
Program Analysis Too Loopy? Set the Loops Aside

Eric Larson
Computer Science and Software Engineering

Seattle University
Seattle, WA USA

elarson@seattleu.edu

Abstract—Among the many obstacles in efficient and sound
program analysis, loops may be the most prevalent. In
program analyses that traverse paths, loops introduce a
variable, possibly infinite, number of paths. This paper looks
at whether loops could be analyzed separately and replaced
with a summary. First, the complexity of a loop is estimated by
counting the paths through the body of the loop. 85% of the
loops have fewer than ten paths and less than 1% have more
than 10,000 paths. Second, the number of paths is computed by
analyzing loops separately to assess the feasibility of such an
analysis approach. While the number of paths is decreased in
many cases, it is typically not sufficient for long, complex
functions. Finally, loops are classified based on their stopping
condition and further analyzed for programming elements that
may make loop analysis more difficult. Nearly half of the loops
are array traversals and over half of the loops contain a
function call.

Keywords-loops; program analysis; paths

I. INTRODUCTION
Loops are a necessary evil in program analysis. Every

program contains loops but they can be difficult to analyze.
Loops are used to do a variety of different things such as
traversing a data structure, obtaining data from an input
source until the end is reached, scanning an array for the first
character that is not a space, and many more. Some uses of
loops are common to different programs while other uses are
specific to a particular algorithm or program.

There are several challenges that must be addressed when
analyzing loops. The number of iterations of a loop can be
variable and possibly infinite. Dependencies can be hard to
track when the results of one iteration depend on the result of
previous iterations. In addition, loops are commonly
associated with large, possibly complex, data structures.
These data structures can be hard to model during program
analysis.

Symbolic execution [2, 9, 17, 19, 20] attempts to
simulate every path through a function. Obviously, loops
complicate symbolic execution by introducing a large,
possibly infinite, number of paths. A common strategy to
address this issue is to limit the number of iterations a loop
can take. Another complication in symbolic execution is
function calls. In PREFix [2], functions are analyzed bottom-
up and a summary is created that describes the function’s
behavior. When analyzing a function that calls another
function, the function call is replaced with the summary. Can
a similar analysis strategy be used with loops? Can loops be

analyzed separately and replaced with summaries? If so, this
would decrease the number of paths to analyze and nearly
eliminate the need to analyze infinite loops.1

This paper analyzes loops from 15 different moderately-
sized C programs providing data that can be used to
determine to what extent loops can be analyzed and
subsequently summarized. In particular, we count the
number of paths through the loop, providing an estimate of
its complexity.

If loops were to be analyzed separately, would it make
any difference? To answer this question, we performed a
feasibility study that counts the number of paths that remain
in a function if loops are analyzed separately. This number of
paths provides an ideal lower bound on the number of paths
necessary if loops are analyzed separately.

Not all loops are the same. To this end, we also analyze
how many loops contain programming elements that are
difficult to analyze such as function calls, alternate exits, and
nested loops. Each loop was analyzed manually and
classified based on their stopping condition. Informally,
similarities from different loops across programs were noted.

This paper makes the following contributions:
• An analysis of how many paths are within in a loop,

providing an estimate of the complexity necessary to
analyze the loop. Most, but not all, loops have
simple bodies with few paths.

• Results of a feasibility study that counts the number
of paths if loops are analyzed separately. Most
functions with many paths had significant
complexity outside of loops such that skipping loops
was not sufficient in reducing the number of paths to
a reasonable number.

• An analysis of how often loops contained certain
programming constructs or properties. Of the key
findings: 48.7% of loops are array traversals, 24.2%
contained an alternate exit beyond the normal
stopping condition, and 57.6% contained a function
call.

The rest of the paper is organized as follows. Section II
describes the implementation of our loop analyses and
Section III presents the results of these analyses. Related
work is outlined in Section IV and Section V concludes.

1 This paper does not address loops constructed via backward goto
statements or recursion.

II. LOOP ANALYSES
This section describes the loop analyses employed in this

study. The loop analyses were applied to preprocessed
source code written in the C programming language,
exposing any loops that were embedded in macros. 2 All
automated analyses were performed using an extension to
CodeSurfer [6]. Initially, CodeSurfer parses the source code
and create a control flow graph. Our extension does the
following:

1. Identify which basic blocks are associated with each
loop.

2. Traverse the basic blocks within each loop, looking
for specific programming elements.

3. Using the control flow graph created by CodeSurfer,
count the number of the paths in the loop.

As described later in this section, some of the analyses
were carried out by manually inspecting each loop.

A. Paths In Loops
Our first experiment consists of counting the number of

paths in each loop. The path count serves as an estimate of
how much work is needed to analyze the body of the loop.

The path counting algorithm uses the beginning of the
body of the loop as the starting point. Within the body of the
loop, paths are counted using a depth first search of the
control flow graph. If-else statements introduce two paths
and switch statements introduce a path for each case. The
CodeSurfer internal representation converts short-circuited
operators into the appropriate if-else constructs which are
subsequently accounted for in the path counting algorithm.

While there is a single starting point, there are several
possible ending points for a loop:

• Reaching the end of the loop body.
• *A break statement corresponding to the loop

(opposed to a break statement associated with a
switch or a nested loop).

• A continue statement corresponding to the loop.
• *A goto statement that leads outside the loop. (In the

programs under consideration, all backwards goto
statements exited the loop).

• *A return statement.
• *A function call that unconditionally aborts the

program.
 A loop has an alternate exit if it is possible to exit the

loop without using the provided stopping condition. The
items in the list above marked with ‘*’ are alternate exits.

 Two different algorithms are employed for nested loops.
In one variant, the path counting algorithm will traverse the
loop zero times and one time. This variant was chosen as it is
common for path-based analyses to place limits on the
number of iterations in the loop. In the second variant, the
nested loop is assumed to be replaced with a summary and
does not introduce any paths. This variant assumes that each
loop is analyzed separately starting with the inner most loop.
When outer loops are analyzed, the summary, which is

2 Some programmers use a dummy do-while loop with a constant
predicate 0 as a wrapper in macros. These (non) loops were discarded.

assumed to not introduce any paths, is used in place of the
loop.

The path counting algorithm only returns a number of
possible paths through the loop. No attempt is made to
eliminate illegal paths. We deem this to be appropriate since
any analysis technique to summarize loop behavior would
have to be able to detect and handle illegal paths. In addition,
all paths are considered equal even though paths differ in
length and complexity. Accounting for the complexity of
different paths is left as future work.

B. Paths Counting by Separating Loops
This experiment explores the effect on path count if loops

were analyzed separately. Here is how this analysis could be
carried out:

1. Analyze each loop in the program summarizing its
behavior. In the case of nested loops, the inner loops
would be analyzed and summarized first.

2. Replace the loops with their summaries.
3. Use symbolic execution (or some other analysis

technique that relies on traversing paths) and
exhaustively analyze all paths.

Paths in this experiment are counted intraprocedurally.
For a base case, the path count is computed with loops
present. Loops are traversed at most one time. The number
of paths in a program is simply the sum of the paths from
each function in the program.

To count the paths when the loops are analyzed
separately, loops from the control flow graph are removed
and the loop predecessor is connected directly to the loop
successor. The total number of paths in each loop is also
counted using the second variant described in the previous
section where nested loops are assumed to be analyzed
separately and replaced with a summary. The number of
paths needed to analyze a function is the sum of the number
of paths outside the loops (when loops are removed) and the
number of paths inside the loops.

This goal of this experiment is to obtain an ideal lower
bound on the number of paths that can be achieved if
symbolic execution is structured in this fashion. This
algorithm assumes that each loop can be summarized and
that the summary does not introduce any additional paths. In
practice, the resulting summary might be very complex. This
in essence defers the complexity from the path traversal
engine to the underlying constraint solver or theorem prover.
There is a trade-off between analyzing fewer but more
complex paths and analyzing more paths that are less
complex. Exploring this trade-off is left as future work. To
further improve performance, it is possible to create
approximate summaries that are less complex but create
inaccuracies that may result in missed bugs in bug detection
systems. The creation of summaries is beyond the scope of
this paper as it highly specific to the system and its goals.

C. Loop Characteristics
To address the complexity in creating a summary that

captures the behavior of a loop, we explored an assortment
of characteristics of loops. The purpose of this study was
two-fold. First, we wanted to see how similar loops are both

within the same program and across different programs. Our
second goal was to determine how often loops contained
"hard-to-analyze" elements such as function calls, early
returns, and input / output commands.

This experiment consisted of both automated analysis
using CodeSurfer and manual inspection of the loops.
Automated analysis was used for simple tasks such as
determining if a loop contains a function call. Manual
analysis was used to judge the intent of the loop and to note
similarities between different loops.

Towards the first goal of identifying common loop
patterns, loops are manually classified based on their
stopping condition into the following five categories:

Array traversals: The loop consists of an index variable
that is used in an array reference operator within the loop.
The array reference can be applied to either an array or to a
pointer to an array. The variable is incremented with a
constant increment or decrement (typically one) at the end of
each iteration. The loop stops when the index variable
reaches a particular value that remains constant (invariant)
during the loop. For forward traversals, this is often the size
of the array, but this is not a requirement.

Loops that use pointers to traverse an array may also be
considered to be array traversals provided that the stopping
condition is based on a fixed number of elements. In other
words, the loop will be considered to be an array traversal if
the loop could easily be rewritten in a form that meets the
above requirements.

Data structure traversals: The loop consists of a
traversal of a common data structure such as a string or a
linked list (but not an array). The stopping condition is when
the end of the data structure is reached.

For strings, a loop is considered a data structure
traversal if the loop stops when the null terminating
character is encountered. If the loop stops based on the size
of the array, it is considered an array traversal (described
above). If the loop stops when a different character other
than the null terminating character is encountered, the loop is
classified as a sentinel loop (described below).

Sentinel loop: The loop consists of a traversal of a data
structure that ends when a particular character is
encountered. In most cases, the traversed data structure is an
array, possibly a string. There are two common uses of
sentinel loops: i) as an "end-of-data" marker and ii) finding a
delimiter in parsing a string.

Input sentinel loop: The loop is used to get data from
input (either from the console, file, or network). The
stopping condition for the loop is either when there is no
more input (such as the end of the file) or when a special
"end-of-input" marker is reached.

Other: The loop does not fit one of the above
classifications or we are unable to determine if it meets one
of the above classifications.

 Each loop is classified in exactly one of these categories.
In the event a loop satisfies multiple classifications, we
prioritize in this order: input sentinel, array traversal, data
structure traversal, sentinel, and other. For instance, if a
loop that traverses an array can stop either by encountering

some value or reaching the end of the array, we classify the
loop as an array traversal based on the priority above.

The presence of alternate exits other than the normal
stopping condition does not automatically cause the loop to
be classified as other. For instance, an input sentinel loop is
permitted to have a check for valid input that causes the
program to abort. Separately, we classify whether or not the
loop has an alternate exit other than the normal stopping
condition.

One shortcoming to our manual inspection is that we do
not further inspect functions that are called within the loop.
This can cause loops to be classified as other when it could
be classified differently. For instance, the for loop in this
trivial example would be classified as other but it could be
classified as array traversal if foo was inspected during
analysis.

…
for (j = 0; j < n; j++)
 foo(a, j);
…

void foo(int *a, int j) {
 a[j] = 0;
}

The second part of collecting loop characteristics was to

determine if a loop contained "hard-to-analyze" features. In
particular, we looked for the following:

• Function call in the stopping condition
• Function call in the loop body (excludes function

calls that unconditionally exit the program, which
are tracked separately)

• Break statement (corresponding to the loop)
• Continue statement (corresponding to the loop)
• Goto statement (may or may not jump out of the

loop)
• Return statement
• Function call that unconditionally exits the program
• Function call that gets input
• Function call that produces output
This analysis was done automatically using our

CodeSurfer extension, except for detecting function calls in
the stopping condition, input function calls, and output
function calls. Isolating the stopping condition in the
CodeSurfer intermediate representation was too difficult in
cases where the condition was converted into multiple if-else
statements based on short-circuited operators. In the case of
input and output functions, we were concerned with having
an incomplete list of I/O functions and felt more comfortable
analyzing the loops manually.

As noted earlier, function calls were not inspected further
to see if the functions called within the loop could exit the
program, gather input, and/or produce output. However, we
did note if a function was simply a wrapper function for
exiting, input, and output. For example, some programs have
their own exit routines that consist of printing an error
message in a consistent manner followed by exiting the

program. If a loop called one of these wrapper functions, it
would be marked appropriately as if the contents of the
wrapper functions were inlined in the loop.

Another complication for analyzing loops is when they
contained other loops. We mark loops that have at least one
inner nested loop. We also mark loops that are nested within
another loop. Furthermore, the depth of the nesting is
recorded. As with previous analyses, called functions are not
analyzed to determine if they contain loops.

III. RESULTS
The 15 programs used in this study are shown in Table I.

All programs used in this study are written in the C
programming language.

Table I also shows how many loops are in each program
further subdivided by the type of loop. The while(1) loop
is for any loop that does not have a stopping condition such
as while(1) or for(;;). Since these loops do not use a
stopping condition, we felt it was appropriate to consider
these separately. 12 of the 15 programs have at least one
while(1) loop. for loops are the most common type of
loop and heavily used in the programs flex, ks, othello,
sudoku, and yacr2.

A. Paths in Loops
The results of our experiment that measures the number

of paths in each loop is summarized in Table II. The table is
divided into two sections - one for each of the variants that
differ in how inner loops are counted. Within a variant, the
loops are partitioned into exponentially-sized buckets based
on the number of paths. Also, the number of paths in the
loop with the highest number of paths is shown for each
program.

When inner loops are traversed at most once, 39.8% of
the loops are very basic and have a single path. Based on our
observations, most of these loops accomplish simple things
such as initializing an array, printing the contents of a data
structure, or moving a pointer to a particular character in a

string. Looking further, 45.4% of the loops have two to ten
paths. Combining these first two columns, 85% of the loops
have ten or fewer paths. This suggests that it may be possible
to analyze many of the loops present in these programs.

There are very few loops with a large number of paths.
Less than 1% of all the loops analyzed had over 10,000
paths. In four of the programs (betaftpd, ft, ghttpd, and ks),
all the loops had fewer than 100 paths. Only four programs
(gzip, indent, sudoku, and thttpd) had loops that contained
over 10,000 paths. The program indent was the only program
that had loops with over 100,000 paths. It had two such loops
with 43,830,540 and 3,275,384 paths.

When inner loops are analyzed separately and not
traversed, the number of loops with ten or fewer paths
increases to 91% and there are very few loops with large
path counts. Only six loops have more than 1,000 paths and
only two loops (the two big loops from indent) have more
than 10,368 paths.

Table III breaks down the number of paths by type of
loop. For brevity, data is only shown for the variant where
inner loops are traversed at most once. Out of the four loop
types, while(1) loops tended to have more paths. for and
do-while loops tend to be smaller, the largest number of
paths in each type of loop was just over 10,000 paths. Of the
six loops that had the most paths, four were while loops
and two were while(1) loops.

B. Path Counting by Separating Loops
A comparison of counting paths when loops are included

with the rest of the function versus when loops are analyzed
separately is presented in Table IV. The first column shows
the number of paths present in the program that includes
paths through loops (at most one iteration). The second
column shows the number of paths in each program if loops
are analyzed separately. This number is then broken down
into the number of paths not in loops (third column) and the
total number of paths within loops (fourth column).

 The results of this experiment varied widely. Some
programs saw a significant reduction in the number of paths.
In particular, ks had 24,452 paths when loops are included
and only 153 when loops are analyzed separately, yacr2
went from over 2 million paths to 3,104, and sudoku saw a
decrease from almost 2 billion paths to 21,216. In the case of
sudoku and ks, there were more paths inside loops than paths
outside of the loops. In yacr2, the number of paths inside
loops (1,529) was very close to the number of paths outside
loops (1,575). In all other programs, the number of paths
outside loops was significantly higher than the number of
paths inside loops. As a result, some programs (betaftpd,
find, flex, and othello) saw very little decrease in the number
of paths when loops are analyzed separately. Programs gzip,
indent, and thttpd saw a significant decrease in the number of
paths but still had a large number of paths even when loops
are removed. Of the five programs that had over a billion
paths with loops, four of them still had a billion paths.

TABLE I. PROGRAMS USED

Name Description Funcs Lines Loops do for while while(1)

bc calculator 101 18,876 103 1 33 67 2

betaftpd file transfer daemon 66 8,861 17 2 6 8 1

diff3 compares three files 29 7,310 53 10 23 19 1

find file finder 295 26,135 50 1 33 16 0

flex lexical analyzer 144 8,809 153 1 116 33 3

ft spanning tree 37 4,910 23 7 8 8 0

ghttpd web server 16 7,664 22 0 10 10 2

gzip compression utility 92 15,308 181 31 62 81 7

indent source code indenter 103 18,635 109 10 33 59 7

ks graph partitioning 13 2,327 35 1 33 1 0

othello othello game 11 1,629 26 2 19 4 1
space specialized interpreter 136 6,988 52 1 14 35 2

sudoku sudoku solver 47 4,339 59 0 54 4 1

thttpd web server 126 16,454 85 1 49 22 13

yacr2 channel router 58 8,402 123 6 112 5 0

To further explain the results of this experiment, we

performed the same comparison for each function. The
results are presented in Table V. The first column shows the
number of functions that have the corresponding number of
paths when loops are included. The next two columns
respectively show the number of functions that have no loops
and the number of functions that consist of a single path
outside of the loop (in other words, the function consists of a
single loop and all the paths are contained within that loop).
The last column shows the number of functions that contain
the corresponding number of paths when loops are analyzed
separately. The number of paths is the sum of the number of
paths outside loops in the function and the number of paths
in all of the loops within that function.

Not surprisingly, we see a shift downward when loops
are excluded with more functions having fewer paths and
fewer functions having more paths. However, there are still
many functions that have high path counts even when loops
are excluded. In particular, there are 12 functions that have
over 100 million paths when loops are included and there are
still seven when loops are analyzed separately. Of those
seven functions, two functions (both in the program flex) do
not contain any loops so analyzing loops separately has no
benefit.

Out of the 1,274 functions under analysis, 807 (63.3%)
have no loops. Most of these are simple functions with very
few paths. For functions that have over 100 paths, 21% of
the functions have no loops. For functions that over one
million paths, 11% of the functions have no loops.

At the other end of the spectrum, 172 functions (13.5%)
only have one path when loops are analyzed separately. This
means that the function consists of a single loop and once
that loop is analyzed, there are no additional paths to

TABLE II. LOOP PATH COUNTS BY PROGRAM

TABLE III. LOOP PATH COUNTS BY TYPE

TABLE IV. PATH COUNTS BY PROGRAM

Total Outside
Loops

Inside
Loops

bc 949,346 56,965 56,487 478

betaftpd 45,692 42,315 42,209 106
diff3 572,718 40,966 39,735 1,231

find 1,966,770 1,804,370 1,803,439 931

flex 7.40E+11 7.22E+11 7.22E+11 1,398
ft 10,594 526 481 45

ghttpd 9,679 1,156 1,075 81

gzip 3.05E+10 2.37E+09 2.37E+09 873
indent 9.82E+17 8.38E+11 8.38E+11 30,421,708

ks 24,452 153 47 106

othello 13,382 13,201 13,034 167
space 6,227 2,011 1,676 335

sudoku 1.94E+09 21,216 10,099 11,117

thttpd 2.84E+12 3.48E+10 3.48E+10 10,345
yacr2 2,249,048 3,104 1,575 1,529

Program
Paths (loops
traversed at
most once)

Paths (analyzing loops separately)

Number of Paths do for while while(1)

1 21 240 173 0

2 - 10 37 286 152 20
11 - 100 13 53 25 13

101 - 1k 1 20 14 3
1k - 10k 1 5 4 2
10k- 100k 1 1 3 1
> 100k 0 0 1 1

Number of loops 74 605 372 40
Most paths in loop 10,056 10,368 3,275,384 43,830,540

Most paths
in loop 1 2 -

10
11 -
100

101 -
1k

1k -
10k

>
10k

Most paths
in loop 1 2 -

10
11 -
100

101 -
1k

1k -
10k

>
10k

bc 672 51 43 6 3 0 0 119 54 43 5 1 0 0

betaftpd 37 5 9 3 0 0 0 37 5 10 2 0 0 0

diff3 9,608 26 18 4 3 2 0 581 29 17 4 3 0 0
find 396 20 22 5 3 0 0 396 20 24 3 3 0 0

flex 8,448 63 73 12 3 2 0 464 70 74 6 3 0 0

ft 20 10 11 2 0 0 0 4 12 11 0 0 0 0
ghttpd 23 11 7 4 0 0 0 23 11 9 2 0 0 0

gzip 20,883 77 83 14 5 0 2 198 87 82 11 1 0 0

indent 43,830,540 57 37 9 1 2 3 30,352,140 58 37 9 2 1 2
ks 72 14 15 6 0 0 0 36 19 14 2 0 0 0

othello 121 11 13 1 1 0 0 121 18 7 0 1 0 0

space 1,252 16 31 4 0 1 0 164 23 24 4 1 0 0
sudoku 41,480 13 28 8 7 1 2 10,368 19 31 7 1 0 1

thttpd 17,267 26 44 8 4 2 1 5,768 30 44 5 4 2 0

yacr2 3,537 34 61 18 8 2 0 392 46 65 8 4 0 0
434 495 104 38 12 8 501 492 68 24 3 3

39.8% 45.4% 9.5% 3.5% 1.1% 0.7% 45.9% 45.1% 6.2% 2.2% 0.3% 0.3%
43,830,540TOTAL 30,352,140

Name
Inner Loops Traversed at Most Once Inner Loops Separated and Not Traversed

traverse. Unless the loop contains nested loops that can be
analyzed separately, there is no benefit to analyzing loops
separately in such function. Most of the functions that have
only one outside path have relatively few paths. However,
there are functions with many paths that only have one
outside path. This includes a function in indent that consists
of a single complex loop that has over 30 million paths itself.

Probing further, most of the complex functions with high
path counts contain multiple (possibly nested) loops and
significant functionality outside of these loops. While the
number of paths decreased for most of the functions, the
decreases were moderate in most cases, limiting the
effectiveness of analyzing loops separately.

C. Loop Characteristics
Table VI provides a count of how many loops met the

characteristics described in Section II. The table is broken
down into four groups. The first group classifies the loops
based on the stopping condition: array traversal, data
structure traversal, input sentinel, sentinel, and other. The
second group separates loops into those that can only exit
normally via the stopping condition specified within the loop
and those that also contain at least one alternate exit. The
third group provides a count of how many loops contain
different "hard-to-analyze" features. The final group is
concerned with nesting and indicates how many loops
contain a nested loop and how many loops are nested within
another loop.

With respect to the stopping condition, 48.7% are array
traversals. The percentage within individual programs can
vary widely. The programs flex, othello, sudoku, and yacr2
use arrays heavily while the programs find, ks, and space
tend to use other data structures. 29.3% of the loops were
labeled as other and did not fit cleanly into one of the other
stopping conditions.

Many of the loops (75.8%) did not have alternate exits.
By definition, none of the 434 loops with one path had an
alternate exit. Of the 657 loops that had at least two paths,
264 (40.2%) had an alternate exit.

Over half of the loops (57.6%) overall contained a
function call. In each program, at least 47% of the loops
contained a function call. This suggests that interprocedural
analysis will be necessary in order to fully analyze loops. In
other "hard-to-analyze" characteristics: 16.8% of the loops
contained an output statement, 11.5% contained a return
statement, and 9.8% contained a break statement.

Roughly one of every five loops (19.1%) contained a
nested loop. 28.4% of the loops were nested within another
loop. The maximum loop depth was four (quadruple nested
loops). There were 5 quadruple nested loops, 31 triple nested
loops, and 176 double nested loops.

Tables VII and VIII show the same characteristics by
type of loop (Table VII) and by number of paths (Table
VIII). A vast majority of the array traversals are coded using
for loops. Most of the sentinel loops were implemented
with while loops. The while(1) loops appear to be
difficult to analyze: all but three of the while(1) loops
were classified as other, all but one3 had alternate exits, and
contained a higher percentage of “hard-to-analyze” elements
with respect to the other loops.

Other noteworthy results from Table VII: function calls
within stopping conditions occur most frequently in while
loops, very few for loops contain input commands, and
there is not a lot of difference among do-while, while,
and for loops for the other “hard-to-analyze” elements.

From Table VIII, loops with large path counts tended to
be classified as other, have alternate exits, and contain
function calls. This result is intuitive since loops with large
path counts tend to be longer and more complex.

All of the sentinel loops and all but four of the input
sentinel loops contain ten or fewer paths. Based on our
observations, the goal of many sentinel loops is to just to get
to the sentinel character with very little, if any, processing in
the loop. Loops that were nested within other loops also
tended to have very few paths.

Additional statistics were gathered for array traversals
since they are more common than other types of loops and
are summarized in Table IX. First, we looked at whether the
array size was known at compile time. This heavily varies by
the program. Almost all of the array traversals in othello,
space, and sudoku had sizes known at compile time. Roughly
half of the arrays in gzip were known at compile time. For all
of the other programs, there were significantly more arrays
where the sizes were not known until run-time. Four
programs (find, ghttpd, indent, and yacr2) did not have any
array traversals with sizes known at compile time and four
other programs (betaftpd, flex, ft, and ks) only had one. Many
of these programs used dynamically allocated arrays with
sizes dependent on the input to the program.

During our classifications of loops as array traversals, a
noticeable number of loops had additional stopping
conditions beyond an index or size comparison. The last
column of Table IX shows how many array traversal loops
stop only based on a particular index or the size of the loop.

3The one loop that does not have an alternate exit is in a daemon program
that runs indefinitely until the program is aborted.

TABLE V. COMPARING PATH COUNTS (PER FUNCTION)

Loops
Separate

Total
Funcs

No
Loops

1 Path Out
of Loop

Total
Funcs

1 270 269 1 269

2 - 10 634 428 124 687

11 - 100 195 73 30 205

101 - 1k 83 20 10 58

1k - 10k 34 8 3 21

10k- 100k 23 5 2 14

100k - 1M 11 1 0 6

1M - 10M 8 1 1 4

10M - 100M 4 0 1 3

> 100M 12 2 0 7

Loops IncludedNumber of
Paths

The “Yes” column provides the number of loops in which
the only way to exit the loop is to reach the particular index.
In these loops, the number of iterations is fixed, making it
more straightforward to analyze the loop. If a loop contains
an extra condition in the loop predicate and/or contains any
form of alternate exit, it is counted in the “No” column.

Overall, 77.0% of the array traversal loops only exit
when the index reaches a particular value. Across the
different programs, the percentage of such loops range from

55.8% (indent) to 95.1% (gzip). Many programs lie near the
average in the 75-80% range.

We also looked at whether other types of loops beyond
those classified as array traversals to determine if the
number of iterations could be determined at compile time.
Clearly, this is impossible for any input sentinel loop since
they depend on input. Unless the data structure itself is
constant (not likely), the number of iterations of data
structure traversals and sentinel loops are also not known at

TABLE VI. LOOP CHARACTERISTICS BY PROGRAM

TABLE VII. LOOP CHARACTERISTICS BY LOOP TYPE

TABLE VIII. LOOP CHARACTERISTICS BY NUMBER OF PATHS

Program Num
Loops

Array
Trav

Data
Struct

Input
Sent Sent Other Norm

Exit
Alt
Exit

Func
Stop

Func
Call Brk Cont Goto Retn Exit In

put
Out
put

Has
Nested

Is
Nested

bc 103 41 17 4 5 36 91 12 8 50 4 0 3 5 5 8 20 16 28

betaftpd 17 7 4 0 0 6 14 3 0 13 1 4 0 1 1 0 1 1 2

diff3 53 17 6 4 13 13 34 19 4 30 1 5 2 11 10 7 17 11 19

find 50 14 22 1 2 11 33 17 8 37 9 4 0 7 1 1 10 4 7

flex 153 101 14 0 3 35 122 31 3 75 14 0 8 11 8 1 22 28 42

ft 23 5 9 0 0 9 20 3 1 16 1 0 0 2 0 0 3 4 4

ghttpd 22 9 0 4 1 8 13 9 9 17 4 3 0 4 1 4 0 2 4

gzip 181 82 9 1 1 88 149 32 2 86 14 8 2 17 5 4 9 31 54

indent 109 43 18 4 15 29 80 29 2 71 19 4 6 10 0 8 22 16 23

ks 35 9 22 0 1 3 29 6 0 18 1 0 0 0 5 1 9 11 13

othello 26 19 0 2 0 5 18 8 0 17 3 1 0 4 1 5 8 9 12

space 52 10 24 2 0 16 43 9 4 37 1 1 0 6 3 3 18 9 12

sudoku 59 43 2 0 0 14 36 23 2 46 6 4 0 19 1 1 10 20 24

thttpd 85 28 15 5 6 31 49 36 10 52 13 14 2 20 6 7 11 16 22

yacr2 123 103 0 2 2 16 96 27 0 63 16 2 0 9 2 2 23 30 44
531 162 29 49 320 827 264 53 628 107 50 23 126 49 52 183 208 310

48.7% 14.8% 2.7% 4.5% 29.3% 75.8% 24.2% 4.9% 57.6% 9.8% 4.6% 2.1% 11.5% 4.5% 4.8% 16.8% 19.1% 28.4%

Exit Loop Contains Nesting

TOTAL 1091

Stopping Condition

Loop Type Num
Loops

Array
Trav

Data
Struct

Input
Sent Sent Other Norm

Exit
Alt
Exit

Func
Stop

Func
Call Brk Cont Goto Retn Exit In

put
Out
put

Has
Nested

Is
Nested

do 74 6 8 7 6 47 56 18 1 48 4 1 1 9 5 11 17 25 24

for 605 462 77 0 6 60 474 131 6 309 55 26 9 58 16 4 91 112 176

w hile 372 63 77 20 36 176 296 76 46 238 26 20 8 36 23 32 64 52 104

w hile(1) 40 0 0 2 1 37 1 39 0 33 22 3 5 23 5 5 11 19 6

Stopping Condition Exit Loop Contains Nesting

Number of
Paths

Num
Loops

Array
Trav

Data
Struct

Input
Sent Sent Other Norm

Exit
Alt
Exit

Func
Stop

Func
Call Brk Cont Goto Retn Exit In

put
Out
put

Has
Nested

Is
Nested

1 434 239 62 10 39 84 434 0 21 178 0 7 0 0 0 11 56 2 121

2-10 12 4 1 0 0 7 7 5 0 11 0 3 3 5 2 1 7 10 1

11-100 38 14 5 2 0 17 16 22 3 35 1 8 4 13 9 5 14 29 9

101-1,000 104 37 14 2 0 51 49 55 7 87 22 16 6 26 14 4 25 65 28

1,001-10,000 495 237 79 15 10 154 319 176 22 309 82 14 7 78 22 29 75 95 150

>10,000 8 0 1 0 0 7 2 6 0 8 2 2 3 4 2 2 6 7 1

Stopping Condition Exit Loop Contains Nesting

compile time. Of the 320 loops classified as other, only 5
had iteration counts known at compile time.

D. Qualitative Analysis
In this section, we go into more detail about the loops in

each of the 15 programs. These notes are derived from both
observations made when manually analyzing the loops and
from the raw data obtained from the different loop analyses.

bc: Some loops used a data structure that was similar to a
microprocessor simulator - traversals were made by updating
a program counter. Some loops involved dividing a number
into its digits; many of these were classified as other but
probably could be analyzed.

betaftpd: Employed some strange loops that removed
bytes from a string (using memmove) until a sentinel
character was reached. These loops were classified as other
because they were not technically traversals. The function
with the most paths, long_listing, has no loops.

diff3: Some loops traversed arrays with three elements
for the three files being compared. Many of the loops with
many paths were in functions that produced output.

find: Some functions traversed a tree data structure.
Many functions did not contain any loops, including one that
contained over a million paths.

flex: Contains two functions that have over 100 million
paths but no loops. Both functions, along with several others,
have many control decisions based on the large number of
user options this program supports.

ft: The function with the most paths, DeleteMin, has
several loops. While none are particularly complex, separate
loop analysis brings the path count of this function from
10,082 to 27. Some functions traverse a heap data structure.

ghttpd: This program forks multiple processes. Some
loops used the system call waitpid as a stopping
condition, only exiting when all of the child processes have
completed.

gzip: Five of the functions have over one million paths
when loops are included. All five of these functions contain
both loops and control statements outside the loop resulting
in path counts that are a couple orders-of-magnitude lower
when loops are analyzed separately. Noteworthy loops
includes string processing functions that are specific to gzip,
bit manipulation loops, and loops within tree data structure
routines that use fixed-sized arrays.

indent: Contains the two loops with the highest path
counts. The loop with the most paths is in the function
indent_main_loop and is the main loop that governs
the entire operation of the program. The loop with the second
most paths is in the function print_comment. Neither
loop is in the function dump_line which has 9.82x1017
paths when loops are included. The function has 18 loops.
By analyzing loops separately when counting paths, the
number of paths drops to 8.38x1011 paths, which is still
unreasonable. The primary reason for the large number of
paths in indent is that the program provides a myriad of
options that allows the user to configure how the input file is
indented. The functionality of many functions and loops is
controlled by these options.

ks: The function with the most paths, PrintResults,
primarily consists of a single loop which contains many
nested loops. The number of paths shrinks from 23,100 to 22
when loops are analyzed separately (only two paths exist
outside the loop). Most of the loops are for loops used to
traverse linked lists. This program employs malloc sanity
checks leading to some loops having alternate exits that
would otherwise not have them.

othello: The board size is a fixed eight by eight grid.
Hence many loops are array traversals with a fixed size of
eight. The function with the most paths, validmove, has
no loops.

space: Some loops use the function TapeGet to get the
next piece of data. These loops are classified as other
because they are not simple traversals. Many loops print
error messages (possibly exiting the loop early) or have
sanity checks (such as malloc checking).

sudoku: The board size is a fixed nine by nine grid but is
represented by a single one-dimensional array of 81 squares.
Many loops are fixed size: either 9 squares of a row or
column or all 81 squares. The two loops with the most paths
are in the function main. One of the loops contains many
nested loops while the other does not contain any. When
analyzing loops separately, the number of paths decreases
from almost 2 billion to 12,122 paths. However, 10,368
paths are within a single loop in main.

thttpd: The number of paths in the program is dominated
by the function main. This function contains a mix of loops
and other control decisions. When loops are separated, the
number of paths in main drops a couple orders-of-
magnitude from 2.84x1012 to 3.48x1010.

yacr2: The function with the most paths,
PrintChannel, has over 2 million paths when loops are
included. Since the function consists of a single complex
loop, there is only one path outside of the loop. The complex
loop contains 11 nested loops at various levels. Together,

TABLE IX. ARRAY TRAVERSAL STATISTICS

bc 41 8 19.5% 33 80.5% 33 80.5% 8 19.5%

betaftpd 7 1 14.3% 6 85.7% 6 85.7% 1 14.3%

diff3 17 6 35.3% 11 64.7% 13 76.5% 4 23.5%
find 14 0 0.0% 14 100% 8 57.1% 6 42.9%

flex 101 1 1.0% 100 99.0% 81 80.2% 20 19.8%

ft 5 1 20.0% 4 80.0% 4 80.0% 1 20.0%

ghttpd 9 0 0.0% 9 100% 6 66.7% 3 33.3%

gzip 82 40 48.8% 42 51.2% 78 95.1% 4 4.9%
indent 43 0 0.0% 43 100% 24 55.8% 19 44.2%

ks 9 1 11.1% 8 88.9% 7 77.8% 2 22.2%

othello 19 19 100% 0 0.0% 15 78.9% 4 21.1%

space 10 10 100% 0 0.0% 6 60.0% 4 40.0%
sudoku 43 38 88.4% 5 11.6% 26 60.5% 17 39.5%

thttpd 28 5 17.9% 23 82.1% 16 57.1% 12 42.9%

yacr2 103 0 0.0% 103 100% 86 83.5% 17 16.5%

TOTAL 531 130 24.5% 401 75.5% 409 77.0% 122 23.0%

Array
LoopsName

Size known at compile time Stop on size only?
Yes No Yes No

there are 407 paths total in the loops. Many of the loops in
the program are array traversals. While the array sizes are
not known at compile time, they are fixed throughout the
program once they are initialized by user input.

When comparing the different loops across the programs,
there were definitely common loop patterns such as
traversing an array or linked list. The structures of the loops
are similar, mirroring common operations such as
initialization, updating, and searching. Loops often contained
content that was specific to the program such as a calculation
used in setting in an array value. Sometimes these
calculations were complex. However, many programs have
loops that were both similar in structure and content to other
loops within that same program.

There was a lot of variation in the loops based on
programming practice. Some programs employed more
rigorous error checking that led to more complexity
compared to loops in other programs.

Sentinel loops also seemed to be implemented differently
among different programs, especially for strings. Some used
string functions to help find the stopping data while others
carried out sentinel loops by manually comparing individual
elements. Another distinction for sentinel loops was whether
or not the sentinel marked the end of the data to be processed
or whether it marked the end of the data to be skipped. Loops
in the latter case tended to be simple and were similar across
multiple programs.

Complex loops with many paths were unique, even
within the same program. All of these loops were specific
not only to the program, but to the specific task within the
program.

A more formal analysis is left as future work. One
possible improvement is to normalize the loops in some
manner (such as converting all applicable while loops to
for loops) to reduce the effect on different programming
styles. Another approach would involve breaking the code
into tokens and comparing them, like the study by Gabel and
Su [5]. This would allow for a more realistic comparison of
the loop structure.

IV. RELATED WORK
Several research groups have worked on analyzing loops

in programs using various forms of static analysis. Kovács
and Voronkov [11] describe how to find loop invariants,
expressions that are true throughout the loop, for loops
involving arrays. Martel [14] unrolls loops using partitioning
in order to increase the precision of invariants found. This is
most applicable to numerical programs where arithmetic
errors can accumulate over several iterations of a loop.
Gulwani and Tiwari [7] outline a fixed point analysis of
loops when creating interprocedural summaries. This type of
analysis could be used to analyze the loops separately.
Lokuciejewski et al. [13] present a static analysis that
computes loop iteration counts. The analysis is
interprocedural but uses slicing to eliminate code not
relevant to the loop. Kirner [10] implements a technique for
automatically determining the lower bound and upper bound
for the number of loop iterations. While it effectively handles

difficult programming constructs such as alternate exits, it
does not handle nested loops.

Another direction for loop analysis is to recognize
common loop patterns. White and Wiszniewski’s SILOP tool
[22] identifies simple loop paths – paths that iterate through a
single loop a variable number of times. By altering this
parameter, a simple loop pattern is created which is used to
assist in testing. The array checker ARCHER [23] identifies
loops that iterate a constant number of times and iterator
loops. Hu et al. [8] describe a technique that squashes loops
of a particular canonical form, replacing them with a single
non-looping statement. This technique was used to reduce
the size of slices but also could be used in other program
analyses. Ngo and Tan [16] detect illegal paths by
recognizing patterns. The “looping-by-flag” pattern matches
while loops that stop when a flag variable is set. Paths that
meet certain conditions will be deemed infeasible.

 Symbolic execution [9] is a common analysis technique
employed in bug detection tools. Such tools must have a
solution for loops. Popular tools like PREFix [2] and
Symbolic Java PathFinder [17] both place limits on the
number of iterations. PREFix places the limit by stopping
execution when a user-defined limit of paths has been
simulated in the function. Symbolic Java PathFinder restricts
the underlying model checker’s search depth and also
restricts the number of constraints associated with a
particular path. In loop-extended symbolic execution [18],
symbolic variables that represent the number of loop
iterations are introduced. Using these variables, they can find
other variables that are linearly dependent on the iteration
count. Symbolic execution is also used in automated test
generation including CUTE [19] and Pex [20].

Our previous research [12] analyzes the paths in program
and examines the effect program slicing has on the path
count. Most functions have few paths but slicing does not
sufficiently reduce path counts on the functions that do have
many paths. Other program analysis studies include the work
by Gabel and Su [5], which explores the uniqueness of
source code by analyzing over 6,000 software projects
consisting of 420 million lines of code. At granularities of
one to seven line chunks, they found software to generally be
similar. Das et al. [3] and Dillig et al. [4] describe sound and
efficient path-sensitive analyses. Both use their analyses to
find temporal safety properties such as null dereference
checks and file errors. Ball and Larus [1] developed a path
profiling algorithm that computes how frequently acyclic
paths are executed.

To estimate the complexity of loops, we used the path
count. Cyclomatic complexity [15] is a popular path-based
complexity metric. Understand [21] is a tool that computes
several complexity measures including cyclomatic
complexity, path count, lines of code, and many others.

V. CONCLUSIONS AND FUTURE WORK
This paper presents results from three loop analyses that

explore the feasibility of analyzing loops separately. Our first
study explores the number of paths in a loop to estimate the
complexity necessary to analyze the loop. 85% of the loops

have ten paths or fewer; less than 1% of the loops have over
10,000 paths. Our second experiment calculates paths counts
for functions when loops are analyzed separately. Many
functions saw a significant reduction in the number of paths.
However, the reductions were not sufficient in functions that
have large path counts as these functions had significant
complexity outside loops from other control statements. In
our last experiment, loops are classified based on the
stopping condition and whether they contained specific
programming elements that made analysis difficult. 48.7% of
the loops are classified as array traversals. Of the hard-to-
analyze features, function calls are the most prevalent,
appearing within 57.6% of the loops.

Is summarizing loops within symbolic execution
worthwhile? On the plus side, most loops are short and fall
into one of four common classifications based on the
stopping condition. However, since many loops contain
function calls, loop analysis will need to be interprocedural
to fully summarize their behavior. The practicality of
summarizing loops is limited in that many functions have no
loops and many complex functions have significant
complexity outside any loop. The approach works best for
functions with a large number of (possibly nested) loops.

There are several directions for future work. One
direction is to apply these analyses to programs written in
other languages such as Java or C++. These languages have
standard libraries for data structures, especially strings.
Consequently, programmers may be likely to more use a
provided function as opposed to writing a loop.

Another direction is to actually implement the main idea
in the paper of analyzing loops separately within symbolic
execution to determine how well loops can be summarized.
A study could explore the trade-off of analyzing fewer paths
that are more complex versus more paths that are less
complex.

A broader direction for this work is exploring the
appropriate “unit” of analysis for software bug detection
tools. Many tools already break the program into functions
and analyze them separately using rudimentary
interprocedural analysis. This division is necessary in that
the analysis does not scale interprocedurally. Some large
complex functions also do not scale sufficiently because they
contain too many paths. Can large complex functions broken
into different “units” of analysis such that the effect on
finding bugs is minimized? This paper presents just one
possible way of doing that – analyzing loops separately.

ACKNOWLEDGMENTS
The authors would like to thank GrammaTech for

providing CodeSurfer and the anonymous referees for their
valuable comments.

REFERENCES
[1] T. Ball and J. Larus, “Efficient Path Profiling,” Proc. of the 29th

Symposium on Microarchitecture (MICRO), 1996.
[2] W. Bush, J. Pincus, and D. Sielaff, “A Static Analyzer for Finding

Dynamic Programming Errors,” Software—Practice & Experience,
2000.

[3] M. Das, S. Lerner, and M. Seigle, “ESP: Path-Sensitive Program
Verification in Polynomial Time,” Proc. of the Conference on
Programming Language Design and Implementation (PLDI), 2002.

[4] I. Dillig, T. Dillig, and A. Aiken, “Sound, Complete and Scalable
Path-Sensitive Analysis,” Proc. of the Conference on Programming
Language Design and Implementation (PLDI), 2008.

[5] M. Gabel and Z. Su, “A Study of the Uniqueness of Source Code,”
Proc. of the Symposium on Foundations of Software Engineering
(FSE), 2010.

[6] GrammaTech, http://www.grammatech.com.
[7] S. Gulwani and A. Tiwari, “Computing Procedure Summaries for

Interprocedural Analysis,” Proc. of the European Symposium on
Programming (ESOP), 2007.

[8] L. Hu, M. Harman, R.M. Hierons, and D. Binkley, “Loop Squashing
Transformations for Amorphous Slicing,” Proc. of the 11th Working
Conference on Reverse Engineering, 2004.

[9] J. King, “Symbolic execution and program testing,” Communications
of the ACM, 1976.

[10] M. Kirner, “Automatic Loop Bound Analysis of Programs written in
C,” Master's Thesis, Technischen Universitat Wien, 2006.

[11] L. Kovács and A. Voronkov, “Finding Loop Invariants for Programs
over Arrays Using a Theorem Prover,” Proc. of the Conference on
Fundamental Approaches to Software Engineering (FASE), 2009.

[12] E. Larson, “A Plethora of Paths,” Proc. of the IEEE 17th International
Conference on Program Comprehension (ICPC), 2009.

[13] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel, “A Fast and
Precise Static Loop Analysis Based on Abstract Interpretation,
Program Slicing and Polytope Models,” Proc. of the Symposium on
Code Generation and Optimization (CGO), 2009.

[14] M. Martel, “Improving the Static Analysis of Loops by Dynamic
Partitioning Techniques,” Proc. of the Workshop on Source Code
Analysis and Manipulation (SCAM), 2003.

[15] T.J. McCabe, “A Complexity Measure,” Proc. of the International
Conference on Software Engineering (ICSE), 1976.

[16] M.N. Ngo and H.B.K. Tan, “Detecting Large Number of Infeasible
Paths through Recognizing their Patterns,” Proc. of the European
Software Engineering Conference and the Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2007.

[17] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Burlet, M. Lowry, S.
Person, and M. Pape, “Combining Unit-level Symbolic Execution and
System-level Concrete Execution for Testing NASA Software,” Proc.
of the International Symposium on Software Testing and Analysis
(ISSTA), 2008.

[18] P. Saxena, P. Poosankam, S. McCamant, and D. Song, “Loop-
extended Symbolic Execution on Binary Programs,” Proc. of the
International Symposium on Software Testing and Analysis (ISSTA),
2009.

[19] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing
engine for C,” Proc. of the European Software Engineering
Conference and Symposium on Foundations of Software Engineering
(ESEC/FSE), 2005.

[20] N. Tillmann and J. de Halleux, “Pex–White Box Test Generation
for.NET,” Tests and Proofs - Lecture Notes in Computer Science,
2008.

[21] Scientific Toolworks, “Understand Source Code Analysis &
Metrics,” http://scitools.com/index.php.

[22] L.J. White and B. Wiszniewski, “Path Testing of Computer Programs
with Loops using a Tool for Simple Loop Patterns,” Software -
Practice and Experience, 1991.

[23] Y. Xie, A. Chou, and D. Engler, “ARCHER: Using Symbolic, Path-
sensitive Analysis to Detect Memory Access Errors,” Proc. of the
European Software Engineering Conference and Symposium on
Foundations of Software Engineering (ESEC/FSE), 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

