
generating schedules. CHESS works on Win32 and .NET
platforms. Inspect [8] is a similar tool but works on C programs
with pthreads. ConTest [4] and CalFuzzer [6] generate
multithreaded tests for Java. ConTest biases the scheduler towards
obtaining multithreaded coverage. CalFuzzer focuses on potential
concurrency bugs that were flagged by different tools. All four of
these tools are designed for real-world programs where MDAT is
focused on assisting students with multithreaded programming.
From an education perspective, Bi and Biedler [2] developed a
Java thread visualization tool that helps students see graphically
the states of the different threads over time. Ricken and
Cartwright [7] propose using a test-first approach to writing
concurrent programs in Java. They use a specially designed unit
testing framework that overcomes problems with using traditional
unit testing frameworks. Currently, their testing is dependent on
the schedule produced by the JVM but they plan to incorporate a
technique that systematically generates schedules based on
heuristics in the future. Bruce et al. [3] propose introducing
concurrency as a topic in the first computer science course. They
initially select examples that avoid or minimize race conditions
but eventually introduce the topic later in the course. A more
thorough treatment of testing and debugging is left for future
courses. Gopalakrishnan et al. [5] give an extensive list of
resources for teaching concurrency and describe how they use
Inspect [8] and CHESS [1] in their course.

7. CONCLUSION AND FUTURE WORK
MDAT is a multithreaded testing and debugging tool designed for
students learning to program with multiple threads. For the unisex
restroom problem, it was effective in helping students find
deadlock and mutual exclusion violations where men and women
used the restroom at the same time. It was not effective at finding
violations of the added restriction that only four people could use
the restroom at once. While many students found MDAT to be
useful for testing and debugging, some students felt that the
output trace was too long and difficult to parse.

For future work, the first obvious step is to improve the tracing
facility so it is easier to understand. One enhancement is to have
the mutual exclusion checker be integrated into MDAT instead of
a separate entity. This will allow state associated with mutual
exclusion state to be part of the trace making it easier to debug.
Another enhancement is to create a GUI with the ability to
collapse and expand the trace. Initially the trace would contain a
description of the different events that occurred and the user could
click on an event to see the various tables at that point. This would
allow the user to find where the error is taking place and then only
investigate the state near where the error occurred.
Another direction of future work is to improve the ability to catch
concurrency bugs such as the restriction of having four people in
the restroom at once. Are there improvements to the scheduler to
catch this particular type of bug? Another source of bugs is
forgetting that individual statements cannot be assumed to be
atomic. By breaking individual statements into smaller pieces, the
instrumentor will be able to insert more scheduler invocations in
the middle of individual statements. The downside of more
scheduler invocations is that the resulting trace is longer.
Lastly, the MDAT interface can be adjusted to use the actual
locking and semaphore functions. This would allow the student to
write their program that would compile and execute normally with
or without MDAT. This would make the exercise seem more real
and demonstrate the benefit of creating testing and debugging
tools. It would also permit students to use MDAT on other
concurrent programs.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their valuable comments. We also thank the students in the Fall
2012 offering of Operating Systems and Networks at Seattle
University for providing feedback on MDAT.

REFERENCES
[1] Ball, T., Burckhardt, S., de Halleux, P., Musuvathi, M., and Qadeer,

S. 2011. Predictable and Progressive Testing of Multithreaded Code.
IEEE Software (May/June 2011), 77-83.

[2] Bi, Y., and Beidler, J. 2007. A Visual Tool for Teaching
Multithreading in Java. Journal of Computing Sciences in Colleges
22, 6 (Jun. 2007), 156-163.

[3] Bruce, K., Danyluk, A., and Murtagh, T. 2010. Introducing
Concurrency in CS 1. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education (Mar. 2010), 224-228.

[4] Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby G., and Ur, S.
2003. Framework for testing multi-threaded Java programs.
Concurrency and Computation: Practice and Experience 15 (2003),
485-499.

[5] Gopalakrishnan, G., Yang, Y., Vakkalanka, S., Vo, A.,
Aananthakrishnan, S., Szubzda, G., Sawaya, G., Williams, J.,
Sharma, S., DeLisi, M., and Atzeni, S. 2009. Some resources for
testing concurrency. In Proceedings of the 7th Workshop on Parallel
and Distributed Systems: Testing, Analysis, and Debugging (Jul.
2009).

[6] Joshi, P., Naik, M., Park, C., and Sen, K. 2009. CalFuzzer: An
Extensible Active Testing Framework for Concurrent Programs. In
Proceedings of the 21st International Conference on Computer
Aided Verification (Jun. 2009), 675-681.

[7] Ricken, M., and Cartwright, R. 2010. Test-First Java Concurrency
for the Classroom. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education (Mar. 2010), 219-223.

[8] Yang, Y., Chen, X., and Gopalakrishnan, G. 2008. Inspect: A
Runtime Model Checker for Multithread C Programs. Technical
Report UUCS-08-004. University of Utah.

	1. INTRODUCTION
	2. MDAT OVERVIEW
	3. USER INTERFACE
	4. UNISEX RESTROOM IMPLEMENTATION
	5. RESULTS
	6. RELATED WORK
	7. CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

