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Abstract 
Among the many obstacles to efficient and sound program analysis, loops may be the most prevalent. In program 
analyses that traverse paths, loops introduce a variable, possibly infinite, number of paths. This paper assesses the 
potential of a program analysis technique that analyzes loops separately and replaces the loop with a summary, 
similar to how many analyses use summaries for interprocedural analysis. This study is conducted by comparing 
the path counts when loops are analyzed separately to a baseline path count where loops are traversed at most 
once. While the number of paths is decreased in many cases, the magnitude of the decrease is typically not 
sufficient for long, complex functions. In addition, loops are classified by the task they perform, analyzed using 
the number of paths as an estimate of their complexity and further inspected for programming elements that may 
make loop analysis more difficult. Of the 2,869 loops used in this study, 84% of the loops have fewer than ten 
paths and only 1.3% have more than 10,000 paths. Nearly 60% of the loops traverse arrays or strings and roughly 
half of the loops contain a function call.  
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1.  Introduction  
Dealing with loops is a necessary evil in program analysis. Every program contains loops but they can be difficult 
to analyze. Loops are used to do a variety of different things such as traversing a data structure, obtaining data 
from an input source, scanning a string for a particular character, and much more. Some uses of loops are 
common to different programs while other uses are specific to a particular program.  

There are several challenges that must be addressed when analyzing loops. The number of iterations of a loop is 
often variable and possibly infinite. Dependencies can be hard to track when the results of one iteration depend on 
the result of previous iterations. In addition, loops are commonly associated with large, possibly complex, data 
structures. These data structures can be hard to model during program analysis. 

Symbolic execution [1, 2, 3] is a program analysis technique that attempts to simulate every path through a 
function. Obviously, loops complicate symbolic execution by introducing a large, possibly infinite, number of 
paths. A common strategy to address this issue is to limit the number of iterations a loop can take. Another 
complication in symbolic execution is function calls. In PREFix [2], functions are analyzed bottom-up and a 
summary is created that describes the function’s behavior. When analyzing a function that calls another function, 
the function call is replaced with the summary. Can a similar analysis strategy be used with loops? Can loops be 
analyzed separately first and then replaced with summaries? If so, this would decrease the number of paths to 
analyze and nearly eliminate the need to analyze infinite loops. 

Since the number of paths in a function with loops can be unbounded, summarizing the impact of all the paths 
through each loop in a function would greatly simplify a path-based analysis (such as symbolic execution) of the 
function. This paper analyzes the potential benefit that such a summarization could achieve. The number of paths 
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that need to be analyzed after loops are summarized is compared to conservative baseline path count. This 
conservative baseline counts the number of paths through a function by assuming that each loop executes at most 
one time, providing a lower bound on the reduction in the number of paths achieved if loops can be replaced by 
summaries. 

This empirical study uses a collection of 25 moderately-sized C programs. The key question considered is the 
magnitude of the decrease in path count when loops are summarized. In addition to the path count reduction, this 
research study also analyzes the individual loops present in the programs. Each loop is analyzed manually and 
classified by the task it performs. The complexity of a loop is estimated using the number of paths through the 
loop. To better assess the challenges of analyzing loops, we determine how many loops contain programming 
elements that are difficult to analyze such as function calls, alternate exits, and nested loops.  

This paper investigates the following research questions: 

• What is the reduction in path count attained from simulating the replacement of loops with summaries? While 
replacing loops with summaries reduces the number of paths within most functions with loops, the technique 
is not sufficient in reducing the number of paths to a reasonable number in the most complex functions.  

• Using the number of paths in the loop body as a complexity measure, how complex are loops? Most, but not 
all, loops have simple bodies with few paths.    

• How often do loops contain certain programming constructs or properties that may make analysis difficult? 
Of the key findings: 59.5% of loops traverse arrays or strings, 51.3% contain a function call, 28.4% contain 
an alternate exit beyond the normal stopping condition, and 21.6% contain a nested loop. Complex loops with 
many paths are more likely to contain these constructs making analysis even more difficult. 

The rest of the paper is organized as follows. Section 2 describes the terminology using an example. The 
implementation of our loop analyses is described in Section 3. Section 4 presents the results of these analyses. 
Threats to validity are described in Section 5. Related work is outlined in Section 6 and Section 7 concludes. 

2. Definitions 
This study explores the number of paths using the control flow graph. In a control flow graph, the nodes 
correspond to basic blocks which contain one or more statements. The directed edges refer to different control 
decisions. For instance, a basic block ending with an if statement will have two edges: one when the condition is 
true and one when the condition is false. An intraprocedural control flow graph is used for this study – each 
function has its own separate control flow graph. The node with the first statement of the function is the starting 
node. The control flow graph also has one or more ending nodes. An ending node either contains a return 
statement, the last statement of the function, or a known function that unconditionally exits the program (such as 
exit).  

A path within a function is defined as a path through the control flow graph from the starting node to an ending 
node. The theoretical path count is the number of unique paths within the function. For functions that contain 
loops, the theoretical path count is infinite since the number of iterations in a loop could be increased without 
limit. As defined, the theoretical path count does not consider whether a path is possible to execute or not. In 
practice, some loops have a fixed number of iterations resulting in a finite number of realizable paths. 

Path-based analyses must cope with functions that have an infinite number of paths. One common way of 
addressing this issue is to limit the number of iterations in the loop. While this restriction makes the number of 
paths in a function finite, it may introduce imprecision in the analysis. For this study, the baseline path count is 
computed such that each loop is traversed at most one time. Despite this lenient restriction, the number of paths is 
extremely high for several functions. 
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More formally the baseline path count for a function is the number of unique paths from the starting node to an 
ending node of the function’s control flow graph. Loops (represented using cycles in the control flow graph) are 
traversed at most once. The path counts are computed intraprocedurally. A baseline path count for the entire 
program is computed by summing the path counts of its functions. Since the path counts are computed only using 
the control flow graph – no attempt is made to remove infeasible paths that are impossible to execute. We deem 
this to be appropriate since any path-based analysis technique must be able to detect and handle infeasible paths. 

Consider the example in Figure 1. The baseline path count is 114. One way of computing this path count is to 
divide the control flow graphs into sections: the control flow graph before node 6 (contains nodes 1-5), the control 
flow graph representing the loop at node 6 (contains nodes 6-20), and the control flow graph representing the loop 
after node 6 (contains nodes 21-25). There are 2 paths from node 1 to 6. There are a total of 18 paths through the 
loop at node 6 plus a 19th path that skips the loop (zero iterations). There are 3 paths from node 21 to the end. 
Multiplying the path counts from these sections gives 2 × 19 × 3 = 114. 
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Figure 1. Example Control Flow Graph   
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int a[SIZE]; 
int *p = a; 
int i; 
 
for (i = 0; i < SIZE; i++) { 
  p++; 
} 
 
for (i = 0; i < SIZE; i++) { 
  if (a[i] == 0) { 
    p++; 
  } 
} 
Figure 2. Example Loops 

Our research assess the potential of replacing a loop with a loop summary. A loop summary is a summary that 
captures state changes during the loop. To illustrate the concept of a loop summary, consider the two loops in 
Figure 2. Assume the analysis that is being used determines whether a pointer points to valid memory or not. The 
first loop of Figure 2 can be summarized by stating that p points to the memory location just outside of the array. 
The second loop is more difficult to summarize and depends on the precision of the analysis. One possible 
summary simply notes that it is possible for p to point to the location after the array. A more precise summary 
will indicate that it is only possible for p to point to the location after the array if the array consists of all zeros. 
More precise still is a summary that notes the location of p after the loop based on the number of zeros in the 
array. The format and contents of a loop summary will differ based on the specific analysis being used and the 
precision of that analysis. The broader question of creating loop summaries [4, 5, 6] is beyond the scope of this 
paper. 

To assess the benefit of separating loops, we envision a loop-separate analysis that is carried out as follows: 

1. Analyze each loop in the program creating a loop summary. In the case of nested loops, the inner loops are 
analyzed and summarized first. 

2. Replace the loops with their loop summaries. 
3. Use a path-based analysis technique such as symbolic execution to exhaustively analyze all paths. 

The feasibility of a path-based analysis approach is dependent on the number of paths it needs to traverse. This 
study explores the effect on the path count when using the loop-separate analysis as described above. To start, the 
number of paths without loops is computed for each function. This is accomplished by augmenting the control 
flow graph such that nodes that immediately precede the loop (loop predecessors) are redirected to point to the 
node that immediately follows the loop (loop successor). The same path counting algorithm is used on this 
augmented control flow graph. The resulting number of paths is the outside path count – the number of paths 
outside any loop in the function. 

The augmented control flow graph for Figure 1 is shown in Figure 3. To better illustrate how loop-separate 
analysis works, the augmented control flow graph is shown with a loop summary. The outside path count 
computed from the augmented control flow graph in Figure 3 is six, representing the complexity of the function 
that resides outside the loops of the program.  
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Figure 3. Augmented CFG for Computing Outside Path Count 

Then, the number of paths is computed for each loop. To count the number of paths within a loop, the control 
flow graph for a function is augmented to only include nodes in the loop body. In the augmented control flow 
graph, the loop starting node is the basic block that contains the first statement in the loop body. A loop ending 
node is a node that corresponds to the end of loop body or a node that contains a statement that exits the loop 
(such as break or return). In Figure 1, consider the while loop at node 6. The loop starting node for this loop is 
node 7 and the lone loop ending node is node 20. Similarly, the while loop at node 12 has node 13 as its loop 
starting node and has node 15 as its one loop ending node.   

A loop path is a path in the control flow graph from the loop starting node to an loop ending node. Since the loop 
may contain an inner loop, two path count measures are used: 

• Loop path count with loops: The number of unique paths in a loop where each inner loop is traversed at most 
one time. 

• Loop path count without loops: The number of unique paths in a loop when inner loops are replaced with loop 
summaries.  

Consider the innermost while loop in Figure 1 – the loop at node 12. The resulting augmented control flow graph 
is shown in Figure 4. There are two paths in this control flow graph. Since the loop contains no inner loops, the 
loop path count with loops and the loop path count without loops are both equal to two. For the outermost while 
loop at node 6 in Figure 1, the two loop path count metrics differ due to the presence of the inner loop. The 
augmented control flow graph in Figure 5 is used to compute the loop path count with loops – 18 in this case. To 
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Figure 4. Augmented CFG for Computing Loop Path Count (with or without loops) for Loop at Node 12 
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Figure 5. Augmented CFG for Computing Loop Path Count with Loops for the Loop at Node 6 

compute the loop path count without loops, the inner loop is replaced with a loop summary, resulting in the 
augmented control flow graph shown in Figure 6. The loop path count without loops is six.   

The inside path count is the number of paths inside the loops of a function. It is the sum of the loop path count 
without loops over all the loops in the function. The loop-separate path count for a function is the sum of outside 
path count and the inside path count. The loop-separate path count is compared to the baseline path count to 
assess the possible benefit of loop-separate analysis. For functions without loops, the loop-separate path count and 
the baseline path counts are identical. For a vast majority of the functions containing a loop, the number of paths 
decreases when using loop-separate analysis. This research explores the magnitude of that decrease. 

Using the example in Figure 1, the inside path count is eight: two paths for the loop at node 12 and six paths for 
the loop at node 6. The loop-separate path count is 14: six outside paths plus eight inside paths. Note that the 
loop-separate path count represents the maximal benefit of using loop-separate analysis: loops are skipped 
whenever possible. Loops are skipped when computing the outside path count and inner loops are skipped when 
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Figure 6. Augmented CFG for Computing Loop Path Count without Loops for the Loop at Node 6 

computing the inside path count. For this example, the effect of using loop-separate analysis is that the control 
flow graph in Figure 1 is replaced with the three less complex control flow graphs shown in Figures 3, 4, and 6. 

3. Loop Analyses 
This section describes the different loop analyses employed in this study. 

3.1 Path Counting Algorithm 

In this section, we describe the path counting algorithms used in this study. Paths are counted using a depth-first 
traversal of a control flow graph. The control flow graph was generated using CodeSurfer [7]. CodeSurfer parses 
preprocessed C source code created using ‘gcc –E’. Using preprocessed source code exposes any loops that are 
embedded in macros. CodeSurfer was run with the options “-basic-blocks yes -handle-
exception no -handle-abnormal-exit no gcc”. The consequence of these options directs 
CodeSurfer to use the gcc compiler model and to suppress the addition of edges due to abnormal exits and 
exceptions The CodeSurfer internal representation converts short-circuited operators into the appropriate if-else 
constructs, increasing the number of paths for functions containing these operators.  

In the baseline path counting algorithm, loops are traversed at most once. This rule is enforced by modifying the 
control flow graph such that loop back edges are removed from the graph and replaced with an edge that connects 
the end of the loop body to the loop successor (the basic block that immediately follows the loop).  

Loops constructed using backward goto statements are ignored. A backwards goto statement is considered to end 
the path. This is done by removing the back edge after a backwards goto statement from the control flow graph 
and marking the node as a function ending node. There are only 32 backwards goto statements in the 25 programs 
analyzed in this study. Of these 32 statements, 19 occur in four scanning and parsing functions that were created 
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using scanner and parser generation tools. No modifications are made to the control flow graph for forward goto 
statements.  

The baseline path count is the number of unique paths from the starting node to a function ending node. A 
recursive depth-first search is used to count the unique paths. The following nodes are considered function ending 
nodes: 

• The node containing the last statement of the function. 
• Any node containing a return statement. 
• Any node containing a backwards goto statement. 
• Any node that contains a function call that unconditionally exits the program. 

To compute the number of outside paths, the control flow graph is further augmented such that loops are skipped. 
For each loop, nodes that immediately precede the loop (loop predecessors) are redirected to point to the node 
that immediately follows the loop (loop successor). The same recursive depth-first search algorithm is used to 
count the unique paths. 

The loop path count is computed using a control flow graph that represents the body of the loop. Starting with the 
acyclic control flow graph used to compute the baseline path count, here is the process of creating a loop control 
flow graph: 

1. Identify all nodes that are part of the loop. 
2. Create a dummy exit node e. 
3. For each edge that is from a node u in the loop to a node v outside the loop, replace that edge with an edge 

from u to the dummy exit node e. Examples of such edges include the following: 
• The back edge from the end of the loop to the loop predicate. 
• Edges due to break and continue statements. 
• Edges of forward goto statements that jump out of the loop. 

 
4. Denote the node containing the first statement of the loop body as a loop starting node. Other potential entry 

points due to goto targets and other unstructured control flow are not considered.  
5. Denote the following nodes as a loop exit node: 

• The dummy exit node. 
• Any node containing a return statement. 
• Any node containing a backwards goto statement. 
• Any node that contains a function call that unconditionally exits the program. 

The resulting graph is used to compute the loop path count with loops. To compute the loop path count without 
loops, each loop control flow graph is augmented such that inner loops are skipped. The procedure is identical to 
that of skipping loops in the function’s control flow graph: loop predecessors are redirected to point to the loop 
successor. In both loop path counting algorithms, the same recursive depth-first search algorithm is used.     

3.2 Loop Classifications 

To better understand the behavior of different loops, we manually classified loops based on what they are trying 
to accomplish. The following seven different classifications emerged:  

Array traversals: The loop consists of traversing an array that is not a string. Typically, the loop will stop when 
either the end of the array is encountered or, in the case of searches, when a desired element is found. The loops 
must traverse in sequential fashion (either forward or backward) but there are no further restrictions on the 
increment or decrement – it does not need to be a constant increment or decrement by one. For instance, a 
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manually unrolled loop that processes multiple elements per iteration is still classified as an array traversal. Loops 
can use index variables with array references or pointers with dereferences to traverse the loop.  

String traversals: The loop traverses a string. Strings are treated separately from arrays because their loops are 
often written differently than other arrays. In particular, the size of the string and consequently the stopping 
condition of the loop is determined by the location of the null termination character, not the size of the array 
holding the string. In addition, loops traversing strings often take advantage of an extensive library of string-
related functions.  

Linked list traversals: The loop traverses a linked list of nodes. At the end of each iteration, a pointer moves to 
the next element in the list until reaching the end of the list. The loop may end early in loops that search for a 
desired element. 

Other data structure traversals: The loop traverses a common data structure that is not an array, string, or linked 
list. In the programs in our study, this includes traversals of stacks, trees, heaps, and sets. Note that if a data 
structure was implemented using an array or linked list, loops traversing the data structure would still be classified 
as an array or linked list traversal. 

Input loops: The loop is used to get data from input (either from the console, file, or network) and ends when 
there is no more input (such as the end of the file) or when a special "end-of-input" marker is reached. Loops that 
terminate early due to input errors are still classified as input loops. Loops that initialize arrays from input are 
classified as input loops even though they could also be classified as array traversals. 

Not over loops: The loop stops when a certain algorithmic condition is met. Typically, but not necessarily, the 
condition is represented by a flag that is set within the body and checked in the loop predicate. A common type of 
a loop in this classification is a loop that continues until steady state is reached. 

Other: The loop does not fit one of the above classifications or we were unable to determine whether it meets one 
of the above classifications.  

Each loop is classified in exactly one of these categories. If a loop could be classified into multiple classifications, 
the following rules were used to disambiguate: 

• If a loop processes input until there is no input left, it is an input loop even if the loop is placing the data in a 
data structure. 

• If a loop is searching a data structure and the stopping condition is a flag that indicates the element is found, 
the loop is considered to be a data structure traversal rather than a not over loop. 

• If the contents of a data structure are copied into a different type of data structure, it will be a data structure 
traversal of the data structure that is being read. For example, copying a linked list into an array would be 
considered a linked list traversal. There are very few loops of this type. 

• The very few loops not covered by one of the situations above were handled on a case by case basis. Many of 
these were large loops that performed several different tasks; such loops were often classified as other.  

For the data structure traversals, we also tracked the type of data structure traversal: 

• Copy: A copy from one data structure to another. 
• Initialize: The data structure is being initialized (but is not being copied from another data structure). 
• Modify: The contents of the data structure are modified. 
• Read: The contents of the data structure are read (used). 
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• Search: The data structure is being searched for a particular element or for an element that exhibits a certain 
property. 

• Other: The data structure is being used for some other purpose than those listed above. 

As with the initial classification, each loop is assigned exactly one traversal type. If a loop could fit into multiple 
categories, we made a decision based on what we felt the primary purpose of the loop was. For instance, a loop 
that traversed an array using the elements in a calculation but also searched for errors into the loop would be 
classified as a read traversal as the primary operation is to use the data, the search for errors was secondary. In the 
rare case where a loop clearly has multiple different primary purposes, it is classified as other.  

The classification was done manually by inspecting the source code of each loop. Functions that are called within 
the loop were further inspected if it was necessary in classifying the loop. Fortunately, the vast majority of the 
loops did not require this type of inspection.  

3.3 Loop Characteristics 

The goal of this analysis is to determine how often loops contained "hard-to-analyze" features. In particular, we 
looked for the following: 

Function calls: A loop that contains a function call (besides those that are classified separately: function calls that 
unconditionally exit and input/output system calls). In order to fully analyze a loop that calls another function, 
some level of interprocedural analysis is necessary. Path-based analysis tools often struggle with interprocedural 
analysis. Whether the function call occurs in the stopping condition, in the loop body, or both, is also tracked. 

Alternate exits: A loop that can exit in another manner besides the specified stopping condition. This make loop 
analysis more difficult for two reasons. First, the stopping condition is spread out over the loop making it 
necessary to collect the conditions necessary for the loop to exit. Second, an alternate exit in the middle of the 
loop may only see some of the state changes present in the loop, missing state changes that occur after the 
alternate exit. This could make the creation and resulting complexity of a loop summary more complicated than a 
loop that only exits via the normal stopping condition. The programming construct used for an alternate exit is 
also noted: break statement, return statement, goto statement, or a function call that unconditionally exits the 
program. 

Input: A loop that has a system input function call. These loops can be difficult to analyze due to the variability 
of the input data. Proper analysis often requires representing the input data symbolically. 

Output: A loop that has a system output function call. Since these loops produce output, it can be difficult for an 
analysis tool to fully capture the full behavior of the loop. 

Nested loops: A loop contains another loop. Furthermore, the depth of the nesting is recorded. Our analyses also 
notes loops that are nested within another loop.  

This analysis was primarily carried out using an extension to CodeSurfer. The extension generates a list of basic 
blocks associated with each loop and scans the individual instructions within those basic blocks to determine 
which of the hard-to-analyze elements it contains. During this analysis, function calls were not inspected further 
to see if those functions contained one or more of these elements. However, some programs contained functions 
that were simply wrapper functions for exiting the program, gathering input, or sending output. For example, 
some programs have their own exit routines that consist of printing an error message in a consistent manner 
followed by exiting the program. For each of the three properties (exit, input, and output), a list of functions was 
created via inspection for each program. Our extension would read each of the lists. If a loop called a function on 
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the list, the loop is considered to have that property. For instance, if a loop calls a function that is on the input list, 
the loop is considered to have an input statement.  

The only hard-to-analyze element not detected automatically is determining whether a function call is present in 
the stopping condition. Isolating the stopping condition in the CodeSurfer intermediate representation was too 
difficult in cases where the condition was converted into multiple if-else statements based on short-circuited 
operators and it was straightforward to inspect the loops manually using the source code. 

4. Results 
The 25 programs used in this study, written using the C programming language, are shown in Table 1. Programs 
range in size from 1,725 lines (othello) to 125,360 lines (espresso). In total, 2,869 loops were analyzed across the 
25 programs. Some programmers use a dummy do-while loop with a constant predicate zero as a wrapper in 
macros; these (non)loops were discarded.  

Table 1 also breaks down the numbers of loops by type (do, for, while, and while(1)). A while(1) loop is any loop 
that does not have a normal stopping condition such as while(1) or for(;;). Since these loops do not use a 
stopping condition, we felt it was appropriate to consider these separately. 18 of the 25 programs have at least one 
while(1) loop. The most prevalent type of loop is the for loop (62.6% of the 2,869 loops).   

Table 1. Programs Used 

Name Description Funcs Lines Loops

barcode barcode generator 61 15,634 71 0 (0.0%) 58 (81.7%) 13 (18.3%) 0 (0.0%)

bc calculator 101 19,423 103 1 (1.0%) 33 (32.0%) 67 (65.0%) 2 (1.9%)

betaftpd file transfer daemon 66 8,599 17 2 (11.8%) 6 (35.3%) 8 (47.1%) 1 (5.9%)

diff3 compares three f iles 29 7,471 53 10 (18.9%) 24 (45.3%) 19 (35.8%) 0 (0.0%)

ed text editor 125 11,738 72 5 (6.9%) 21 (29.2%) 37 (51.4%) 9 (12.5%)

espresso logic minimizer 401 125,360 738 114 (15.4%) 597 (80.9%) 21 (2.8%) 6 (0.8%)

find file f inder 295 25,565 50 1 (2.0%) 33 (66.0%) 16 (32.0%) 0 (0.0%)

flex lexical analyzer 144 8,794 153 1 (0.7%) 116 (75.8%) 33 (21.6%) 3 (2.0%)

ft spanning tree 37 4,706 23 7 (30.4%) 8 (34.8%) 8 (34.8%) 0 (0.0%)

ghttpd w eb server 16 8,037 20 0 (0.0%) 8 (40.0%) 10 (50.0%) 2 (10.0%)

grep text search tool 131 9,681 276 10 (3.6%) 143 (51.8%) 109 (39.5%) 14 (5.1%)

gzip compression utility 92 15,174 181 31 (17.1%) 62 (34.3%) 81 (44.8%) 7 (3.9%)

http_get basic HTTP client 8 2,785 9 0 (0.0%) 4 (44.4%) 3 (33.3%) 2 (22.2%)

indent source code indenter 103 18,433 109 10 (9.2%) 33 (30.3%) 59 (54.1%) 7 (6.4%)

ks graph partitioning 13 2,302 35 1 (2.9%) 33 (94.3%) 1 (2.9%) 0 (0.0%)

make makefile processor 179 13,756 349 11 (3.2%) 200 (57.3%) 133 (38.1%) 5 (1.4%)

othello othello game 11 1,725 26 2 (7.7%) 19 (73.1%) 4 (15.4%) 1 (3.8%)

sed text f ilter tool 246 10,834 220 13 (5.9%) 152 (69.1%) 35 (15.9%) 20 (9.1%)

space specialized interpreter 136 7,094 53 1 (1.9%) 15 (28.3%) 35 (66.0%) 2 (3.8%)

spell spell checker 13 2,538 10 0 (0.0%) 3 (30.0%) 3 (30.0%) 4 (40.0%)

sudoku sudoku solver 47 4,371 59 0 (0.0%) 54 (91.5%) 4 (6.8%) 1 (1.7%)

thttpd w eb server 126 16,877 83 1 (1.2%) 50 (60.2%) 22 (26.5%) 10 (12.0%)

time time measuring tool 12 5,090 7 0 (0.0%) 2 (28.6%) 5 (71.4%) 0 (0.0%)

w hich program finder 25 3,845 29 3 (10.3%) 10 (34.5%) 15 (51.7%) 1 (3.4%)

yacr2 channel router 58 8,061 123 6 (4.9%) 112 (91.1%) 5 (4.1%) 0 (0.0%)

2,475 357,893 2,869 230 (8.0%) 1,796 (62.6%) 746 (26.0%) 97 (3.4%)

while (1)do for while

TOTAL 
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Table 2. Number of Loops by Classification 

Name Loops

barcode 71 15 (21.1%) 52 (73.2%) 0 (0.0%) 0 (0.0%) 2 (2.8%) 0 (0.0%) 2 (2.8%)

bc 103 52 (50.5%) 9 (8.7%) 14 (13.6%) 2 (1.9%) 3 (2.9%) 2 (1.9%) 21 (20.4%)

betaftpd 17 7 (41.2%) 2 (11.8%) 1 (5.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 7 (41.2%)

diff3 53 20 (37.7%) 17 (32.1%) 6 (11.3%) 0 (0.0%) 6 (11.3%) 1 (1.9%) 3 (5.7%)

ed 72 16 (22.2%) 23 (31.9%) 15 (20.8%) 0 (0.0%) 4 (5.6%) 1 (1.4%) 13 (18.1%)

espresso 738 390 (52.8%) 0 (0.0%) 101 (13.7%) 146 (19.8%) 18 (2.4%) 1 (0.1%) 82 (11.1%)

find 50 19 (38.0%) 6 (12.0%) 9 (18.0%) 5 (10.0%) 2 (4.0%) 1 (2.0%) 8 (16.0%)

flex 153 101 (66.0%) 16 (10.5%) 2 (1.3%) 0 (0.0%) 1 (0.7%) 0 (0.0%) 33 (21.6%)

ft 23 4 (17.4%) 0 (0.0%) 8 (34.8%) 5 (21.7%) 0 (0.0%) 1 (4.3%) 5 (21.7%)

ghttpd 20 3 (15.0%) 7 (35.0%) 0 (0.0%) 0 (0.0%) 5 (25.0%) 0 (0.0%) 5 (25.0%)

grep 276 130 (47.1%) 27 (9.8%) 4 (1.4%) 9 (3.3%) 3 (1.1%) 2 (0.7%) 101 (36.6%)

gzip 181 118 (65.2%) 12 (6.6%) 0 (0.0%) 0 (0.0%) 3 (1.7%) 4 (2.2%) 44 (24.3%)

http_get 9 2 (22.2%) 4 (44.4%) 1 (11.1%) 0 (0.0%) 2 (22.2%) 0 (0.0%) 0 (0.0%)

indent 109 16 (14.7%) 62 (56.9%) 5 (4.6%) 0 (0.0%) 8 (7.3%) 5 (4.6%) 13 (11.9%)

ks 35 8 (22.9%) 1 (2.9%) 25 (71.4%) 0 (0.0%) 0 (0.0%) 1 (2.9%) 0 (0.0%)

make 349 72 (20.6%) 94 (26.9%) 121 (34.7%) 0 (0.0%) 7 (2.0%) 0 (0.0%) 55 (15.8%)

othello 26 17 (65.4%) 1 (3.8%) 0 (0.0%) 0 (0.0%) 1 (3.8%) 1 (3.8%) 6 (23.1%)

sed 220 102 (46.4%) 36 (16.4%) 19 (8.6%) 7 (3.2%) 16 (7.3%) 0 (0.0%) 40 (18.2%)

space 53 11 (20.8%) 0 (0.0%) 28 (52.8%) 0 (0.0%) 3 (5.7%) 1 (1.9%) 10 (18.9%)

spell 10 1 (10.0%) 3 (30.0%) 0 (0.0%) 0 (0.0%) 3 (30.0%) 0 (0.0%) 3 (30.0%)

sudoku 59 46 (78.0%) 0 (0.0%) 2 (3.4%) 0 (0.0%) 0 (0.0%) 1 (1.7%) 10 (16.9%)

thttpd 83 23 (27.7%) 22 (26.5%) 11 (13.3%) 0 (0.0%) 8 (9.6%) 0 (0.0%) 19 (22.9%)

time 7 3 (42.9%) 2 (28.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (28.6%)

w hich 29 9 (31.0%) 13 (44.8%) 0 (0.0%) 0 (0.0%) 2 (6.9%) 0 (0.0%) 5 (17.2%)

yacr2 123 112 (91.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (1.6%) 3 (2.4%) 6 (4.9%)

TOTAL 2,869 1,297 (45.2%) 409 (14.3%) 372 (13.0%) 174 (6.1%) 99 (3.5%) 25 (0.9%) 493 (17.2%)

ds: other input not over otherarray string linked list

 

4.1 Loop Classifications 

Looking at the loop classifications presented in Table 2, nearly 60% of the loops traverse arrays in some fashion: 
45.2% traverse non-string arrays while 14.3% traverse string arrays. Linked lists account for 13.0% of the loops. 
Only six of the programs have loops that traverse other data structures. The program espresso accounted for most 
of these loops as it contains a set data structure represented as a bit vector that is used extensively in the program. 
The program uses macros for many of these operations so the loops are replicated throughout the code. Other 
programs relied on functions for common data structure operations so most of the loops are constrained to the 
functions that implemented those data structure operations. 17.2% of the loops could not be classified using one 
of our six categories and are classified as other. 

Exploring the four types of data structure traversal loops further, Table 3 shows the number of loops based on the 
type of traversal. Over half of the traversals are read operations – the contents of the data structure are used in a 
computation or task. The breakdown among the different types of data structures is intuitive. Arrays are unique in 
that they are often initialized using a loop where the other data structures do not need to use a loop to be 
initialized. For instance, a string can be initialized using a constant string literal. Searches are more common for 
strings than other data structures; frequently loops look for delimiter characters. The lack of search loops for other 
data structures (ds: other) can be attributed to that most of these loops operate on sets in espresso. Most of the 
common set operations such as union or intersection do not involve searches.  
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Table 3. Number of Loops by Type of Data Structure Traversal 

Type Loops

array 1,297 69 (5.3%) 173 (13.3%) 200 (15.4%) 654 (50.4%) 190 (14.6%) 11 (0.8%)

string 409 38 (9.3%) 10 (2.4%) 15 (3.7%) 147 (35.9%) 170 (41.6%) 29 (7.1%)

linked list 372 0 (0.0%) 4 (1.1%) 44 (11.8%) 252 (67.7%) 39 (10.5%) 33 (8.9%)

ds: other 174 0 (0.0%) 1 (0.6%) 38 (21.8%) 105 (60.3%) 5 (2.9%) 25 (14.4%)

TOTAL 2,252 107 (4.8%) 188 (8.3%) 297 (13.2%) 1,158 (51.4%) 404 (17.9%) 98 (4.4%)

read search othercopy initialize modify

 

Table 4. Path Counts by Program 

Total Outside Loops Inside Loops

barcode 8.07E+09 32,927,520 32,926,918 602

bc 949,346 34,101 33,623 478

betaftpd 45,692 42,311 42,205 106

diff3 572,718 40,095 38,864 1,231

ed 210,545 36,531 35,871 660

espresso 2.71E+11 4.36E+09 1,205,009 4.36E+09

find 1,966,770 1,791,895 1,790,964 931

flex 7.40E+11 7.22E+11 7.22E+11 1,396

ft 10,594 526 481 45

ghttpd 9,487 1,154 1,075 79

grep 6.97E+20 29,917,218 262,245 29,654,973

gzip 3.05E+10 2.37E+09 2.37E+09 873

http_get 4,501 347 160 187

indent 9.82E+17 5.59E+11 5.59E+11 30,420,548

ks 24,452 153 47 106

make 1.09E+20 6.30E+12 6.29E+12 1.48E+09

othello 13,382 13,196 13,029 167

sed 4.37E+12 34,872,378 28,863,158 6,009,220

space 6,227 2,007 1,672 335

spell 5,225 3,245 2,923 322

sudoku 1.94E+09 21,216 10,099 11,117

thttpd 2.84E+12 41,622,428 41,612,355 10,073

time 1,406 243 152 91

which 1.98E+10 5,945 2,031 3,914

yacr2 2,249,048 3,104 1,575 1,529

Program Baseline Path Count
Loop-Separate Path Count

 

4.2 Loop-Separate Path Count Comparison 

Table 4 compares the baseline path count to the loop-separate path count for each program. The path count for a 
program is obtained by summing the path counts for each of the functions contained within the program. The first 
column of Table 4 shows the baseline path count. The second column displays the loop-separate path count. This 
number is broken down into the number of paths outside any loops and the number of paths inside the loops.  

The results of this experiment varied widely. Some programs such as ks, grep, sudoku, which, yacr2 saw a 
significant reduction in the number of paths. In particular, which went from almost 2 billion baseline paths to 
5,945 loop-separate paths. All but 2,194 of the baseline paths are contained in two functions: main (1.97 billion 
baseline paths and 8 loops) and process_alias (88 million baseline paths and 10 loops). With a high 
number of loops, these programs saw a large benefit from loop-separate analysis. The function main has 3,705 
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loop-separate paths and the function process_alias has 1,327 loop-separate paths. The function 
process_alias, shown in Figure 7, serves as a good example of a function that benefits from loop-separate 
analysis. It contains many simple string search loops that increment a pointer until a condition is met. Even 
limiting the number of iterations to at most one, the sheer number of these loops generates many combinations 
that are encapsulated in over 88 million paths. Using loop-separate analysis reduces the path count to 1,327 paths 
– most of them in the large for loop that increments argv. The program ks experiences a similar phenomenon. 
23,100 of its 24,452 baseline paths resided in the function PrintResults. The function with its 11 relatively 
simple loops, saw a large benefit from loop-separate analysis. It only contains 22 loop-separate paths.  

Eleven of the programs have over one billion baseline paths. When using loop-separate analysis: five of the 
eleven programs (espresso, flex, gzip, indent, make) still have over 1 billion paths, four programs (barcode, grep, 
sed, thttpd) coincidentally have around 30-40 million paths, and two programs (sudoku, which) have fewer than 
25,000 paths.  

In most programs, the number of paths is driven by the number of paths outside the loops. Of the nine programs 
with over 10 million paths using loop-separate analysis, seven of those programs have significantly more paths 
outside the loops than inside loops. Even the two programs that have more paths inside loops still have a 
significant number of paths outside loops: 1.2 million (espresso) and 262,245 paths (grep). The implication of 
these results is that many programs have significant complexity outside of loops. If loops were to be analyzed 
separately, a path-based analysis tool would still be required to analyze large numbers of paths.  

In the 11 programs with over one billion baseline paths, the large majority of the paths are contained in just a few, 
sometimes one, function. The effectiveness of loop-separate analysis on these few functions determines the size of 
the decrease for the whole program. To that end, we explore the effect on individual functions instead of whole 
programs. The results are tabulated in Table 5. In this table, the rows are organized by the baseline path count 
divided into exponentially-size ranges. The second column shows the number of functions that have a path count 
with loops in the specified range. The third column shows the number of functions that have no loops. For 
instance, there are 205 functions with a baseline path count from 101 – 1,000. Of those 205 functions, 32 have no 
loops. Functions with no loops receive no benefit from using loop-separate analysis. Out of the 2,475 functions 
under analysis, 1,315 (53%) have no loops. Most of these are simple functions with very few paths. For functions 
that have over 100 paths, only 13% of the functions have no loops. Out of the 57 functions that contain over one 
million paths, only three (5%) have no loops.  

Table 5. Effect of Loop-Separate Analysis 

Total No 
Loops 1 2 - 10 11 - 100 101 - 

1k
1k - 
10k

10k- 
100k

100k - 
1M

1M  - 
10M

10M  - 
100M > 100M

1 477 461 461 16 0 0 0 0 0 0 0 0

2 - 10 1,151 665 0 1,150 1 0 0 0 0 0 0 0

11 - 100 435 137 0 121 314 0 0 0 0 0 0 0

101 - 1k 205 32 0 1 140 64 0 0 0 0 0 0

1k - 10k 76 11 0 0 25 30 21 0 0 0 0 0

10k- 100k 48 5 0 0 9 19 8 12 0 0 0 0

100k - 1M 26 1 0 0 6 6 6 6 2 0 0 0

1M - 10M 28 1 0 0 0 5 2 4 5 2 0 0

10M - 100M 11 0 0 0 0 0 3 2 1 3 2 0

> 100M 28 2 0 0 0 0 3 4 4 2 5 10
1315 461 1288 495 124 43 28 12 7 7 10
52.9% 18.6% 51.8% 19.9% 5.0% 1.7% 1.1% 0.5% 0.3% 0.3% 0.4%

Functions
Baseline 

Path Count

Functions with Loop-Separate Path Counts of:

TOTAL 2,485
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void process_alias(const char *str, int argc, char *argv[], const char *path_list, int 
function_start_type) 
{ 
  const char *p = str; 
  int len = 0; 
 
  while(*p == ' ' || *p == '\t') 
    ++p; 
  if (!strncmp("alias", p, 5)) 
    p += 5; 
  while(*p == ' ' || *p == '\t') 
    ++p; 
  while(*p && *p != ' ' && *p != '\t' && *p != '=') 
    ++p, ++len; 
 
  for (; argc > 0; --argc, ++argv) { 
    char q = 0; 
    char *cmd; 
 
    if (!*argv || len != strlen(*argv) || strncmp(*argv, &p[-len], len)) 
      continue; 
 
    fputs(str, stdout); 
 
    if (!show_all) 
      *argv = NULL; 
 
    while(*p == ' ' || *p == '\t') 
      ++p; 
    if (*p == '=') 
      ++p; 
    while(*p == ' ' || *p == '\t') 
      ++p; 
    if (*p == '"' || *p == '\'') 
      q = *p, ++p; 
 
    for(;;){ 
      int found = 0; 
 
      while(*p == ' ' || *p == '\t') 
        ++p; 
      len = 0; 
      while(*p && *p != ' ' && *p != '\t' && *p != q && *p != '|' && *p != '&') 
        ++p, ++len; 
 
      cmd = (char *)xmalloc(len + 1); 
      strncpy(cmd, &p[-len], len); 
      cmd[len] = 0; 
      if (*argv && !strcmp(cmd, *argv)) 
        *argv = NULL; 
      if (read_functions && !strchr(cmd, '/')) 
        found = func_search(1, cmd, functions, function_start_type); 
      if (show_all || !found) 
        path_search(1, cmd, path_list); 
      free(cmd); 
 
      while(*p && (*p != '|' || p[1] == '|') && (*p != '&' || p[1] == '&')) 
        ++p; 
 
      if (!*p) 
        break; 
 
      ++p; 
    } 
 
    break; 
  } 
} 
Figure 7. Example of a Function that benefits from Loop-Separate Analysis (from the program which) 
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The right side of Table 5 shows the number of functions that have a loop-separate path count in the specified 
range (the same exponentially-sized ranges are used here). For instance, of the 76 functions that have a baseline 
path count of 1k – 10k paths: none have fewer than 11 paths when loop-separate analysis is used, 25 have 
between 11 and 100 paths, 30 have between 101 and 1k paths, and 21 still have between 1k and 10k paths. This 
shows that the number of paths has gone down at least one order of magnitude for 55 of the 76 functions 
represented in this row. However, the reduction was less significant or non-existent for the remaining 21 
functions. Of these 21 functions, 11 contain no loops and saw no difference in the number of paths when loop-
separate analysis is applied. 

The main diagonal in Table 5 is highlighted in gray. This diagonal shows the number of functions where the use 
of the loop-separate analysis was minimal or non-existent. Values to the left of this diagonal show the number of 
functions that benefit from using loop-separate analysis. Functions that are furthest most to the left show the 
largest benefit. For functions with smaller path counts, there are several functions that have minimal or no benefit 
when using path-separate analysis (many because they do not have any loops) but there are also several functions 
that see a decrease of one to two orders of magnitude. For functions with larger path counts, more functions see a 
benefit to using loop-separate analysis and the extent of that benefit is larger (more orders of magnitude). 
However, there is a limit to the benefit obtained using loop-separate analysis as evidenced by the zeros in the 
lower left portion of the table. As an example, all of the functions that have at least 1 million paths with loops all 
have at least 101 paths when using loop-separate analysis. Similarly, all of the functions that have at least 10 
million paths with loops all have at least 1,000 paths when using loop-separate analysis. The reason for this result 
is that virtually all of the functions with large path counts have significant complexity outside the loops serving as 
a limit on how low the loop-separate path count can be. 

The area to right of the main diagonal in Table 5 shows cases where loop-separate analysis increases the path 
count such that the resulting count is in a higher range. The loop-separate path count can actually be higher in 
functions where do-while loops are used. The path-counting algorithm iterates through a do-while loop exactly 
once since do-while cannot execute zero times. (Unlike other infeasible paths that are dependent on data analysis, 
this restriction is encoded in the control flow graph.) As an example, a function that contains a single do-while 
loop and no other control statements contains exactly one baseline path but has two paths when loop-separate 
analysis is employed: one outside path and one inside path for analyzing the do-while loop separately. Similar 
scenarios can occur with functions with higher path counts and multiple do-while loops. In total, 73 functions saw 
an increase in the number of paths when using loop-separate analysis. Of these 73 functions, 54 functions saw an 
increase of only one path and the maximum increase was seven paths. 

The results from Table 5 show that loop-separate analysis can help in some functions, but the effectiveness is 
limited due to the complexity outside the loops. Looking further, Table 6 breaks down the 28 functions that have a 
baseline path count of over 100 million paths, presented in decreasing order. Functions 12 and 26 have no loops – 
the number of paths remains the same when using loop-separate analysis. Both of these functions are in the 
program flex and both make several decisions based on different global flags that correspond to a particular 
command line setting. Many of the other functions in the list also have a large number of decisions based on 
command line settings, especially the five main functions in the list. 

Apart from the two functions without loops, all of the functions saw a lower loop-separate path count. In the worst 
case, the number of paths decreased by one or two orders of magnitude. This occurred in eight functions (13, 15, 
16, 18, 19, 21, 22, 28). In five of these functions (15, 16, 19, 21, 22), there is a significant number of paths outside 
the loops and relatively few paths within the loops. The reverse was true for functions 13, 18, and 28. All contain 
a loop that has over one million paths. The functions contain very little complexity outside these giant loops – all 
have four or fewer paths outside loops. 

 



17 
 
 

Table 6. Paths Breakdown for Functions with over 100 Million Paths 

Total Outside Loops Inside Loops
1. grep regex_compile 101 6.97E+20 28,641,328 21 28,641,307

2. make main 15 1.09E+20 6.29E+12 6.29E+12 75

3. indent dump_line 18 9.82E+17 5.59E+11 5.59E+11 82

4. grep re_match_2_internal 85 1.00E+16 236,452 7,609 228,843

5. make update_file_1 32 8.18E+14 109,518 109,204 314

6. grep dfastate 22 5.40E+14 73,832 10 73,822

7. make pattern_search 17 1.93E+14 3,092 180 2,912

8. make read_makefile 15 1.59E+14 1.35E+09 4,896 1.35E+09

9. indent print_comment 8 8.22E+12 961,670 959,088 2,582

10. sed re_search_internal 9 4.37E+12 28,802,514 28,798,740 3,774

11. thttpd main 4 2.84E+12 41,058,147 41,057,280 867

12. f lex flexend 0 7.22E+11 7.22E+11 7.22E+11 0

13. espresso massive_count 5 2.70E+11 4.36E+09 1 4.36E+09

14. make record_files 6 1.89E+11 6,002,863 4 6,002,859

15. indent lexi 14 4.46E+10 1.66E+08 1.66E+08 86

16. gzip get_method 4 3.05E+10 2.36E+09 2.36E+09 12

17. w hich main 8 1.97E+10 3,705 1,872 1,833

18. make reap_children 3 7.90E+09 1.23E+08 3 1.23E+08

19. f lex flexinit 5 7.67E+09 40,824,046 40,824,000 46

20. f lex gentabs 10 5.29E+09 19,485 19,440 45

21. barcode main 2 5.14E+09 32,514,228 32,514,048 180

22. f lex make_tables 3 4.53E+09 4.53E+08 4.53E+08 5

23. barcode Barcode_ps_print 6 2.89E+09 31,180 31,106 74

24. sudoku main 4 1.94E+09 12,122 1,728 10,394

25. f lex ntod 14 9.64E+08 1,017 864 153

26. f lex readin 0 2.14E+08 2.14E+08 2.14E+08 0

27. grep state_index 5 1.27E+08 589,493 8 589,485

28. sed compile_program 7 1.11E+08 6,001,369 4 6,001,365

Program Baseline Path Count
Loop-Separate Path Count

Function Loops

 

The eight functions with the most paths at the top of the list all have at least 15 loops and over 100 trillion 
baseline paths. As a result of having many loops, using loop-separate analysis was very beneficial for these 
functions. In four of these cases, the resulting path count was less than 250,000 paths – a much more manageable 
number than 100 trillion paths. The other functions saw significant decreases in the number of paths but the 
resulting path counts are still extremely high. For instance, function 2 (main in make) still has 6 trillion loop-
separate paths. 

Though data is not presented, results are similarly varied for functions with less than 100 million paths: some 
functions see significant path count decreases, some functions have loops with large path counts, in some 
functions a majority of the paths are outside the loops, and some functions have no loops at all. Functions with 
fewer paths tend to have fewer loops. Since using loop-separate analysis works best with functions with many 
loops, the decreases are less significant in functions with fewer paths (as shown in Table 5). 

To conclude this part of the study, using loop-separate analysis can significantly reduce the number of paths, 
especially in functions with many loops. In several functions, the number of paths can be reduced from an 
unmanageable number to a much more manageable number. However, there are three types of loops where the 
benefit is mitigated or non-existent: 
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• The function contains no loops. Fortunately, the functions with a large baseline path counts typically contain 
multiple loops. However, there are two functions in this study that contain over 100 million paths but no 
loops. 

• The function contains a giant loop with many paths. Fortunately, as noted in the next section, loops tend to 
have small paths counts. However, there are two loops in this study that contain over 100 million paths even 
when skipping inner loops. 

• The function contains an extremely large number of paths. Even with a significant decrease in the number of 
paths when employing loop-separate analysis, the number of paths that remain might be too large. 

4.3 Loop Path Count  

In this section, we explore the complexity of the loops themselves using the number of paths through the loop 
body as the metric. The results are summarized in Table 7. The table is divided into two sections based on the two 
variants for counting paths in a loop – the left section displays results for the loop path count with loops (inner 
loops are traversed at most once) and the right section displays results for the loop path count without loops (inner 
loops are skipped). Within each section, the loops are partitioned into exponentially-sized buckets based on the 
number of paths. Also, the number of paths in the loop with the highest number of paths is shown for each 
program. 

Most loops are simple. Using the loop path count with loops, 38.1% of the loops are very basic and have a single 
path. Based on our observations, most of these loops accomplish simple things such as initializing an array, 
printing the contents of a data structure, or moving a pointer to a particular point in a string. Looking further, 
46.3% of the loops have two to ten paths. Combining these first two columns, 84% of the loops have ten or fewer 
paths. In five of the programs (betaftpd, ft, ghttpd, ks, and time), all the loops have fewer than 100 paths with the 
largest loop in ft having a mere 20 paths. This suggests that it is likely possible to analyze many of the loops 
present in these programs. 

There are very few loops with a large number of paths. Only 37 (1.3%) loops analyzed have over 10,000 paths 
with loops. 23 of these 37 loops are in the programs grep and make. These two programs each have two loops 
with an astronomical number of paths. The program grep contains one loop with 4.84 × 1018 paths and another 
that contains 9.80 × 1012 paths. The program make contains loops with 4.73 × 1010 paths and 1.62 × 1010 paths. 
Only 7 of the other 23 programs contain loops with more than 10,000 paths.  

When inner loops are skipped, the number of loops with ten or fewer paths increases to 90% and there are even 
fewer loops with large path counts. Only 17 loops across 6 different programs have more than 10,000 paths. The 
impact on analyzing inner loops separately differs from loop to loop and depends on the number of inner loops 
and the number of paths within these inner loops. For instance, the two loops in grep that contain 4.84 × 1018 
paths and 9.80 × 1012 paths have several inner loops. Their path counts decreased to 287,777 and 7,833 paths 
respectively when inner loops are analyzed separately – large improvements. However, grep contains a third loop 
that has over 28 million paths and no inner loops.  

The loop with the largest number of paths that contains no inner loops is in the program espresso with 
4,362,470,402 paths. The contents of the loop are largely uninteresting – it primarily consists of checking each bit 
of an array element and incrementing an appropriate counter. While this checking and updating could be done 
with another loop, the code was written as an unrolled loop consisting of 32 checks like this: 

if (val & 0x00080000) 
 cnt[19]++;  
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Table 7. Loop Path Counts by Program 

1 2 -   
10

11 - 
100

101 - 
1k

1k - 
10k > 10k 1 2 -   

10
11 - 
100

101 - 
1k

1k - 
10k > 10k

barcode 160 25.4% 57.7% 15.5% 1.4% 0.0% 0.0% 160 25.4% 60.6% 12.7% 1.4% 0.0% 0.0%

bc 672 49.5% 41.7% 5.8% 2.9% 0.0% 0.0% 119 52.4% 41.7% 4.9% 1.0% 0.0% 0.0%

betaftpd 37 29.4% 52.9% 17.6% 0.0% 0.0% 0.0% 37 29.4% 58.8% 11.8% 0.0% 0.0% 0.0%

diff3 9,608 49.1% 34.0% 7.5% 5.7% 3.8% 0.0% 581 54.7% 32.1% 7.5% 5.7% 0.0% 0.0%

ed 164 34.7% 43.1% 19.4% 2.8% 0.0% 0.0% 120 37.5% 43.1% 18.1% 1.4% 0.0% 0.0%

espresso 4.36E+09 43.4% 49.2% 6.1% 0.9% 0.1% 0.3% 4.36E+09 51.6% 45.7% 2.4% 0.1% 0.0% 0.1%

find 396 40.0% 44.0% 10.0% 6.0% 0.0% 0.0% 396 40.0% 48.0% 6.0% 6.0% 0.0% 0.0%

flex 8,448 41.2% 47.7% 7.8% 2.0% 1.3% 0.0% 464 45.8% 48.4% 3.9% 2.0% 0.0% 0.0%

ft 20 43.5% 47.8% 8.7% 0.0% 0.0% 0.0% 4 52.2% 47.8% 0.0% 0.0% 0.0% 0.0%

ghttpd 23 45.0% 45.0% 10.0% 0.0% 0.0% 0.0% 23 45.0% 45.0% 10.0% 0.0% 0.0% 0.0%

grep 4.84E+18 36.2% 39.1% 17.0% 3.3% 1.1% 3.3% 28,344,976 48.2% 40.6% 5.8% 2.2% 0.7% 2.5%

gzip 20,883 42.5% 45.9% 7.7% 2.8% 0.0% 1.1% 198 48.1% 45.3% 6.1% 0.6% 0.0% 0.0%

http_get 102 22.2% 44.4% 22.2% 11.1% 0.0% 0.0% 100 22.2% 55.6% 22.2% 0.0% 0.0% 0.0%

indent 43,830,540 52.3% 33.9% 8.3% 0.9% 1.8% 2.8% 30,352,140 53.2% 33.9% 9.2% 0.9% 0.9% 1.8%

ks 72 40.0% 42.9% 17.1% 0.0% 0.0% 0.0% 36 54.3% 40.0% 5.7% 0.0% 0.0% 0.0%

make 4.73E+10 35.5% 43.6% 8.9% 4.9% 3.2% 4.0% 1,353,452,844 44.1% 41.0% 9.2% 3.2% 1.1% 1.4%

othello 121 42.3% 50.0% 3.8% 3.8% 0.0% 0.0% 121 69.2% 26.9% 0.0% 3.8% 0.0% 0.0%

sed 27,860,547 24.1% 54.5% 15.9% 3.2% 1.4% 0.9% 6,001,347 27.3% 54.5% 14.5% 2.3% 0.9% 0.5%

space 1,252 30.2% 60.4% 7.5% 0.0% 1.9% 0.0% 164 43.4% 47.2% 7.5% 1.9% 0.0% 0.0%

spell 273 30.0% 20.0% 20.0% 30.0% 0.0% 0.0% 165 30.0% 20.0% 30.0% 20.0% 0.0% 0.0%

sudoku 41,480 22.0% 47.5% 13.6% 11.9% 1.7% 3.4% 10,368 32.2% 52.5% 11.9% 1.7% 0.0% 1.7%

thttpd 17,267 28.9% 53.0% 9.6% 4.8% 2.4% 1.2% 5,768 33.7% 53.0% 8.4% 2.4% 2.4% 0.0%

time 77 57.1% 28.6% 14.3% 0.0% 0.0% 0.0% 77 57.1% 28.6% 14.3% 0.0% 0.0% 0.0%

w hich 979,887 44.8% 24.1% 13.8% 6.9% 3.4% 6.9% 1,767 44.8% 27.6% 13.8% 6.9% 6.9% 0.0%

yacr2 3,537 27.6% 49.6% 14.6% 6.5% 1.6% 0.0% 392 37.4% 52.8% 6.5% 3.3% 0.0% 0.0%

OVERALL 4.84E+18 38.1% 46.3% 10.2% 3.0% 1.1% 1.3% 4.36E+09 45.0% 45.2% 7.0% 1.7% 0.5% 0.6%

Percent of Loops with Paths Counts of ..
M ost Paths      

in Loop

Percent of Loops with Paths Counts of ..
M ost Paths      

in Loop
Program

Loop Path Count with Loops Loop Path Count without Loops

 

Table 8 breaks down the number of paths by different kinds of loop. Out of the four loop types, while(1) loops 
tend to have more paths and do loops tend to be smaller. When comparing the different classifications, traversals 
of data structures tend to have lower path counts than those that did not. Based on manual observations, most of 
the traversal functions are simple – accomplishing a single straight-forward task. Many of the loops with high 
paths counts classified as other are associated with parsing. 

There is a wider disparity in results when looking at the different types of data structure traversals (the bottom 
section of Table 6). Copy and initialize operations have very few paths. In both cases, over 85% of the loops have 
only one path. Many of these loop bodies consist of a single statement that copies or initializes the array element. 
All copy operations and all but two initialize operations have ten paths or less. Modify operations also typically 
have relatively few paths. Several have more than one path. A relatively common scenario is to selectively modify 
an element based on a condition. These loops often have two paths in their bodies – one where the loop element is 
modified and one where the loop element is not. Read operations are more mixed. The complexity depends on 
what was done with the value after it is read from the data structures – this varies from loop to loop and program 
to program. Search operations also have very few paths. Most of the loops have from two to ten paths. Typically 
there is at least one path corresponding to finding the element being searched for that iteration and at least one  
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Table 8. Loop Path Counts by Type 

1 2 -   
10

11 - 
100

101 - 
1k

1k - 
10k > 10k 1 2 -   

10
11 - 
100

101 - 
1k

1k - 
10k > 10k

do 10,056 52.2% 34.8% 9.6% 2.2% 0.9% 0.4% 735 53.9% 37.0% 7.4% 1.7% 0.0% 0.0%

for 4.73E+10 35.4% 51.9% 8.3% 2.3% 1.0% 1.1% 4.36E+09 43.5% 49.2% 5.2% 1.3% 0.2% 0.4%

w hile 4.84E+18 45.2% 35.8% 12.9% 3.9% 0.8% 1.5% 1.35E+09 51.5% 36.2% 8.8% 2.1% 0.7% 0.7%

w hile(1) 9.80E+12 0.0% 49.5% 27.8% 11.3% 5.2% 6.2% 3.04E+07 2.1% 58.8% 24.7% 6.2% 4.1% 4.1%

array 4.36E+09 41.0% 48.5% 6.9% 1.9% 0.8% 0.8% 4.36E+09 48.0% 45.6% 4.9% 0.9% 0.3% 0.3%

string 555 48.4% 42.3% 7.6% 1.7% 0.0% 0.0% 405 48.7% 43.5% 7.1% 0.7% 0.0% 0.0%

linked list 4.73E+10 36.6% 48.1% 7.3% 3.5% 2.2% 2.4% 6,002,667 47.3% 42.7% 6.2% 2.4% 0.5% 0.8%

ds: other 228 35.1% 53.4% 10.9% 0.6% 0.0% 0.0% 228 43.7% 54.0% 1.7% 0.6% 0.0% 0.0%

input 1.62E+10 19.2% 54.5% 14.1% 7.1% 1.0% 4.0% 1.35E+09 22.2% 56.6% 14.1% 4.0% 1.0% 2.0%

not over 43,830,540 4.0% 28.0% 16.0% 28.0% 12.0% 12.0% 30,352,140 8.0% 40.0% 28.0% 12.0% 4.0% 8.0%

other 4.84E+18 29.4% 39.1% 22.1% 5.5% 1.6% 2.2% 123,458,340 39.6% 42.0% 12.6% 3.7% 1.0% 1.2%

copy 7 89.7% 10.3% 0.0% 0.0% 0.0% 0.0% 6 89.7% 10.3% 0.0% 0.0% 0.0% 0.0%

initialize 28,344,976 86.7% 12.2% 0.5% 0.0% 0.0% 0.5% 28,344,976 91.0% 8.0% 0.5% 0.0% 0.0% 0.5%

modify 169 62.0% 35.7% 2.0% 0.3% 0.0% 0.0% 18 64.6% 34.7% 0.7% 0.0% 0.0% 0.0%

read 4.73E+10 26.1% 56.3% 11.6% 3.1% 1.5% 1.5% 4.36E+09 36.9% 52.0% 8.5% 1.8% 0.4% 0.4%

search 9,306 36.9% 60.1% 1.7% 1.0% 0.2% 0.0% 308 37.6% 60.4% 1.2% 0.7% 0.0% 0.0%

other 10,368 33.7% 39.8% 19.4% 5.1% 1.0% 1.0% 10,368 35.7% 49.0% 12.2% 1.0% 1.0% 1.0%

Loop Type

Loop Path Count with Loops Loop Path Count without Loops

M ost Paths      
in Loop

Percent of Loops with Paths Counts of ..
M ost Paths      

in Loop

Percent of Loops with Paths Counts of ..

 

path corresponding to not finding the element that iteration. Data structure traversals classified as other tend to 
have more paths, largely because these loops tend to use the data structures in complex and multiple ways. 

These results suggest that loops that perform copy, initialize, modify, and search data structure operations are 
loops that can be effectively analyzed and summarized due to their low complexity. The complexity of the other 
types of loops are more varied and more dependent on the functionality of the specific program. 

4.4 Loop Characteristics 

Table 9 provides a count of how many loops meet the “hard-to-analyze” characteristics described in Section 3.3. 
Table 10 shows the same breakdown but divides the loops by the number of paths while Table 11 displays the 
characteristics by type of loop. The three tables are divided into five sections: function calls, alternate exits, input, 
output, and nesting.  

4.4.1 Function Calls  
From Table 9, over half of the loops (51.3%) contain a function call. Looking at the data in Table 10, loops with 
more paths are more likely to contain a function call. Only 28.6% of the loops with one path contain a function 
call. Of the loops with 2-10 paths, 58.1% contain a function call. But when considering loops with 11 or more 
paths, 85% of the loops contain a function call. These results strongly suggest that interprocedural analysis is 
necessary in order to fully analyze loops. 

With a few exceptions, the type of loop does not seem to make much of a difference in whether a loop contains a 
function call. From Table 11, while(1), input, and not over loops have a higher percentage of loops with a function 
call. This makes sense for input loops since virtually all of them have a function call that gathers the input. 
Referring back to Table 8, while(1) and not over loops tend to be more complex with more paths. The fact that 
these type of loops have more paths is consistent with the results earlier that found that loops with more paths are 



21 
 
 

Table 9. Loop Characteristics by Program 

Input Output

Body Cond Break Return Exit Goto
barcode 71 74.6% 69.0% 19.7% 47.9% 14.1% 33.8% 1.4% 0.0% 2.8% 15.5% 8.5% 8.5%

bc 103 49.5% 48.5% 5.8% 11.7% 3.9% 4.9% 4.9% 2.9% 2.9% 5.8% 15.5% 27.2%

betaftpd 17 82.4% 76.5% 5.9% 17.6% 5.9% 5.9% 5.9% 0.0% 5.9% 5.9% 5.9% 11.8%

diff3 53 43.4% 41.5% 7.5% 34.0% 1.9% 18.9% 18.9% 3.8% 13.2% 32.1% 20.8% 35.8%

ed 72 59.7% 59.7% 4.2% 55.6% 18.1% 48.6% 0.0% 1.4% 4.2% 6.9% 16.7% 20.8%

espresso 738 38.9% 38.5% 0.9% 19.6% 5.3% 7.5% 3.1% 5.3% 2.4% 12.9% 24.5% 32.4%

find 50 66.0% 58.0% 18.0% 34.0% 18.0% 14.0% 2.0% 0.0% 4.0% 18.0% 8.0% 14.0%

flex 153 47.1% 45.1% 2.0% 20.3% 9.2% 7.2% 5.2% 5.2% 0.0% 13.7% 18.3% 27.5%

ft 23 60.9% 60.9% 0.0% 13.0% 4.3% 8.7% 0.0% 0.0% 0.0% 13.0% 17.4% 17.4%

ghttpd 20 90.0% 80.0% 60.0% 45.0% 20.0% 20.0% 5.0% 0.0% 10.0% 15.0% 10.0% 10.0%

grep 276 47.8% 46.4% 3.6% 40.6% 13.4% 25.7% 2.5% 10.5% 1.4% 0.4% 29.3% 56.2%

gzip 181 46.4% 45.9% 1.7% 17.7% 7.7% 9.4% 2.8% 1.1% 1.7% 2.8% 17.1% 29.8%

http_get 9 22.2% 22.2% 0.0% 33.3% 22.2% 0.0% 0.0% 22.2% 22.2% 33.3% 11.1% 11.1%

indent 109 51.4% 49.5% 3.7% 26.6% 17.4% 9.2% 0.0% 5.5% 7.3% 13.8% 14.7% 21.1%

ks 35 37.1% 37.1% 2.9% 17.1% 2.9% 0.0% 14.3% 0.0% 2.9% 40.0% 31.4% 37.1%

make 349 59.0% 53.0% 12.6% 29.5% 17.5% 8.0% 2.9% 6.0% 1.7% 8.0% 25.8% 34.7%

othello 26 38.5% 38.5% 3.8% 30.8% 11.5% 15.4% 3.8% 0.0% 19.2% 30.8% 34.6% 46.2%

sed 220 74.1% 72.3% 7.3% 43.2% 15.5% 28.6% 0.5% 9.5% 1.8% 3.2% 15.0% 32.7%

space 53 58.5% 56.6% 11.3% 18.9% 1.9% 13.2% 5.7% 0.0% 5.7% 35.8% 17.0% 22.6%

spell 10 80.0% 70.0% 20.0% 40.0% 20.0% 20.0% 10.0% 0.0% 0.0% 50.0% 20.0% 30.0%

sudoku 59 74.6% 74.6% 3.4% 39.0% 10.2% 32.2% 1.7% 0.0% 1.7% 16.9% 33.9% 40.7%

thttpd 83 62.7% 61.4% 12.0% 43.4% 15.7% 24.1% 7.2% 2.4% 9.6% 8.4% 19.3% 24.1%

time 7 57.1% 42.9% 28.6% 42.9% 14.3% 28.6% 14.3% 14.3% 0.0% 42.9% 14.3% 14.3%

w hich 29 44.8% 41.4% 13.8% 41.4% 27.6% 17.2% 0.0% 0.0% 6.9% 13.8% 17.2% 41.4%

yacr2 123 36.6% 36.6% 0.0% 21.1% 13.0% 6.5% 1.6% 0.0% 1.6% 18.7% 24.4% 35.8%

TOTAL 2,869 51.3% 49.3% 5.7% 28.4% 10.9% 14.3% 3.2% 4.8% 3.0% 11.3% 21.6% 32.5%

Program Num 
Loops

NestingFunction Call

Location

Alternate Exit

Contains
Yes Yes Yes Yes Has 

Nested
Is 

Nested

 

Table 10. Loop Characteristics by Number of Paths. 

Input Output

Body Cond Break Return Exit Goto
1 1092 28.9% 25.0% 6.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.5% 8.4% 2.3% 33.2%

2-10 1328 58.1% 57.2% 4.7% 40.3% 16.3% 19.1% 3.5% 4.7% 3.7% 10.2% 22.0% 33.7%

11-100 294 83.0% 83.0% 8.8% 60.9% 21.1% 37.4% 7.5% 11.2% 3.7% 18.7% 61.6% 28.9%

101-1,000 87 87.4% 87.4% 8.0% 67.8% 19.5% 31.0% 20.7% 21.8% 6.9% 27.6% 74.7% 20.7%

1,001-10,000 31 93.5% 93.5% 3.2% 58.1% 22.6% 32.3% 6.5% 32.3% 6.5% 32.3% 80.6% 25.8%

> 10,000 37 91.9% 91.9% 5.4% 62.2% 32.4% 24.3% 13.5% 35.1% 8.1% 18.9% 86.5% 27.0%

Number of 
Paths

Num 
Loops

NestingFunction Call

Location

Alternate Exit

Contains
Yes Yes Yes Yes Has 

Nested
Is 

Nested
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Table 11. Loop Characteristics by Type  

Input Output

Body Cond Break Return Exit Goto
do 230 30.9% 30.9% 4.8% 25.7% 6.1% 15.2% 2.6% 3.0% 6.1% 6.5% 15.2% 51.7%

for 1796 49.1% 48.4% 1.5% 25.1% 9.4% 10.6% 2.6% 4.6% 0.9% 12.2% 21.9% 29.5%

w hile 746 58.7% 52.8% 16.9% 27.9% 9.0% 16.9% 4.2% 3.8% 6.2% 10.1% 19.3% 35.7%

w hile(1) 97 83.5% 83.5% 0.0% 99.0% 66.0% 59.8% 9.3% 19.6% 10.3% 13.4% 48.5% 16.5%

array 1297 39.4% 39.1% 0.4% 24.2% 9.2% 11.2% 1.7% 4.6% 0.2% 9.6% 19.1% 34.1%

string 409 49.6% 41.3% 12.2% 26.4% 11.7% 13.2% 2.2% 2.4% 0.0% 6.8% 8.6% 35.7%

linked list 372 57.0% 56.7% 1.3% 22.3% 8.1% 9.9% 3.8% 1.6% 0.5% 14.8% 21.8% 29.0%

ds: other 174 58.6% 58.6% 0.0% 13.8% 2.9% 7.5% 1.7% 2.9% 0.0% 10.9% 30.5% 18.4%

input 99 81.8% 72.7% 46.5% 63.6% 25.3% 29.3% 18.2% 7.1% 75.8% 26.3% 24.2% 20.2%

not over 25 96.0% 96.0% 8.0% 48.0% 16.0% 36.0% 8.0% 12.0% 0.0% 32.0% 72.0% 12.0%

other 493 68.6% 66.9% 11.4% 42.6% 16.8% 24.9% 5.1% 9.3% 1.4% 12.8% 32.7% 36.5%

copy 107 15.9% 15.9% 1.9% 2.8% 0.9% 1.9% 0.0% 0.0% 0.0% 0.0% 1.9% 32.7%

initialize 188 17.0% 17.0% 0.0% 3.7% 0.5% 1.1% 2.1% 0.5% 0.5% 2.1% 5.3% 30.3%

modify 297 36.4% 36.4% 0.3% 4.0% 1.3% 1.3% 1.3% 0.0% 0.0% 3.0% 8.8% 34.0%

read 1158 58.8% 58.5% 1.2% 22.5% 6.6% 11.5% 2.5% 5.2% 0.3% 17.1% 28.7% 30.0%

search 404 35.9% 27.2% 10.1% 53.0% 26.7% 22.8% 1.7% 3.7% 0.2% 1.2% 4.0% 41.8%

other 98 45.9% 44.9% 2.0% 33.7% 11.2% 16.3% 4.1% 5.1% 0.0% 10.2% 31.6% 19.4%

Loop Type Num 
Loops

NestingFunction Call

Location

Alternate Exit

Contains
Yes Yes Yes Yes Has 

Nested
Is 

Nested

 

more likely to contain function calls. Similarly, copy and initialize loops tend to be simpler with few paths. Not 
surprisingly, these types of loops are less likely to contain function calls. 

The presence of function calls in the stopping condition varies widely across the different programs and can be 
attributed more to the programming style rather than the functionality of the program. One common pattern that 
was noticed was the use of the functions in the loop stopping condition when gathering file input. Examples 
include using read / fread until it returns zero and using feof to determine if the end of the file has been 
reached. As a result, 46.5% of input loops contained a function call in the stopping condition, a significantly 
higher percentage than other loops.  

4.4.2 Alternate Exits 
Looking at Table 9, just over a quarter of all loops (28.4%) contain an alternate exit with the percentages in 
programs varying from 11.7% (bc) to 55.6% (ed). By definition, none of the 1,092 loops with one path have an 
alternate exit. From Table 10, of the loops with 2-10 paths, 40.3% contain an alternate exit. But when considering 
loops with 11 or more paths, 62% of the loops contain an alternate exit. As with function calls, loop analysis will 
need to account for alternate exits. 

The most popular construct for an alternate exit is the early return, appearing in 14.3% of all loops. However, the 
prevalence of early returns varied widely across different programs. Two programs (http_get and ks) have no 
loops with an early return while barcode and ed respectively have 33.8% and 48.6% of their loops contain early 
returns. The break statement is the second most popular alternate exit construct; all programs have at least one 
loop with a break statement. The use of exits (functions that unconditionally exit the program) and gotos are less 
prevalent. Their usage is more dependent on programming style. For instance, 12 of the 25 of the programs adhere 
to good programming practices by not having any loops with a goto. 

From Table 11, all but one while(1) loop contains an alternate exit. This is not surprising since while(1) loops will 
run forever without an alternate exit. The one loop that does not have an alternate exit is in a daemon program that 
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runs indefinitely until the program is aborted. Many input loops employ alternate exits (63.6%). The primary 
purpose for the alternate exits is to handle various errors that may occur when handling input. Search loops also 
often contained alternate exits (53.0%). This is not surprising as many loops end early when the desired data is 
found using either a break or return. Loops that copy, initialize, or modify data structures rarely contain alternate 
exits. These operations commonly do not have the need to use alternate exits. For instance, it is not typical to copy 
only part of an array and then exit.  

One factor in the use of alternate exits is the role of sanity checking / error checking. Some programs have 
extensive checking manifesting in more loops with alternate exits in loops. Others had little to no checking within 
the primary functionality of the program. When analyzing loops and programs in general, a decision must be 
made in how to handle sanity checks. 

4.4.3 Input    
Using the data from Table 9, only 3.0% of all loops contain an input system call . Not surprisingly, most of these 
loops are classified as input loops in Table 11. Only 12 of the 2,770 loops (0.4%) not classified as input contained 
an input system call. One conclusion is that being able to handle input system calls is not important except in 
loops that are explicitly used to get input.  

4.4.4 Output 
Output system calls are found in 11.3% of the loops as shown in Table 9. The percentage of loops with output 
varies across programs largely based on how much output a program is capable of producing and how frequently 
a program prints error and/or debugging messages. Loops with more paths are more likely to contain an output 
statement. Some of these loops have the specific goal of producing formatted output with many paths based on 
options specified by the user. Others are simply complex loops that happen to print an error or debug message 
somewhere in the body. Input and not over loops are more likely to contain output statements than other types of 
loops while loops that copy, initialize, modify, or search data structures are less likely to contain output 
statements. 

4.4.5 Nesting 
From Table 9, roughly one of every five loops (21.6%) contains a nested loop. Nearly a third of all loops (32.5%) 
are nested within another loop. The maximum loop depth is four (quadruple nested loops). There are 16 quadruple 
nested loops, 93 triple nested loops, and 511 doubly nested loops. Using the data from Table 10, loops with more 
paths are more likely to contain a nested loop while loops with fewer paths are more likely to be nested within 
another loop.  

When analyzing Table 11, not many correlations can be based on the type of loop with respect to nesting. String 
traversal loops and loops that copy, initialize, modify, or search data structures in general contain nested loops less 
often than other loop types while not over loops contain nested loops more often. Loops that search data 
structures and do loops are more likely to be nested in other loops than other loop types. 

It is difficult to draw conclusions from this data. More analysis is needed to determine how closely coupled the 
nested loops are with respect to one another. For example, the two loops that traverse a two-dimensional array are 
closely coupled. This coupling is an important factor in how nested loops are analyzed; further analysis in this 
area is left as future work.  

  



24 
 
 

5. Threats to Validity 
This section describes some shortcomings that are not addressed in this study. First, the use of paths in the loop 
body is not necessarily the most accurate measure of its loop complexity. The path count only captures 
complexity associated with the control within the loop (or more generally within the function). It does not capture 
complexity associated with data operations and dependencies, especially dependencies across different loop 
iterations. Data dependencies are often measured separately such as the Halstead effort measures [8] that measure 
complexity based on the number of operands and operators. Developing a complexity metric that captures both 
control and data dependencies is challenging due to the variety of program analysis techniques that can be 
employed. The most accurate measure of complexity would be tied to the program analysis technique being used 
such that it captures the strengths and weaknesses associated with that technique. 

The goal of this study is to show the maximum benefit of using loop-separate analysis. In the ideal case, the loop 
summary does not introduce any paths. In practice, this is not necessarily the case. Consider a pointer analysis that 
is checking for NULL pointer dereferences. The resulting loop summary may be of the form: 

if (condition that causes p to be NULL)  
  p is NULL 
else 
  p is not NULL   

The path-based analysis may wish to process the loop summary by separating the two cases into two paths: one 
where p is NULL and one where p is not NULL. Furthermore, the condition that causes p to be NULL may be 
complex to the point where it is desirable to create even more paths. There is a trade-off between analyzing fewer 
but more complex paths and analyzing more paths that are less complex. Exploring this trade-off is left as future 
work – it is highly specific to the particular analysis and its goals. To further improve performance, it is possible 
to create approximate loop summaries that are less complex but create imprecision in the overall analysis. 

6. Related Work 
Several research groups have worked on analyzing loops in programs using various forms of static analysis. 
Kovács and Voronkov [9] describe how to find loop invariants, expressions that are true throughout the loop, for 
loops involving arrays. Martel [10] unrolls loops using partitioning in order to increase the precision of invariants 
found. This unrolling technique is most applicable to numerical programs where arithmetic errors can accumulate 
over several iterations of a loop. Flanagan and Qadeer [11] developed a predicate abstraction technique to 
determine loop invariants. Lokuciejewski et al. [12] present a static analysis that computes loop iteration counts. 
The analysis is interprocedural but uses slicing to eliminate code not relevant to the loop. Kirner [13] implements 
a technique for automatically determining the lower bound and upper bound for the number of loop iterations. 
While it effectively handles difficult programming constructs such as alternate exits, it does not handle nested 
loops. Burnim et al. [14] use an on-the-fly symbolic execution engine to determine if a program is currently 
executing an infinite loop. 

Another direction for loop analysis is to recognize common loop patterns. White and Wiszniewski’s SILOP tool 
[15] identifies simple loop paths – paths that iterate through a single loop a variable number of times. By altering 
this parameter, a simple loop pattern is created and used to assist in testing. The array checker ARCHER [16] 
identifies loops that iterate a constant number of times and iterator loops. Hu et al. [17] describe a technique that 
squashes loops of a particular canonical form, replacing them with a single non-looping statement. This technique 
was used to reduce the size of slices but also could be used in other program analyses. Ngo and Tan [18] detect 
illegal paths by recognizing patterns. The “looping-by-flag” pattern matches while loops that stop when a flag 
variable is set. Paths that meet certain conditions will be deemed infeasible. Binkley et al. [19] propose 
transformations for looping-by-flag loops with the goal of improving search-based testing techniques. 
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One way to analyze loops separately is to generate a summary that captures the behavior of the loop. Godefroid 
and Luchaup [4] developed a technique that automatically creates partial loop summaries that consist of a loop 
precondition and postcondition. The summaries are used in automatic test generation. Abd-El-Hafiz and Basili [5] 
created a knowledge-based approach to creating loop summaries. First, loops are divided into fragments based on 
data flow. Then, annotations are created for each fragment. Finally, an annotation that summarizes the whole loop 
is synthesized from the individual fragment annotations. A novel aspect to their approach is that the analysis used 
differs based on a classification of a loop. Kroening et al. [6] developed LoopFrog, a tool that uses abstract 
symbolic transformers to infer loop invariants in creating loop summaries permitting loop-free program analysis. 
In addition, many research groups [2, 21, 22, 23, 24] have developed techniques for creating summaries for 
procedures. 

Symbolic execution [1] is a common analysis technique employed in bug detection tools. Such tools must have a 
solution for loops. Popular tools like PREFix [2] and Symbolic Java PathFinder [3] both place limits on the 
number of iterations. PREFix places the limit by stopping execution when a user-defined limit of paths has been 
simulated in the function. Symbolic Java PathFinder restricts the underlying model checker’s search depth and 
also restricts the number of constraints associated with a particular path. In loop-extended symbolic execution 
[24], symbolic variables that represent the number of loop iterations are introduced. Using these variables, they 
can find other variables that are linearly dependent on the iteration count. Symbolic execution is also used in 
automated test generation including CUTE [25] and Pex [26].  

Our previous research [27] analyzes the paths in programs and examines the effect program slicing has on the 
path count. Most functions have few paths but slicing does not sufficiently reduce path counts on the functions 
that do have many paths. Other program analysis studies include the work by Gabel and Su [28], which explores 
the uniqueness of source code by analyzing over 6,000 software projects consisting of 420 million lines of code. 
At granularities of one to seven line chunks, they found software to generally be similar. Harman et al. [29] 
developed a theory surrounding the merging of nodes in the control flow graph and how it applies to program 
slicing. A similar analysis could be applied to our technique as we are essentially merging nodes from a loop into 
one node that captures the loop behavior. Das et al. [30] and Dillig et al. [31] describe sound and efficient path-
sensitive analyses. Both use their analyses to find temporal safety properties such as null dereference checks and 
file errors. Ball and Larus [32] developed a path profiling algorithm that computes how frequently acyclic paths 
are executed. 

To estimate the complexity of loops, we used the path count. Cyclomatic complexity [33] is a popular path-based 
complexity metric. Henry et al. [34] found that cyclomatic complexity is highly correlated with Halstead’s effort 
metrics [8] based on the number of operands and operators in a function. CodeSurfer [7] and Understand [35] 
compute several control-based and data-based complexity measures. 

7. Conclusions and Future Work 
This paper presents results from a study that explores the potential of analyzing loops separately. When using 
loop-separate analysis, many functions saw a significant reduction in the number of paths. This suggests that 
using loop-separate analysis could improve the performance of program analysis since fewer paths would need to 
be explored. However, more work is needed using an actual analysis that employs loop-separate analysis to fully 
determine to what extent performance improvements are possible. For the most complex functions, using loop-
separate analysis was not sufficient to eliminate the sheer number of paths that occur in these functions. These 
functions have significant complexity outside loops from other control statements including a few complex 
functions with no loops at all. 

To assess the potential challenge of analyzing loops, each loop was inspected and analyzed individually. On the 
plus side, most loops are short and are traversing common data structures. Many of these short loops contain few 
programming constructs that make analysis difficult. However, loops that have more paths are more likely to 
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contain hard-to-analyze programming constructs especially function calls, alternate exits, and nested loops. Of the 
hard-to-analyze features, over half of the loops contain a function call, meaning that some level of interprocedural 
analysis is necessary for loops to be properly analyzed. 

There are several directions for future work. One direction is to apply these analyses to programs written in other 
languages such as Java or C++. These languages have standard libraries for data structures. Consequently, 
programmers may be more likely to use a provided function as opposed to writing a loop. On the other hand, 
these languages also implement exception handling – another feature that makes program analysis challenging. 

Another direction is to actually implement the main idea in the paper of analyzing loops separately within 
symbolic execution to determine how well loops can be summarized. A study could explore the trade-off of 
analyzing fewer paths that are more complex versus more paths that are less complex. 

A broader direction for this work is exploring the appropriate “unit” of program analysis. Many tools already 
break the program into functions and analyze them separately using rudimentary interprocedural analysis. This 
division is necessary in that the analysis does not scale interprocedurally. Similarly, some large complex functions 
cannot be analyzed because they contain too many paths. Can large complex functions be broken into different 
“units” of analysis to make the analysis feasible while maintaining the soundness of the analysis? This paper 
presents just one possible way of doing that – analyzing loops separately. 
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