SUDS: An Infrastructure for Creating Bug Detection Tools

Eric Larson
Department of Computer Science and Software Engineering
Seattle University
elarson@seattleu.edu

Abstract

SUDS is a powerful infrastructure for creating dynamic
bug detection tools. It contains phases for both static analy-
sis and dynamic instrumentation allowing users to create
tools that take advantage of both paradigms. The results of
static analysis phases can be used to improve the quality of
dynamic bug detection tools created with SUDS and could
be expanded to find defects statically. The instrumentation
engine is designed in a manner that allows users to create
their own correctness models quickly but is flexible to sup-
port construction of a wide range of different tools. The
effectiveness of SUDS is demonstrated by showing that it is
capable of finding bugs and that performance is improved
when static analysis is used to eliminated unnecessary
instrumentation.

1. Introduction

It is increasingly important in the world today to have
correctly working software. Implementation errors, many
due to using an inherently unsafe language like C, can be
exploited by malicious users to execute arbitrary code and to
gain access private data. Therefore it is necessary to have
high quality tools that can detect bugs before software is
released.

Software bug detection can either be performed statically
or dynamically. Static techniques allow the software devel-
oper to prove that a program correctly satisfies a given prop-
erty. However, the number of possible states that must be
searched to obtain such a proof'is often extremely large even
for a simple property. As a result, the verification of a prop-
erty can be infeasible. Abstraction of code not relevant to the
property can greatly reduce the search space but does not
necessarily make searching feasible. Further abstractions
that limit the scope or simplify the problem in a manner are
often necessary. This typically not only increases the number
of bugs detected but also the number of false bug reports,
possibly requiring significant manual effort.

Other tools look for software errors at run-time or
dynamically. While their effectiveness is obviously restricted

by the particular input set, they are effective at finding bugs
on the common paths of execution. Unlike static techniques,
dynamic techniques do not need to limit the scope of the
search. Dynamic checkers can find bugs that span multiple
function boundaries, library functions, or even process
boundaries. The largest drawback to dynamic bug detection
is its dependence on the input. Faults will only be detected if
a test is run that exposes the bug. Another downside is the
performance overhead associated when running the pro-
gram. This is particularly true for techniques that track addi-
tional state in order to find more defects.

This paper describes SUDS, an infrastructure designed to
create a wide range of software bug detection tools. It con-
tains support for both static analysis and dynamic instrumen-
tation. This allows developers to create tools that take
advantage of the benefits of both static and dynamic tech-
niques that are effective and efficient. We demonstrate the
effectiveness of SUDS by creating a memory and array
access checker specific to input-derived variables. This
checker found 17 bugs in 9 programs.

At the heart of SUDS is a source-to-source converter that
takes C source code as an input and produces instrumented C
source code. SUDS contains support for two analyses related
to software bug detection: tainted data propagation and pro-
gram slicing. The results of these phases can be used to focus
and/or improve the performance of the instrumented code.
Performance of our input checker improved 50% on average
when the static analyses of SUDS are employed and used
during instrumentation.

The remainder of the document is organized as follows.
Section 2 provides an overview of SUDS, giving a brief
description of each phase in SUDS. Sections 3 and 4 delve
into the details of the static analysis and instrumentation
phases respectively. Results of using SUDS are presented in
Section 5. Section 6 outlines related work and Section 7 con-
cludes.

2. Overview of SUDS

SUDS, like most compilers and bug detection tools, is
organized as a series of different phases. The phases are dis-
played in Figure 1. SUDS takes preprocessed source code as

Program (preprocessed
C source code)

SUDS

Sim plify

Simplified
AST

Analyze

Analysis Results

Instrumentation
Instrument
T hstumented ~___—_
Source Code

Link

Instrumented
Executable

Figure 1: Overview of SUDS.

an input and parses the code to create an intermediate repre-
sentation using an abstract syntax tree (AST). The code then
goes through a simplification phase that converts the source
code into an equivalent program that is easier to analyze in
later phases. The result of this phase is an AST of the simpli-
fied program, used by the static analysis and instrumentation
phases. The static analysis phase consists of several sub-
phases that each perform some sort of static analysis. The
result of this phase can be used to improve the dynamic
instrumentation. The last phase within SUDS instruments
the program based on an instrumentation model. A user can
either use an existing model or create their own. The output
of SUDS is instrumented source code which than can be
compiled and linked with an instrumentation model to form
an instrumented program that can be used to detect bugs.

SUDS is written in C++ and processes programs written
in the C programming language. The organization of SUDS
is highly modular in that other it is relatively straight-for-
ward to modify or add an existing phase without internal
knowledge of how the other phases work. The remainder of
this section briefly describes each of the phases.

2.1 Parsing

SUDS uses a modified version of the parser from cTool
[8]. The parser creates a list of top-level statements that form
the AST. The list consists of global variable declarations,
type declarations, function prototypes, and function defini-
tions. Each function definition contains a list of statements
that forms of the body of the function. As in most compilers,
a symbol table is used to keep track of names of variables,
types, and functions in the current scope. In addition, a sepa-
rate table of variables is constructed and is used by the anal-

yses to store attributes associated with the variables.

The parser supports virtually all C programs with a few
exceptions. The most prominent restriction is that it requires
that all functions be declared before being used. Other
restrictions are rare. In a vast majority of these exceptional
cases, it is possible to rewrite the code with minimal effort.
SUDS supports many, but not all, of the language extensions
that have exist in popular compilers such as GCC. Except for
addressing these restrictions, no modifications to the pro-
gram source code are needed. Source code is not needed for
system libraries. Functions without source code are not ana-
lyzed by SUDS but can be instrumented at their entry and
exit points.

2.2 Simplification

The next phase in SUDS is to transform the initial AST
into an intermediate C representation similar to the simple
grammar developed by Hendren et al. [14] and serves a sim-
ilar purpose as CIL [22]. The intent of simplification is to
reduce the complexity of identifying and instrumenting rele-
vant program points. Complex C statements are broken
down into simple statements with at most two operands and
a single assignment to an l-value (suchasa = b + c). Side
effects and short-circuited operators (such as &&) are elimi-
nated via program transformations.

There are two advantages to simplifying the program. It
simplifies the static analysis phases - statements can either
alter the control of a program or assign data to a memory
location but they cannot do both. The other advantage of the
simplification process is that instrumented function calls can
be restricted to statement boundaries. This is not possible
without simplification since there might be an important
event in the middle of a long expression.

2.3 Static Analysis

The static analysis phase consists of several subphases.
The initial subphases perform standard compiler analyses. A
control flow graph is created for each function and a call
graph is created for the entire program. A set of definitions
and uses is created for each statement and points-to informa-
tion is computed for each pointer. Two phases are geared
toward software bug detection. One detects variables that
could hold tainted data. This can be used to focus bug detec-
tion and testing on operations that manipulate tainted data.
The definition of tainted can be altered by the user. Another
phase performs program slicing and marks statements as
either in or not in the slice. The slicing criterion is controlled
by the user. A special slicing criterion is any dangerous state-
ment (definition by dangerous also can be altered by the
user). This allows SUDS to determine the set of statements
that manipulate variables that are eventually used in a dan-

gerous statement.

A more detailed discussion of the static analysis phase is
in Section 3. This phase is optional if SUDS is used strictly
as an instrumentation tool. It is not necessary to use any of
the static analysis information when instrumenting the pro-
gram.

2.4 Instrumentation

The instrumentation engine of SUDS automatically adds
instrumentation based on an instrumentation model. An
instrumentation model consists of code that directs SUDS
how to instrument the program and the actual instrumented
code itself. Models for input checking, memory access, and
program tracing are provided. However, the structure of
SUDS allows users to easily to create and implement their
own models, especially when using one of the provided
models as a starting point.

The instrumentation interface of SUDS provides a func-
tion for different programming constructs including expres-
sions, statements, and certain events (such as the start of a
function). Users can direct SUDS to add instrumentation by
implementing the functions that correspond to constructs and
events that are interesting with respect to the instrumentation
model. A suite of helper functions are provided to simplify
the process of adding a call to an instrumentation function
with different parameters.

This organization, described in Section 4, facilitates
rapid creation of new bug detection tools and is flexible in
that users have access to the internals of SUDS to allow for
the creation of very powerful, specialized instrumentation. In
addition, SUDS can be used to create profilers, coverage
tools, debugging aids, and program analyzers.

3. Static Analysis

The static analysis phase of SUDS works on the entire
program and consists of these subphases in the order listed:

Dummy variable creation: Dynamic memory is modeled
by call-site. For each static call to a system function that
allocates memory, a dummy variable is created and the
return value points to the dummy variable.

Control flow graph: The control flow graph is created
intraprocedurally. Basic blocks that are not reachable from
the starting point are excluded from future subphases.

Call graph: A complete call graph is created including
calls made by function pointers. The call graph and pointer
analysis phase are performed together until both algorithms
converge.

Pointer analysis: The interprocedural pointer analysis
developed by Hind et. al. [15] is used. It is used to compute
the set of variables that a pointer can point to. Both flow-sen-
sitive and flow-insensitive versions of the algorithm are pro-

vided (selected by a command-line switch). Structs, unions,
arrays, and dummy heap variables are treated as single vari-
ables. Updates to such variables are done in a weak fashion
without killing prior relationships.

Data-flow analysis: Data-flow analysis is used to deter-
mine the set of definitions generated, killed, and used by
each statement. The analysis is done intraprocedurally using
a standard data-flow algorithm that iterates until steady state.
For each call site, live definitions are propagated from the
caller to the callee function on a parameter by parameter
basis. At the end of the function, definitions that refer to glo-
bal variables are propagated to all return points. Other defi-
nitions are only propagated back to the caller if the definition
refers to a variable that had at least one live definition prior
to the call. Though the algorithm is not truly context-sensi-
tive, this last rule restricts the flow of definitions from a call
site to a completely different return point. Any definitions
live in the caller just prior to the call are also considered live
just after the call.

Tainted data propagation: Determines which variables
are tainted. See section 3.1.

Program slicing: Determines which statements and vari-
ables influence an operation or a particular set of operations.
See section 3.2.

The output of these last two phases can be used by the
instrumentation phase to improve the efficiency of dynamic
bug detection. In the future, it is possible to add phases or
incorporate external tools specifically designed to detect
bugs statically. Then, the instrumented program can focus on
operations that cannot be verified statically.

3.1 Detecting Tainted Data

This phase detects the set of variables that are considered
tainted. The definition of tainted can be altered within the
SUDS code. By default, data that is derived from input is
considered tainted. This choice is based that input data from
malicious users can compromise the security of the program
and its system. DaCosta et. al. [9] observed that functions
near an input source are more likely to be vulnerable to secu-
rity exploits.

The algorithm is similar to constant propagation, a com-
piler optimization that replaces variables that are known to
be constant. The key difference is that SUDS propagates
attributes instead of values. A variable definition will have
one of two attributes: tainted (derived from input data) or
untainted (not derived from input data). The first step is to
identify which definitions of integers1 are derived from input
directly from a system function that prompts for input (such
as scanf or getc). In addition, this conservatively includes
all return values from string conversion functions such as

1. The algorithm only works for integers currently but could
easily be expanded to other data types.

atoi since our analysis does not track input attributes for
strings. These definitions are marked tainted while all other
definitions start in the untainted state. Now, the algorithm
proceeds iteratively and processes each statement individu-
ally during each iteration. For each statement, if any of the
definitions used by the statement are tainted, then all defini-
tions generated by the statement are marked tainted. The
analysis is interprocedural in a context-insensitive fashion.
For function calls and returns, the tainted attribute is propa-
gated from actual parameter to formal parameters and from
return statements to return values.

Once a definition enters the tainted state, it remains in
that state for the duration of the algorithm. The algorithm
continues to iterate until steady state (no definitions enter the
tainted state). In the worst case, the algorithm takes O(ds)
time where d is the number of definitions and s is the number
of statements. The result of this phase is a list of definitions
that are tainted.

3.2 Program Slicing

Program slicing [32] can be used to determine the state-
ments that influence the operation of a particular operation.
Like the tainted propagation algorithm, a definition can be
either in one of two states: in the slice or not in the slice.

A backwards slicing algorithm is employed starting with
the slicing criterion (the operation under investigation). All
definitions that are used in the statement(s) in the criterion
are added to the slice. Then, each statement is analyzed. If
any definition generated by a statement is in the slice, then
all definitions used by the statement are added to the slice.
Indirect uses from control statements are also added to the
slice by default: if any statement in a control statement is in
the slice, then the control statement and its uses are added to
the slice. The user can exclude indirect uses by use of a com-
mand-line switch. The algorithm is interprocedural and con-
text-insensitive.

SUDS supports three modes for determining the slicing
criteria: an individual statement, all dangerous operations in
a given function, or all dangerous operations in the program.
In the last two cases, the definition of dangerous can be mod-
ified within the SUDS code. By default, a dangerous opera-
tion is any operation with an array reference or pointer
dereference. This allows SUDS to identify the set of state-
ments and definitions that either directly or indirectly affect
the operation of any statement considered dangerous.

Once a definition is added to the slice, it remains in the
slice for the duration of the algorithm. The algorithm contin-
ues to iterate until steady state (no definitions enter the
slice). In the worst case, the algorithm takes O(ds) time
where d is the number of definitions and s is the number of
statements. The result of this phase is a list of definitions
(and statements) in the slice.

4. Instrumentation

The last phase of SUDS adds instrumentation to the
source code. The instrumentation is directed by the particu-
lar model that is being used. Different models can be used to
check for different correctness properties. Models can also
be created for other software-related tasks such as profiling,
debugging, and tracing.

Since users are likely to design their own models, this
phase has been designed in a fashion for both fast creation of
simple models but generic enough to support a wide range of
instrumentation tasks. To promote the construction of a
model quickly, several helper functions that perform com-
mon instrumentation tasks are provided

4.1 Instrumentation Interface

All models must adhere to a common interface consisting
of several member functions that correspond to various pro-
gramming constructs and events. Figure 2 shows a partial
listing of the instrumentation model interface - the entire list
of interface functions is much longer. In the base interface,
the functions perform no action. An instrumentation model
is a class derived from this base interface. Functions corre-
sponding to interesting constructs and events with respect to
the model are overwritten to add instrumentation.

During the instrumentation phase, SUDS traverses the
AST calling the appropriate interface function for each pro-
gramming construct or event. This phase is static and makes
only one pass through the program. The purpose of the inter-
face functions is to add instrumentation to the program when
necessary. The output of this phase (and SUDS) is instru-
mented source code.

Many of the parameters in the interface routines are
pointers to internal data structures within SUDS. For
instance, the class Stmt refers to a statement and
DerefExpr refers to a dereference operation. The internal
data structures are used in two ways. One use is to further
analyze the data structure to determine which instrumenta-
tion function, if any, to call. Frequently, the type of the
expression is analyzed when adding instrumentation. For
instance, an addition operation involving two integers will
typically be treated differently than an addition operation
involving a pointer and an integer. The second use of the
internal data structures is for specifying parameters to pass
into the instrumentation functions. This process is described
in Section 4.2.

The parameters before and after each point to a list of
statements. In order to successfully add instrumentation, it is
necessary to add the newly created statement to either the
before list or the after list. If the instrumentation is added to
the before list, it is added before the statement or event in
question. Similarly, it is added after the statement or event if

I class instriInterface {

public:
// Expr
5 virtual
virtual
virtual
virtual

10 // Stmt
virtual
virtual
virtual

instrumentation functions

void instrumentLhsVar (VarExpr *expr, Stmt *&before, Stmt *&after) {}

void instrumentRhsBinaryExpr (BinaryExpr *expr, Stmt *&before, Stmt *&after) {}
void instrumentLhsDerefExpr (DerefExpr *expr, Stmt *&before, Stmt *gafter) {}
void instrumentRhsDerefExpr (DerefExpr *expr, Stmt *&before, Stmt *&after) {}

instrumentation functions

void instrumentIfStmt (IfStmt *stmt, Stmt *&before) {}

void instrumentWhileStmt (WhileStmt *stmt, Stmt *&before) {}
void instrumentReturnStmt (ReturnStmt *stmt, Stmt *&before) {}

15 // Function call instrumentation functions

virtual void instrumentCallStmt (CallStmt *stmt, Stmt *s&before) {}

virtual void instrumentSystemCall (CallStmt *stmt,

stmt *s&before, Stmt *&after) {}

virtual void instrumentReturnFrom(ReturnFromStmt *stmt, Stmt *&after) {}
virtual void instrumentCallExprArg(Expr *expr, string exprStr, int offset, Stmt *gbefore) {}
20 virtual void instrumentBirthParm(Expr *expr, string exprStr, int offset, Stmt *gafter) {}

// Declaration instrumentation functions

virtual void instrumentBirthVariable (Expr *expr, string exprStr, int offset, Stmt *&after) {}
virtual void instrumentDeathVariable (Expr *expr, string exprStr, int offset, Stmt *s&before) {}

25
// Begin/End Functions
virtual void instrumentBeginProgram(Stmt *&after)
virtual void instrumentBeginFunction (FunctionDef *fn,
virtual void instrumentEndFunction (FunctionDef *fn,
30 virtual void instrumentEndProgram(Stmt *&before) {}
class Expr *currLhs;
34

stmt *safter) {}

stmt *&before) {}

// current value of lhs if processing rhs

Figure 2: Instrumentation Interface (partial).All instrumentation models must adhere to this interface. These functions are called

when SUDS traverses the AST during the instrumentation phase.

it is added to the after list. Notice how some of the functions
require instrumentation to be added before, other require
instrumentation to be added afterwards, and the rest allow
instrumentation to be added either before or after or both.

The first four functions of Figure 2 refer to different
expressions noting that are different functions for expres-
sions on the left-hand side than expressions on the right-hand
side. Since simplification removes all side effects, the only
interesting expression statements are assignments statements
and function calls. During the traversal, the function
instrumentLhsVar is called when the left-hand side of an
assignment is a single variable (suchas “a = b + ¢;”)and
instrumentRhsDerefExpr is called when the right-hand
side of an assignment contains a dereference (such as “x =
*p;”). When processing the right-hand side, the data mem-
ber currLhs stores the current expression that comprises the
left-hand side of the assignment. This is done to add instru-
mentation that needs access to both sides of an assignment.

The next three instrumentation functions (lines 11-13)
refer to different types of statements. They behave in a simi-
lar fashion to expressions except that instrumentation can
only be added before the statement. In a return statement,
statically adding a statement afterwards is pointless since it
will never execute. In the case of the 1f and while state-
ments, the precise meaning of after is ambiguous and since
side-effects are removed, adding instrumentation before con-
trol statements suffices in almost all situations. Similar func-
tions exist for other types of statements.

The instrumentation functions from lines 16-20 deal with
function calls. The first two functions allow the user to insert
instrumentation when functions are called - the second func-
tion is used for system calls or any function where source
code is not present. The function instrumentReturnFrom
can be used to add instrumentation just after a function call
and is useful for adding instrumentation involving the return
value. The function instrumentCallExprArg allows
instrumentation to be added for each actual parameter used
in a function call. Similarly, the function instrument-
BirthParm is called each time a formal parameter is
declared at the beginning of a function. Together, they can be
used to copy state from the actual parameters to the formal
parameters. These last two functions have an additional
parameter of fset that refers to the position in which the
parameters appear in the parameter list. Structure variables
also use the offset field. Initially instrumentCallEx-
prarg will be called for the entire structure. Then it is called
for each data member in the structure (called recursively for
nested structures). For each data member, the offset is incre-
mented. The same approach is used for the instrument-
BirthParm function. The parameter exprStr contains the
expression associated with the variable in string form and is
provided for convenience when used as a parameter in an
instrumentation function.

In lines 23-30, functions are provided for interesting
events: variable declarations (birth), when variables go out
of scope (death), the beginning and end of functions, and the

Table 1: Helper routines for adding parameters to calls to instrumentation routines.

Ifxis Then,
Routine _ add Used For
addStringParm(string x); foo foo Passing any expression in string form. Use this function for passing values stored
in exprStr, a parameter provided by some interface routines.
addStringConstantParm(string x); foo “foo” Passing any string used as a constant within the instrumentation routine.
addIntegerParm(int x); 23 23 Passing any integer constant.
addExprParm(Expr *x); a[i] a[i] Passing the value of an expression or variable.
addStringExprParm(Expr *x); a[i] “a[i]” Passing the expression as a string - useful for debugging.
addAddrOfExprParm(Expr *x); a[i] &(a[i]) Passing the address of an expression (assuming it is addressable) - useful for track-
ing all variables since heap variables do not have names.

beginning and end of the program.
4.2 Calling Instrumentation Functions

Once a user has determined which constructs and events
need instrumentation, the next step is to write the interface
routines to add the instrumentation. In most cases, the added
instrumentation will merely be one line to call a function
likely with some parameters. Helper routines are provided to
simplify this task. The basic flow is as follows:

1. Initialize the call by calling initInstrCall. This
function takes no parameters.

2. Add parameters to the function. Table 1 outlines the
different routines are available depending on the type and
use of parameter.

3. Complete the call by calling addInstrCall. This
function takes two parameters: a list to add the instrumenta-
tion statement to (either the before or after lists) and the
name (string) of the function to call.

This process is best illustrated using an example of
instrumentation model. Figure 3 shows a model used to trace
function calls. In both cases the functions are called with one
parameter - the name of the function passed as a string. The
next step is to write the functions function begin and
function_end. The actual instrumentation functions sim-
ply display an appropriate message with the function name.
Another example, an array checker, is presented in the next
section.

It is also possible to create inlined instrumentation or
instrumentation code that is an arbitrary set of C statements
instead of a single function call. Instrumentation is managed
using string and string streams allowing users to take advan-
tage of both the C++ string library and print routines that
already exist for variables, expressions, and statements
within SUDS.

4.3 Creating Instrumentation Models

Creating an instrumentation model requires the code to
direct SUDS where to insert calls to instrumentation func-

class instrTrace : public instrInterface {

public:

void instrumentBeginFunction (FunctionDef *fn,
Stmt *&after)

initInstrCall() ;
addStringConstantParm(fn->FunctionName ()) ;
addInstrCall (after, "function_begin");

}

void instrumentEndFunction (FunctionDef *fn,
Stmt *&before)

initInstrcCall() ;
addStringConstantParm (fn->FunctionName ()) ;
addInstrCall (before, "function end");
}
i

Figure 3: Sample instrumentation model for tracing
function calls.

tions and the actual instrumentation routines themselves.
The implementation of the instrumentation routines are
dependent on the goal of the instrumentation model. When
creating dynamic bug detection tools, the routines are used
to track additional state using a table such as the object table
used by Jones and Kelly [16]. We will describe the underly-
ing code using the example model shown in Figure 4.

The model presented in Figure 4 checks array references
for array variables - it does not check array references when
pointers are used. Arrays that are declared call add_array.
The function add_array adds the array to a table that is
indexed by the base address of the array (first parameter to
add_array). The table stores the size of the array (second
parameter to add_array). When an array goes out of scope,
remove_array is called, removing the array from the table.

During an array reference, the function check_array is
called to make sure the subscript is within the bounds of the
array. This function looks up the address in the table obtain-
ing the size of the array. The size is compared to the index. If
the index is outside the allowable bounds, an error is flagged.

In each instrumentation routine in Figure 4, notice how
the expression is analyzed further and instrumentation is
only added if the array reference refers to an array, opposed
to a pointer. Instrumentation is not added otherwise, though

class InstrModel : public InstrInterface {

public:

void instrumentBirthVariable (class Expr *expr, string
exprStr, int offset, class Stmt *&after)
{
if (expr->type-s>isArray()) ({
initInstrCall() ;
addStringParm(exprStr) ;
addIntegerParm(expr->type->getArraySize()) ;
addInstrCall (after, "add array");
}
}

void instrumentDeathVariable (class Expr *expr, string
exprStr, int offset, class Stmt *&before)

if (type->isArray()) {
initInstrCall() ;
addStringParm (exprStr) ;
addInstrCall (before, "remove_array") ;
}
}

void instrumentLhsArrayExpr (class ArrayExpr *expr,
class Stmt *&before, class Stmt *&after)

// if (lexpr->index->isTainted()) return;
if (expr->leftExpr->type->isArray())
initInstrcCall () ;

addExprParm(expr->leftExpr) ;
addExprParm(expr->index) ;
addInstrCall (before, "check_array");
}
}

void instrumentRhsArrayExpr (class ArrayExpr *expr,
class Stmt *&before, class Stmt *&after)

instrumentLhsArrayExpr (expr, before, after);

}
}i

Figure 4: Sample instrumentation model for checking
array references.

the model could easily be expanded to include pointers. It is
also worth noting that there is no distinction between array
references on the left-hand side and those on the right-hand
side so the right-hand side routine merely calls the left-hand
side routine.

SUDS can use the result of prior static analysis phases
when instrumenting the program. Look at the commented
out in the function instrumentLhsArrayExpr of Figure 4.
Instrumentation is only added if the index used to reference
the array is tainted. This allows the user to focus on array
references where the index is tainted. If the index is not
tainted, then no instrumentation is added. This notion could
be expanded to safe and unsafe. Perhaps this array reference
could be verified statically - then no instrumentation is nec-
essary. This approach allows static analysis to fall back to
dynamic instrumentation in cases where this is not enough
information to determine if the operation is safe.

In addition to the two models described in this paper,
additional models are provided including the input checker
used in our results section. The input checker utilizes an
object table and uses range analysis so that the entire range

Table 2: Bugs detected during testing.

SUDS SPLINT VALGRIND
Program Same | New | Same [New
Bugs Bugs Bugs Bugs Bugs
anagram 2 2 0 0 0
ft 2 0 0 0 0
ks 3 2 0 0 0
yacr2 2 0 0 0 0
betaftpd 2 0 0 0 1
gaim 1 1 1 0 0
ghttpd 3 1 0 1
openssh 2 1 0 didn't work
thttpd 0 0 0 o | o

of possible values can be tracked. Both can be used in new
models created by users. The object table has a debugging
mode that is helpful both to debug newly created models and
to pinpoint the source of an error once a defect

5. Results

To demonstrate the effectiveness of SUDS, we imple-
mented and used the input checker described in our prior
work [18]. The input checker uses ranges to track integers
and strings that are derived from user-input. The checker
checks for array overflows, pointer dereference errors, and
string library errors such as overflowing strings and null ter-
mination problems. Since ranges are used, it is not necessary
to have a precise data input to expose an error. Additional
checks detect cases where unbounded input data is used in a
loop or memory allocation.

We used the nine programs shown in Table 2. All pro-
grams were compiled using GCC and with an -O4 optimiza-
tion level. Four of the programs (anagram, ft, ks, and yacr2)
are from the pointer-intensive benchmark suite [27] and
were selected due to the difficulty of analyzing these pro-
grams statically. The other five programs are networking
applications, including the popular secure shell program
openssh (the server sshd specifically) and gaim, a popular
instant messaging program. The other three server programs
include a FTP server (betafipd) and two web servers (ghttpd
and thtipd).

5.1 Bugs Detected

The most important aspect of evaluating a bug detection
infrastructure is its ability to find bugs. When applying our
input checker we were able to find the 17 bugs in the 9 pro-
grams, as shown inTable 2. The 17 bugs were a mix of array
overflows, use of unbounded data in loops, and string library

Table 3: Run-time performance results.

Base Valgrind SU.DS. S!JD.S Perf.
Program . Unoptimized Optimized

line Improve %

Time | Ratio | Time | Ratio | Time | Ratio

anagram | 0.06 | 1.88 | 31.33 | 3.15 | 5250 § 1.32 | 22.00 58.1%
ft 0.18] 592 | 3289] 532 | 29.56 | 0.88 4.89 83.5%
lks 0.05] 416 | 83.20 § 3.96 | 79.20 |} 0.45 9.00 88.6%
yacr2 0.12 | 3.83 | 31.92 | 22.63 | 188.58 11.87 | 98.92 47.5%
Joetaftpd 0.07 | 045 6.43 0.53 7.57 0.27 3.86 49.1%
ghttpd 0.52 | 3560 | 68.46 | 1.08 2.08 0.69 1.33 36.1%
openssh 0.70 didn't work 1.00 1.43 0.91 1.30 9.0%
thttpd 0.15] 0.29 | 1.93 257 | 1713 | 1.78 | 11.87 30.7%

function problems. We did detect six false alarms but all of
these were attributed to an overly aggressive model rather
than any shortcoming of SUDS. Users of SUDS can create
models that are more conservative, reducing the number of
false alarms but also possibly reducing the number of actual
bugs found.

For comparison purposes, the same programs were run
on different bug detection tools to see if they catch the same
bugs. We used the static bug detection tool Splint [17] and
the dynamic tool Valgrind [24] in our comparison. The
results are shown in Table 2. Splint reported a large number
of errors since we did not annotate the source code which
would eliminate a large number of the false reports. As a
result, we only manually looked for errors we found with our
input checker and error reports that were marked “likely”; a
vast majority of the errors were labeled as “possible”. It was
able to find seven out of the seventeen bugs that we detected.
It is important to note that these tools are designed to find
similar but different type of bugs so a direct comparison is
not entirely fair. The purpose of this experiment is to show
that the SUDS infrastructure is capable of creating bug
detection tools that are at least on par with existing tools.

5.2 Performance Results

To analyze performance, we compared the run-time per-
formance with and without the static analysis features
enabled!. For this particular model, we marked data coming
from input as tainted and all operations that required a check
as dangerous (includes array references, pointer derefer-
ences, loop conditions, and malloc inputs). The results are
shown in Table 3. The baseline column shows how fast the
program runs without any instrumentation. The unoptimized

1. Due to the interactive nature of gaim, it is not included in any
performance experiments. There was not a noticeable slow-
down when using the instrumented version of gaim.

and optimized SUDS columns refer to the speed of the
instrumented programs without and with static analyses
enabled respectively.

The amount of the amount of slow-down experienced by
the unoptimized programs varies across the benchmarks.
The four server programs exhibited the least amount of slow
down with thttpd having the most with just over 17x. The
four pointer intensive benchmarks suffered significant slow-
down from a factor of 30x in f# to 186x in yacr2. The dispar-
ity in the results can be attributed to the fact that the pointer
intensive benchmarks have more integer processing than the
servers and have a significantly higher number of dynamic
instrumentation calls.

When the static analyses are enabled, the performance
improved (shown in the last column of Table 3) by 50% on
average. In general, programs that had the worst impact on
performance saw the best performance improvement. For
instance, yacr2, which had a factor of 189x slowdown, saw a
performance improvement of 48%. On the other end of the
spectrum, openssh saw little performance improvement
since it suffered very little performance degradation initially.
The improvement in performance is shown in Table 4. Many
programs had relatively few integers that were both tainted
and dangerous. In fact, ff had no such integers. The instru-
mentation that remains is for arrays and strings which were
untouched by these analyses.

When comparing the performance results to that of Val-
grind (in Table 3), our approach suffers a similar magnitude
of slowdown for most of the benchmarks. In seven of the
nine programs, the optimized programs from SUDS are
faster. The two exceptions were yacr2? (which was really
slow in SUDS) and thttpd (which was really fast in Val-
grind). It is important to note that Valgrind and our input
checker look for different types of bugs making a precise
performance comparison impossible.

Table 4: Breakdown of tainted and dangerous integers.

anagram ft ks yacr2 betaftpd | ghttpd | openssh| thttpd
ﬁotal Integers 257 233 244 1,508 950 420 11,727 2,493
JUntainted 210 202 140 855 673 352 8,208 1,609
[Tainted 47 31 104 653 277 68 3,519 885
|safe 202 213 179 1,163 854 365 8,871 2,106
IDangerous 55 20 65 345 96 55 2,856 387
JUntainted and Safe 163 182 117 693 609 310 5,759 1,462
|untainted and Dangerous 47 20 23 162 64 42 2,449 147
Tainted and Safe 39 31 62 470 245 55 3,112 645
Tainted and Dangerous 8 0 42 183 32 13 407 240

6. Related Work

There are several tools used to instrument programs.
ATOM [29] and Pin [19] are primarily used for performance
analysis and gathering statistics about programs but could be
used to detect lower-level software bugs such as invalid
memory accesses. Valgrind [31] is another infrastructure
used to supervise programs and has specialized functionality
for detecting software faults. The main disadvantage of these
tools is that they all operate at the assembly-code level limit-
ing the types of bugs they can detect. Tikir and Holling-
sworth [30] describe an instrumentation technique for
obtaining coverage for testing.

Recently, research groups have looked at techniques to
incorporate static analysis in testing tools. CCured [23] uses
a static verifier to prove as many dangerous operations safe
as possible using a type system. Then instrumentation is
added to catch any bugs for operations that cannot be proved
safe. One key difference between SUDS and CCured is that
SUDS is designed to be a general-purpose tool both in terms
of static analysis and the instrumentation engine. Other
research [7, 10, 28] has looked at using static analysis to
automate testing. The premise is to use static techniques to
analyze code. Based on this analysis, test cases are generated
and run with the hope of detecting errors. This work is com-
plementary to ours in that SUDS could assist in the process
of detect errors dynamically with the generated test cases.
One example of using analysis to improve performance is
the work done by Bodik et. al. [2]. They use a lightweight
static analysis to determine if array bounds checks are redun-
dant with earlier checks. GrammaTech developed CodeS-
urfer [12], a whole program analysis tool with program
slicing, and CodeSonar [11], a tool designed to catch a vari-
ety of memory access and other defects statically.

Memory access errors are a popular target for run-time or
dynamic bug detection. Examples of dynamic bug detection
systems include GNU’s checker [5], Purify [13], Parasoft’s
Insure++ [26], and Jones and Kelly [16]. These tools detect
memory bugs by keeping track of the state of dynamically
allocated memory using a table to keep track of the state of
memory. In Purify [13], the table is implemented using a bit-
map array making accesses fast. However, the limited

amount of information gained from a small number of bits
restricts in the types of errors that can be detected. Dynamic
taint analysis has been used [25] to prevent unauthorized
access or corruption.

There are many different approaches to verifying soft-
ware statically or at compile-time. One approach is to use
symbolic analysis to determine if a property has been vio-
lated. ARCHER [33] is a path-sensitive tool that uses sym-
bolic analysis to find memory access errors. Coen-Porisini
et. al. [4] use symbolic execution for a subset of the C pro-
gramming language and have applied their technique to
safety-critical software systems. Symbolic execution can be
used to determine if a path is illegal. Zhang and Wang [34]
describe BoNuS, a symbolic technique for determining path
feasibility that supports both arithmetic inequalities and
Boolean operators. Other common static approaches include
using a constraint solver to detect violations [3, 17, 31] and
model checking [1, 6, 20, 21].

7. Conclusions and Future Work

SUDS is a powerful infrastructure for creating bug detec-
tion tools that rely on both static analysis and dynamic
instrumentation. It is effective in finding bugs dynamically
using different correctness models.

Static analysis phases are used to improve dynamic bug
detection by focusing on operations that can be exploited by
malicious users. This improves performance 50% in the
model we tested. The instrumentation engine is generic
allowing users to create their own models of correctness.

SUDS, like all software tools, are constantly evolving.
The next step for SUDS is to improve the static bug detec-
tion capabilities by including technique(s) that are more
sophisticated than data-flow analysis. One possibility is to
create a new phase that generates constraints and uses a
solver to detect errors. We also will explore the ability to
plug in existing tools within the SUDS infrastructure.

The ultimate goal of SUDS is to explore new techniques
that effectively combine static and dynamic approaches. As a
first step in that work, we feel it is necessary to analyze what
makes certain bugs hard to find (or prove the absence of

bugs) statically and what makes certain bugs hard to find
dynamically. By understanding what lies at the heart of static
and dynamic techniques, we can take advantage of the best
of both paradigms.

Acknowledgments

We would like to thank the anonymous reviewers for
their valuable comments.

References

[1] T. Ball and S. Rajamani. Automatically Validating Temporal Safety
Properties of Interfaces. Workshop on Model Checking of Software,
May 2001.

[2] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating Array Bounds
Checks on Demand. Proceedings of the Conference on Programming
Language Design and Implementation, June 2000.

[3] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding
dynamic programming errors. Software Practice and Experience, July
2000.

[4] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezz¢. Using Symbolic
Execution for Verifying Safety-Critical Systems. Proceedings of the 9th
International Symposium on Foundations of Software Engineering,
Sept. 2001.

[5] Checker. http://www.gnu.org/software/checker/checker.html

[6] H. Chen and D. Wagner. MOPS: an Infrastructure for Examining Secu-
rity Properties of Software. Proceedings of the Conference on Com-
puter and Communications Security, November 2002.

[7]1 C. Csnaller and Y. Smaragdakis. Check ‘n’ Crash: Combining Static
Checking and Testing. Proceedings of the International Conference on
Software Engineering, May 2005.

[8] cTool. http://sourceforge.net/projects/ctool/

[9] D. DaCosta, C. Dahn, S. Mancoridis, V. Prevelakis. Characterizing the
‘Security Vulnerability Likelihood’ of Software Functions. Proc. of the
2003 International Conference on Software Maintenance, Sept. 2003.

[10] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated
Random Testing. Proceedings of the Conference on Programming Lan-
guage Design and Implementation, June 2005.

[11] GrammaTech, Inc. CodeSonar. http://www.grammatech.com/products/
codesonar

[12] GrammaTech, Inc. CodeSurfer. http://www.grammatech.com/products/
codesurfer

[13] R. Hastings and B. Joyce. Purify: Fast Detection of Memory Leaks and
Access Errors. Proceedings of the 1992 Winter Usenix Conference,
January 1992.

[14] L. Hendren, C. Donawa, M. Emami, G. Gao, Justiani, and B. Sridharan.
Designing the McCAT Compiler Based on a Family of Structured Inter-
mediate Representations. Proceedings of the 5th International Work-
shop on Languages and Compilers for Parallel Computing, August
1992.

[15] M. Hind, M. Burke, P. Carini, and J. Choi. Interprocedural Pointer
Alias Analysis. ACM Transactions on Programming Languages and

Systems. July 1999.

[16] R. Jones and P. Kelly. Backwards-compatible bounds checking for
arrays and pointers in C programs. Proc. of the 3rd International Work-
shop on Automated Debugging, May 1997.

[17] D. Larochelle and D. Evans. Statically Detecting Likely Buffer Over-
flow Vulnerabilities. Proceedings of the 2001 USENIX Security Sym-
posium, 2001.

[18] E. Larson and T. Austin. High Coverage Detection of Input-Related
Security Faults. 12th USENIX Security Symposium, August 2003.

[19] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Reddi, and K. Hazelwood. Pin: Building Customized Program Anal-
ysis Tools with Dynamic Instrumentation. Proceedings of the Confer-
ence on Programming Language Design and Implementation, June
2005.

[20] K. McMillan. Symbolic Model Checking. Kluwer Academic Publish-
ers, 1993.

[21] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: A
Pragmatic Approach to Model Checking Real Code. Proceedings of the
Conference on Operating System Design and Implementation, Decem-
ber 2002.

[22] G. Necula, S. McPeak, S. P. Rahul, W.Weimer. Cil: Intermediate Lan-
guage and Tools for Analysis and Transformation of C Programs. Inter-
national Conference on Compiler Construction, Apr. 2002

[23] G. Necula, S. McPeak, and W. Weimer. CCured: Type-Safe Retrofitting
of Legacy Code. Proceedings of the Symposium on Principles of Pro-
gramming Languages, January 2002.

[24] N. Nethercote and J. Seward. Valgrind: A Program Supervision Frame-
work. Electronic Notes in Theoretical Computer Science, 2003.

[25]J. Newsome and D. Song. Dynamic Taint Analysis for Automatic
Detection, Analysis and Signature Generation of Exploits on Commod-
ity Software. Proceedings of the 12th Annual Network and Distributed
System Security Symposium, Feb. 2005.

[26] Parasoft Corporation. Insure++: An Automatic Runtime Error Detec-
tion Tool. Technical Report PS961-INS1.

[27] Pointer-Intensive Benchmark Suite <http://www.cs.wisc.edu/~austin/
ptr-dist.htmI>

[28] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit Testing
Engine for C. Proceedings of the Symposium on the Foundations of
Software Engineering, Sept. 2005.

[29] A. Srivastava and A. Eustace. ATOM: A System for Building Custom-
ized Program Analysis Tools. Proceedings of the Conference on Pro-
gramming Language Design and Implementation, June 1994.

[30] M. Tikir and J. Hollingsworth. Efficient Instrumentation for Code Cov-
erage Testing. ACM SIGSOFT Software Engineering Notes, 2002.

[31] D. Wagner, J. Foster, E. Brewer, A. Aiken. A First Step Towards Auto-
mated Detection of Buffer Overrun Vulnerabilities. Network and Dis-
tributed Security Symposium, February 2000.

[32] M. Weiser. Programmers use slices when debugging. Communications
of the ACM, 1982.

[33] Y. Xie, A. Chou, D. Engler. ARCHER: Using Symbolic, Path-sensitive
Analysis to Detect Memory Access Errors. Proceedings of the 11th
International Symposium on the Foundations of Software Engineering,
Sep. 2003.

[34] J. Zhang and X. Wang. A constraint solver and its application to path
feasibility analysis. International Journal of Software Engineering and
Knowledge, Volume 11, 2001.

