
Appears in ISPASS-2001.
MASE: A Novel Infrastructure for Detailed Microarchitectural Modeling

Abstract
MASE (Micro Architectural Simulation Environment) is a
novel infrastructure that provides a flexible and capable
environment to model modern microarchitectures. Many
popular simulators, such as SimpleScalar, are predomi-
nately trace-based where the performance simulator is
driven by a trace of instructions read from a file or gener-
ated on-the-fly by a functional simulator. Trace-driven
simulators are well-suited for oracle studies and provide
a clean division between performance modeling and func-
tional emulation. A major problem with this approach,
however, is that it does not accurately model timing
dependent computations, an increasing trend in microar-
chitecture designs such as those found in multiprocessor
systems. MASE implements a micro-functional perfor-
mance model that combines timing and functional compo-
nents into a single core. In addition, MASE incorporates a
trace-driven functional component used to implement
oracle studies and check the results of instructions as they
commit. The check feature reduces the burden of correct-
ness on the micro-functional core and also serves as a
powerful debugging aid. MASE also implements a call-
back scheduling interface to support resources with non-
deterministic latencies such as those found in highly con-
current memory systems. MASE was built on top of the
current version of SimpleScalar. Analyses show that the
performance statistics are comparable without a signifi-
cant increase in simulation time.

1. Introduction
Computer system simulation is a vital technology in the
computer system design cycle. The flexibility to quickly
update software simulation models speeds the evaluation
of design changes, permitting architects to explore large
portions of the design space. Software modeling infra-
structure also decouples hardware and software design
efforts so that software development may proceed in par-
allel with hardware design, thereby reducing time to mar-
ket for products with hardware and software components.

A microprocessor performance model is a software repre-
sentation of a hardware design. It tracks the timing of
instructions and data through the processor pipeline and
memory system. Very detailed performance models may
also include I/O device models such as disks and network
interfaces. It is important for the performance model to be
closely matched to the hardware that is being emulated.
An inaccurate model can lead to incorrect or misleading
research results [7].

Figure 1 illustrates a trace-driven modeling infrastructure,
the most prevalent simulator organization. The perfor-
mance model is driven by an instruction trace that repre-
sents the dynamic stream of instructions executed for a

specific processor architecture and workload. Traces are
either read from a file [23], created by instrumented hard-
ware [1], or generated on-the-fly by emulating a program
[15]. SimpleScalar [6], SMTSIM [24], and VMW [8] are
some examples of trace-driven simulation infrastructures.
We use a broad definition of trace-based simulation. We
consider any simulation environment that decouples cre-
ation of the dynamic instruction stream from the model
that computes timing to be trace-based.

Techniques that use external trace files lack a functional
simulation component. Since most trace files only contain
the non-speculative instruction stream, performance mod-
els based on trace readers typically do not model mispecu-
lation, that is, the instructions that are executed in the
shadow of mispredicted branches, addresses, and instruc-
tion values. This can create large inaccuracies in the per-
formance models; recent studies have shown that
mispeculation streams provide instruction and data
prefetching that is beneficial [9,21]. Moreover, mispecu-
lation reclamation techniques such as instruction reuse
[19] and the misprediction recovery cache [5] cannot be
modeled using external trace files. One advantage of
external traces created from real hardware is that they can
include operating system code and interrupt routines.
Embedding this information into a trace allows these seg-
ments to be included without building a full-system simu-
lator.

Dynamic trace generation provides the additional flexibil-
ity to model mispeculation by providing an interface for
the performance model to direct the instruction emulator
to compute mispeculation (as shown by the dashed line in
Figure 1). The primary advantage of this simulation
approach is that it provides a clean division of infrastruc-
ture for performance modeling and instruction set emula-
tion (or trace processing). However, there are many
drawbacks to this infrastructure that make it increasingly

Eric Larson
larsone@eecs.umich.edu

Saugata Chatterjee
saugata@sandcraft.com

Todd Austin
austin@umich.edu

Advanced Computer Architecture Laboratory
Electrical Engineering and Computer Science

University of Michigan

Figure 1: Organization of a trace-driven simulation
environment. Instructions are supplied by a trace generator to a
performance model that represents a detailed microarchitecture.

Performance Model

Trace
Generator IF ID CT

Memory

Reorder Buffer

ALU

Instruction

Mispeculation

stream

Initiation / recovery
1

difficult to accurately model sophisticated, new microar-
chitectures.

Instruction streams can become inaccurate when they
contain timing dependent computation, that is, computa-
tion whose inputs (and thus the result) are dependent on
when the instruction executes. An example of a timing
dependent computation is an instruction that is subject to
value prediction in the execute stage.1 We assume that the
scheduler of the processor will schedule instructions that
have all of their operands first. If there are available func-
tional units after all of the ready instructions are executed,
the scheduler will attempt to predict the outcome of an
instruction (at the execute stage) based on previous
instances of the instruction. This approach would seem to
be a good one. Accessing the value prediction table as late
as possible would result in higher prediction accuracy.
Moreover, only accessing the table when needed would
result in less power. The result of the instruction is depen-
dent on when the instruction executes because it may get
its value from the value prediction table or from its proper
inputs. It is impossible to tell what the precise value is
until the instruction is actually executed. Furthermore, if
the value prediction is incorrect, the incorrect value is
important because it may be an address that subsequently
misses in the cache which could further affect the running
time of the program. Accurate modeling of the mispecu-
lated path is important since it competes for resources
with the non-speculative instruction stream, which may
cause additional cache misses or prefetch requests and
affect the state of various predictors. It is our belief that
the trend in microarchitectures is toward more depen-
dence and speculation optimizations such as value predic-
tion [12], instruction reuse [19], and speculative value
coherence [11], making the accurate modeling of timing
dependent computation crucial to design-time emulation.

The alternative to trace-based techniques is to employ a
micro-functional performance model that not only times
the activities of the program but also executes the pro-
gram at that time, thereby reproducing the execution and
timing of the program in a fashion identical to the simu-
lated hardware. This approach can lead to more accurate
models, an observation that is well recognized by archi-
tects and simulator developers [7]. However, most high-
level simulation infrastructures remain trace-based due to
two important drawbacks in micro-functional perfor-
mance models. The first drawback comes from the cou-
pling of timing and correctness. If the micro-functional
performance model is incorrect in any way, the simulation
can fail. While this exposes errors more readily in the
functional model, this is not always the ideal design sce-
nario. Inaccuracies may be the result of ongoing simula-
tion development where details are left out because they
were determined to be secondary. For instance, the for-
warding of partial store values (e.g. a byte store forwarded
to a word load) is a case that is complicated to get com-
pletely correct but happens so infrequently the overall

impact on performance is negligible. Trace-driven models
are more tolerant of infrequent inaccuracies because they
don’t fail, and if the inaccuracies are infrequent, the over-
all simulation remains accurate. The second drawback
with micro-functional performance models is that the sim-
ulation approach does not lend itself to oracle studies.
Instruction inputs, results, and next PC values are not
known until the instruction executes. For oracle studies,
such as perfect branch or address prediction, not having
this information earlier in the pipeline prevents perfor-
mance bounds studies.

In this paper, we present MASE (Micro Architectural
Simulation Environment), a novel performance modeling
infrastructure that is built on top of the popular SimpleS-
calar toolset [6]. We address many of the drawbacks
present in SimpleScalar that make it difficult for research-
ers to accurately model features present in complex high-
performance microarchitectures. The goal of MASE is to
provide a flexible infrastructure to researchers that they
can use to create accurate models of the hardware they are
studying. We provide four enhancements to the current
implementation of SimpleScalar: (i) an oracle and checker
that allows performance bound studies and removes the
burden of correctness from the simulator core, (ii) a
micro-functional core that increases modeling accuracy,
(iii) fine-grain state management facilities that simplify
the implementation of control and data speculative opti-
mizations, and (iv) an interface to support resources with
non-deterministic latencies.

MASE possesses all the benefits of trace-based modeling,
by decoupling model accuracy from simulator correctness
and providing extensive support for oracle studies. We
implement our new simulation strategy by combining a
micro-functional performance simulation infrastructure
with a trace-driven oracle execution unit. The oracle exe-
cution unit executes instructions at the front end of the
simulated processor pipeline, producing instruction infor-
mation suitable for directing perfect speculation and other
oracle studies. The burden of correctness is lifted from the
performance model through the use of a checker execu-
tion component at the retirement stage of the performance
model. Instruction results are checked as they retire into
the architected state of the machine, and if they do not
match those computed by the oracle, the performance
model is flushed and restarted with correct simulation
state. The checker provides a powerful model validation
mechanism as well as a backup source of reference
semantics that incomplete or inaccurate performance
models may rely on to correctly complete any instruction.
At the core of MASE is a micro-functional performance
model; instructions are not only timed but executed in the
core, accurately modeling timing-dependent computation.

We added to SimpleScalar a flexible speculative state
management facility that permits restarting from any
instruction. The current version of SimpleScalar only
allows a single branch instruction to mispeculate and
force a restart. The ability to restart from any instruction
allows optimizations such as load address speculation and
value prediction to be implemented. In these optimiza-
tions, instructions other than branches could be mispecu-
lated, making it necessary to restart at the offending
instruction. This approach also simplifies external inter-

1. This example is based on work done by Calder et. al. [4]. The main
difference is that the value prediction table is accessed in the fetch stage
in their implementation while it is accessed in the execute stage in our
example.We tried to find a real example of timing dependent value pre-
diction from the literature but could not. The lack of any example is
likely the result of deficiencies in existing simulation infrastructures.
2

rupt handling since any instruction could follow an inter-
rupt request, forcing a rollback. The checker also uses this
mechanism to recover from any errors that are detected
since any instruction could potentially cause an error.

In addition, MASE addresses another deficiency in Sim-
pleScalar by providing an interface to model components
with non-deterministic latency. Modern DRAM systems
can reorder requests to reduce the overall access time,
allowing later requests to affect the access time of the cur-
rent request. In MASE, a callback interface is used that
allows the memory system (or any resource) to invoke a
callback function once the memory system has deter-
mined an operation’s true latency. The callback interface
provides for a more flexible and accurate method for
determining the latency of non-deterministic resources.
Several simulation infrastructures, such as RSIM [16] and
SMTSIM [24], already provide this capability.

The remainder of the paper is organized as follows. The
design and implementation of MASE is described in Sec-
tion 2. Section 3 gives results from detailed analyses of
our implementation. This was done by comparing the
MASE model against the SimpleScalar baseline perfor-
mance model (sim-outorder), comparing its accuracy and
simulation speed. We also present a case study that
explores the implementation of a blind dependence specu-
lation technique, a speculation technique that cannot eas-
ily be implemented without these new facilities. Section 4
discusses related work. Section 5 concludes and suggests
additional work.

2. MASE modeling architecture
This section describes the architecture of MASE’s perfor-
mance model. A high-level view of the new architecture
is shown in Figure 2. The following sections describe
each of our key additions in more detail: the oracle and
dynamic checker, the modernization of the performance
model, the micro-functional performance model, the abil-
ity to restart from an arbitrary point, and a callback inter-
face that supports non-deterministic resource latencies.

2.1 Oracle and checker execution component
The oracle sits in the fetch stage of the pipeline and exe-

cutes instructions in program order. The oracle is a func-
tional emulator as it does not model any timing. The
oracle contains its own register file and memory. To mini-
mize the overhead, the oracle does not have a separate
copy of memory but uses a hash table that contains all
new values that have not been committed to architectural
memory (all store values currently in the pipeline). Oracle
loads are implemented by initially looking at the memory
table. If there is a hit in the table, the value from the table
is used. If there is a miss, architectural memory is
accessed to obtain the value. Stores are executed by sim-
ply adding an entry to the oracle memory table. When an
instruction is executed, the oracle state is updated and the
result of the instruction is stored in the instruction state
queue (ISQ) as shown in Figure 2. This queue serves sev-
eral purposes. It holds data computed by the oracle that is
used by the checker to verify that the instruction executed
correctly. The data can also be used to facilitate perfor-
mance bounds studies where correct data is needed. The
queue serves as a record of executed instructions in case a
recovery is necessary due to a branch misprediction or
some other event. The oracle must always be synchro-
nized with the fetch stage of the microarchitectural model,
as a result, if instructions are flushed from the microarchi-
tectural model, the oracle must also flush state. Since any
instructions could potentially cause an error within the
checker, the oracle and microarchitecture must have the
ability to rollback from any instruction as described in
Section 2.4.

Figure 3 shows an example of how the instruction state
queue and oracle state is updated. The head of the queue
contains the oldest instruction in the machine (the next
instruction to commit) and the tail of the queue points to
the next available entry. For each address in the oracle
memory hash table, there is a linked list of values with the
most recent store at the head of the list. In the example,
there are two stores to address 0x500. The most recent
store to this address wrote the value of 5; so it appears
first. It is not sufficient to overwrite the previous value of
8 because the branch instruction between the two stores
may mispredict causing a removal of any entries that
occur after the branch (the store of 5 to address 0x500 in
this case). When the store to address 0x514 is committed,
architectural memory is updated and the corresponding

Figure 2: Block diagram of the new performance model infrastructure. The oracle executes instructions in advance and the results
are stored in the ISQ so they can be checked by the checker when the instructions commit. The memory interface supports a callback
interface to handle non-deterministic memory latencies. The functional units execute the instruction instead of just returning a latency.

ALU

ALU
FPU

IF ID

Checker

CT

Oracle

Memory simulator

Reorder Buffer (ROB)

Instruction State Queue (ISQ)

callback
interface
3

entry is removed from the hash table. If a load attempts to
access an address not in the hash table (address 0x504 for
example), it will initially look in the hash table. After it
discovers it is not there, architectural memory is accessed.

The oracle register file is stored in an array. It contains the
latest write to all registers. In the example in Figure 3,
register 3 has a value of 5. Unlike memory, it contains val-
ues for all of the registers, so it is only necessary to access
the oracle register file. Mispredictions are also handled
differently. If a branch is mispredicted, the architectural
register file is copied into the oracle register file and the
instruction state queue is scanned, from the head to the
mispredicted branch, looking for instructions that write
registers. If an instruction writes a register, it will update
the register in the oracle register file with the appropriate
value. This scanning process can recreate correct register
state for any point in the dynamic instruction stream.

Oracles are commonly used to provide “perfect” behavior
to do studies that measure the maximum benefit of an
optimization. A common case of this is perfect branch
prediction where all branch mispredictions are eliminated.
In order to provide this capability, the oracle resides in the
fetch stage so it knows the correct next PC to fetch. When
executing an instruction, the oracle also serves as a
decoder in the sense of extracting various information
about the instruction such as the type of instruction or
branch target. To minimize the running time of the simu-
lation, the oracle saves the decoding information and
passes the information along to the dispatch/decode stage.

The checker monitors all instructions that are committed,
correcting any incorrect results due to model bugs or inac-
curacies. The results of an instruction are passed along
with the instruction until it is committed. The checker will
compare these results with the results obtained by the ora-
cle in the front-end of the machine. If the results match,
the result will be committed to architectural state and the
simulation will progress as normal. If the results do not

match, the oracle result will be committed to architectural
state and a recovery will be initiated. The remaining
instructions in the pipeline are flushed and the front-end is
redirected to the next instruction. The instruction with the
bad result is allowed to commit (with its result corrected)
in order to ensure forward progress. This policy is used
because, depending on the nature of the error, the bad
instruction may repeatedly get the same error if it is re-
executed, causing livelock in the simulation. Some
instructions are non-speculative and have non-determinis-
tic values, i.e. shared memory loads that are subject to
race conditions. The results of these instructions can dif-
fer with the checker. These instructions are marked as
such and if their result differs from the checker, the value
from the micro-functional core will be regarded as correct
and used to synchronize the checker.

The checker may be used in several different ways. The
first way is to verify that any changes or enhancements to
the simulator code are indeed correct. Since not all errors
directly cause an error in the output, it provides extra
security that a model enhancement did not violate any
microarchitectural dependencies or program semantics.
Another advantage is to allow the checker to handle tricky
infrequent corner cases to save programming time. For
example, it is difficult to program all of the cases involv-
ing partial store forwards where the base addresses are
different. Instead of adding code to handle this situation,
the checker can detect the error and recover from that
point. If the event is rare, the effects on the overall perfor-
mance will be negligible. A third use is to have the
checker be part of the microarchitecture itself. Dynamic
on-chip verification is being investigated to reduce the
burden of correctness in modern microarchitectures [2].
For these cases, the number of errors detected by the
checker provides a measure of quality for the microarchi-
tecture and its implementation in software. Fewer errors
indicates a more complete microarchitectural core or a
more well-behaved simulator. This can be useful when
comparing aggressive microarchitectures.

Architectural
Register File

Oracle
Register File

Architectural
Memory

Oracle
Memory

0 0 0 0 0x500 3
1 4 1 4 0x504 8
2 9 2 8 0x508 10
3 2 3 5 0x50c 0
4 1 4 1 0x510 37
5 6 5 6 0x514 2

Figure 3: Example of oracle state and instruction state queue. The instruction state queue holds the instructions that currently reside
in the pipeline and is used to check the results when the instruction is committed. The oracle memory is stored as a hash table and only
contains values for stores that are in the pipeline.

LDQ STQ BEQ LDQ STQ

0x5000x5000x5000x500 --

-- ----

--

23

8855

op

addr

result

dest_reg

HeadTail

STQ

0x508

--

13

STQ

0x514

--

84

Instruction State Queue (ISQ)

0x500

5

8

0x514

84

0x508

13
4

2.2 Modernization of the performance model
MASE also includes several enhancements to the baseline
performance model that capture several trends in microar-
chitecture. The register update unit (RUU) has been
removed and replaced with reservation stations and a
reorder buffer (ROB). Reservation station entries and
reorder buffer entries are allocated when the instruction is
dispatched. Dispatch is stalled if there are no reservation
station or reorder buffer entry available. The reservation
station entry is reclaimed when the instruction issues and
the reorder buffer entry is reclaimed when the instruction
commits.

The scheduler now includes a queue that instructions must
wait in before entering a functional unit. The number of
cycles an instruction must wait is a user-specified parame-
ter. The scheduler will predict the latency of any variable
latency instruction (such as a load), thereby speculating
on when functional units will become available. If the
latency prediction is too small, instructions are removed
from the scheduler queue and are replayed when it is safe
to do so. Options exist to do this by either flushing the
entire scheduler pipeline or by only squashing dependent
instructions.

Similarly, a delay has also been added to the fetch queue.
Instructions cannot dispatch until they have been held in
the fetch queue for a set number of cycles. This combined
with the scheduler queue improves the accuracy of
misprediction modeling in MASE. In SimpleScalar, there
is only one delay element that was attached to the begin-
ning of the fetch stage and all mispredictions were subject
to the same delay regardless of the location of the mispre-
diction. This approach is not accurate since mispredic-
tions that are signalled earlier in the pipeline will have a
smaller delay than mispredictions that are signalled later.
For example, misfetches are signalled in the dispatch
stage and are only subjected to the fetch queue delay.
Branch mispredictions are signalled at writeback and are
subject to both the fetch queue delay and scheduler queue
delay. Front-end queue delays can be increased to simu-
late additional stages in the front-end pipeline.

2.3 Micro-functional performance model
The current version of SimpleScalar has no infrastructure
for micro-functional simulation. Instructions are executed
using an oracle in the dispatch stage - input values are
read directly from architected state and results are written
back right away. Values do not propagate through the
pipeline and there is no notion of architectural storage,
unlike true microarchitectures. The models of the various
microarchitectural features in the current version of Sim-
pleScalar concentrate exclusively on timing and perfor-
mance aspects, and ‘true’ execution in the micro-
architecture is not modeled at all.

MASE models execution as it would be in a real microar-
chitecture. At dispatch, new instructions get reservation
stations and reorder buffer entries allocated. Register
renaming takes place and input operand values are either
obtained from architectural storage or from a ‘completed’
creator’s reorder buffer entry and written into the instruc-
tion’s reservation station. If the creator of an operand has
not completed execution, the instruction is attached to the

dependence chain of the creator, and it gets its operand
value when the creator completes execution. When all
input operands of the instruction are ready, it is put into
the ready queue. The issue stage attempts to issue instruc-
tions from the ready queue depending on the availability
of functional resources. It is at this point that the actual
execution of the instruction takes place. Input values for
the instructions come from reservation station entries and
the result is written to the reorder buffer entry. The
instruction is entered into an event queue from which it
will emerge as a completed instruction when the required
amount of latency for executing the instruction has
passed. During the commit stage, completed instructions
are committed in-order and the results of instructions
become visible at architectural storage.

The micro-functional performance model allows for for-
warding of values from completed stores to waiting loads
using a load-store queue (LSQ). We have not imple-
mented partial store forwarding, the case where a store
produces only part of the value used by a later load. There
is indeed a possibility that a load ends up with a stale
value because we do not have complicated overlapping
address checks in the LSQ. Since such situations occur
rarely in practice, we decided that should such an event
arise, we will address the deficiency by letting the checker
capture and correct the error instead of implementing the
complicated but rarely used circuitry needed for partial
store forwards. We confirmed this result for the SPEC
benchmarks in Section 3.3.

2.4 Recovery from any instruction
In the current version of SimpleScalar, branches are the
only instructions that can cause mispeculation. A branch
misprediction causes a speculation mode bit to be set.
When this bit is set, certain data structures are not
updated, eliminating the need to provide a rollback mech-
anism. This implementation has two major deficiencies:
(i) it prevents speculative optimizations, such as blind
load speculation, where it is impossible to determine if a
recovery will occur until the later stages of the pipeline
and (ii) it increases the inaccuracies in the mispeculation
modeling since data structures are not updated during a
misprediction.

MASE addresses these deficiencies by adding rollback
mechanisms for several data structures throughout the
machine. This includes updates to the ROB, rename table,
and branch predictor. The oracle and checker also need to
be synchronized so the instruction state queue, oracle
memory, and oracle register file also have rollback mech-
anisms. All of these structures will continue to be updated
even if the instructions are executed speculatively,
increasing the accuracy of mispeculated instructions.
When a misprediction occurs, a recovery occurs by
restarting the fetch engine with the proper PC and rolling
back the data structures to the appropriate point.

The rollback mechanism is illustrated by an example
describing our implementation of the rename table. The
rename table is used to break false register dependencies
by keeping track of the latest creator (instruction that last
created/wrote a value) for each logical register. In our
implementation, each entry includes a linked list of all
instructions that currently reside in the pipeline and create
5

a value for the logical register. The head of the list points
to the most recent creator in the pipeline. When an
instruction that created a register value is committed, the
corresponding entry is removed from the rename table.
During a recovery event, the linked lists are scanned.
Entries that refer to instructions that were squashed during
the recovery are removed. Since the linked lists are
ordered by position in the pipeline, once an entry is found
that corresponds to an instruction that survived the recov-
ery, the search can be terminated for that logical register.

2.5 Support for non-deterministic latencies
MASE provides a callback interface for resources that
have non-deterministic latency. The callback mechanism
was used to update the memory interface in SimpleScalar.
Currently, any call to the memory interface returns a
latency value immediately for that particular operation.
This is not strictly an accurate reflection of modern day
memory systems, where the actual latency for a particular
access might not be immediately known. For example,
DRAM systems typically have a page cache that saves the
last page accessed in the memory, eliminating the row
access time in subsequent requests to the same page.
Assume that requests access pages in the following order:
A, B, A. Since an access to page A was first, page A will
reside in the page cache. If the second request to page A is
seen before the access to page B is initiated, the memory
system can reorder the memory requests so the second
access to page A comes before the access to page B. This
significantly speeds up the access time for page A since
page A was already in the page cache, but it slows down
the access to page B since it has to wait for the additional
memory access. The memory interface in SimpleScalar
requires a latency to be returned immediately after the
memory request is sent. This is not sufficient in the sce-
nario described above because it is not known if there will
be another memory access to page A before page B gets
to access memory, thus the true latency is not known
immediately. The actual latency is only known when the
DRAM memory component is accessed.

In MASE, calls to the memory interface return two values
- status and latency. The status can be of three types -
mem_known, mem_unknown or mem_invalid. If the status
returned is mem_known, then the memory system was
able to determine the latency of the operation (most likely
due to a L1/L2 hit) and returns that latency immediately.

If the status returned is mem_unknown, the memory sys-
tem is indicating that it will handle the request but the
latency cannot be determined at this point in time. One of
the parameters passed to the memory call is a callback
function, which will be invoked by the memory system
when the latency has been determined. There are different
types of callback functions for different types of memory
accesses. For instruction cache misses, the fetch stage is
blocked indefinitely. The callback function notifies the
fetch stage how much longer the operation will take so the
fetch can be unblocked at the appropriate time. For store
data cache misses, the latency is ignored because the store
data is either in the cache or in the writeback buffers;
either can be read if required. For load data cache misses,
there is a table that keeps track of callback memory
requests. Each entry in the table contains a unique index
and a reservation station entry. When the callback func-
tion is invoked, it scans the table for a matching index. If
it finds the entry and it is still valid (the entry could be
invalidated if it was squashed), it schedules a writeback
event for the load with the given latency (see Figure 4).
Finally, if the status returned is mem_invalid, it means that
the memory system cannot immediately handle this
request for some reason (for example, a full buffer). In
instruction cache accesses, the fetch stage is blocked and
we keep retrying until it gets a different status. We do the
same for store data cache accesses - block the commit
stage and keep retrying. Loads that cannot access the data
cache are not scheduled to execute. The simulator will
attempt to schedule the load each cycle until it gets a sta-
tus of mem_known or mem_unknown.

3. Early analyses
This section describes some analyses we have done with
MASE. We compare our infrastructure to the current ver-
sion of SimpleScalar to compare the performance and
running time of the two simulators. In addition, we ana-
lyze the benefits of the dynamic checker and look at blind
load speculation, a study that would be difficult to imple-
ment with the current release of SimpleScalar.

3.1 Simulation methodology
We used the SPEC95 integer benchmarks, compiled for
the Alpha ISA using the Compaq C (version 5.9) and For-
tran (version 5.3) compilers using full compiler optimiza-
tion (-O4). The train input set was used for all

1. Load is executed.
2. Call to memory system with unique request id (rid) 5.
3. Unknown latency, so mem_unknown status is returned.

4. Memory system determines latency (15 cycles).
5. Callback function is invoked with the latency value.
6. The load is scheduled to writeback.

Figure 4: Processing a load with non-deterministic latency. This diagram shows the steps of the execution for a load that requires use
of the callback mechanism.

1
2

4

5

6

Performance
Simulator

Memory
System

Execute load
cache_access(callback = cb_fn, rid = 5)

Determine
latency

cb_fn(rid = 5, lat = 15)

Schedule writeback for load

3 Return mem_unknown
6

experiments. The benchmarks were simulated to comple-
tion or for a maximum of 250 million instructions. The
baseline SimpleScalar peformance model is sim-outorder
from SimpleScalar/Alpha version 3.0 (the most recent
release as of this writing).

The simulation configuration models a modern out-of-
order processor microarchitecture. The processor model
executes user-level instructions, including execution
down any speculative path until the detection of a fault,
TLB miss, or branch misprediction. The processor has a
large window of execution; it can fetch and issue up to 4
instructions per cycle. It has a 128 entry register update
unit with a 64 entry load/store buffer. To implement a
comparable model in MASE, there are 128 reservation
stations and 128 reorder buffer entries. Loads can only
execute when all prior store addresses are known (except
for the blind load speculation experiment). In addition, all
stores are issued in program order with respect to prior
stores. A 4k entry gshare branch predictor was used. The
processor has 4 integer ALU units, 2 load/store units, 2
FP adders, 1 integer MULT/DIV unit, and 1 FP MULT/
DIV unit. The latencies are: integer ALU 1 cycle, integer
MULT 7 cycles, integer DIV 12 cycles, FP adder 4 cycles,
FP MULT 4 cycles, and FP DIV 12 cycles. All functional
units, except the dividers, are fully pipelined allowing a
new instruction to start each cycle.

The processor we simulated has 64k 2-way set-associative
instruction and data caches. Both caches have block sizes
of 32 bytes. The data cache is write-back, write-allocate,
and is non-blocking with two ports. The data cache access
latency is two cycles (for a total load latency of three
cycles). There is a unified second-level 512k 4-way set-
associative cache with 32 byte blocks, with a 12 cycle
cache hit latency. If there is a second-level cache miss it
takes a total of 80 cycles to make the round trip access to
main memory. There is a 16 entry 4-way associative
instruction TLB and a 32 entry 4-way associative data
TLB, each with a 30 cycle miss penalty.

3.2 Comparison to original model
This experiment compares the simulated performance of
each benchmark to the baseline infrastructure. The pur-
pose of this experiment was to ensure that the models
implemented by the two simulators are comparable. This
strategy tests the new recovery mechanism, micro-func-
tional core, and the dynamic checker. The results of the
experiment, shown in Table 1, confirm that the bench-
mark throughput is comparable with negligible differ-
ences.

To test the performance of the memory interface requires
the use of a memory system that takes advantage of the
new callback mechanism. We adopted the existing Sim-
pleScalar memory system, randomly selecting accesses to
use the callback mechanism.

Our next experiment was to see the effect of the added
functionality on the running time of the MASE simulator.
We compared the running time of our simulator to the
baseline and the results are shown in Table 1. The runt-
imes (listed in seconds) indicates our simulator is twice as
slow on average. This is not surprising given that out sim-
ulator is more accurate and implements additional facili-

ties such as the checker. The code has not been profiled
yet to see where the bottlenecks are, so we hope to
improve upon these results before the code is released.
The size of the source code increased by about 50%.

3.3 Use of the dynamic checker
One benefit of the dynamic checker is to reduce the bur-
den of correctness on the performance model. When
implementing an optimization, most of the time is spent
on corner cases that happen very rarely. The programmer
can simply not implement infrequent corner cases and
rely on the dynamic checker to correct any instructions
that have the incorrect value. In our implementation, we
decided not to implement partial store forwarding from
the load-store queue when the base addresses do not
match. For instance, if there is a two-byte store to address
0x102h that is followed by a four-byte load from address
0x100h, it would not be detected by the load forwarding
mechanism. Instead, we rely on the checker to fix this
problem. Table 2 shows the number of checker errors that
were obtained. In five of the eight benchmarks, this sce-
nario was not encountered so there were no checker
errors. In the other three benchmarks, the number of
errors was very small. The benchmark vortex was highest
with 195 errors, a very small number considering that mil-
lions of instructions were executed.

An additional benefit of the checker is that it serves as a
debugging aid. This is hard to quantify in terms of num-
bers so we describe our debugging experience instead.
The oracle and checker were among the first additions to
our infrastructure so it could be used when implementing
some of our other ideas. In most simulators, it is difficult
to determine precisely where an error occurred when there
is a difference in the output. Furthermore, some modeling
errors don’t surface as errors in the output. When the

Table 1: Performance validation statistics. This table
compares MASE’s performance model to the baseline model.
The performance is similar but MASE runs twice as slow.

Performance (IPC) Run time (seconds)
Benchmark MASE Baseline Diff. MASE Baseline

cc1 1.8581 1.8599 0.10% 6,170 2,964
compress 2.3540 2.3530 0.04% 1,208 607
go 1.6786 1.6784 0.01% 6,853 3,329
ijpeg 2.8211 2.8207 0.01% 4,869 2,358
li 2.3211 2.3204 0.03% 5,784 2,856
m88ksim 2.1919 2.1969 0.22% 3,098 1,601
perl 2.2399 2.2404 0.02% 1,047 524
vortex 2.1086 2.0925 0.76% 5,870 2,895

Table 2: Checker errors. Number of checker errors due to not
handling partial store forwarding when base addresses do not
match.

Benchmark Errors Benchmark Errors
cc1 82 li 0
compress 0 m88ksim 0
go 0 perl 0
ijpeg 18 vortex 195
7

checker is used, each instruction that produces a result
(writes to a register or memory) is checked. If an error is
encountered, the number of errors is incremented. Option-
ally the error can be printed out to indicate what instruc-
tion has failed, allowing a programmer to precisely
identify the point where the error occurred. The checker
came in handy when implementing the micro-functional
component. The first thing we realized during debugging
is that most of the failing instructions referred to Alpha
register $31 (the zero register). Almost immediately, we
were able to determine that the processing of this special
register was incorrect. Once that problem was flushed out,
we noticed that most of the problems dealt with condi-
tional move instructions and how the output was incor-
rectly zero most of the time. We concentrated our
debugging efforts at the conditional move and quickly
identified that when the conditional move was not exe-
cuted, it was not handled properly. The checker was also
useful in implementing our blind speculation case study
(described in the next section). As one might expect,
loads were the only instruction that failed so the error
message provided by the checker did not provide as much
insight as in the previous cases. Instead, we focused on
the first error that was signalled. We used gdb to debug
the simulator and set a breakpoint on the failing instruc-
tion. Once we found the failing instruction, we analyzed
the state of the machine at that time and were able to iso-
late the problem relatively quickly.

3.4 Case study: Blind speculation
This section describes a case study we performed with our
new performance simulator. We implemented blind spec-
ulation, a technique that allows loads to execute before all
previous stores have executed [14]. Without blind specu-
lation, loads are required to wait in the LSQ (load-store
queue) until all addresses for previous stores have been
resolved. With blind speculation, the scheduler assumes
that any unknown store address will not match the address
of the load, as such a load can be executed as soon as its
address is known and there isn’t an earlier matching store
address in the LSQ. The benefit of blind speculation is
that it allows loads to execute earlier, but with a potential
mispeculation penalty that is incurred when an earlier
unknown store matches a speculated load address. In this
situation, instructions after the load are flushed and the
fetch engine is directed to restart at the instruction after
the mispeculated load.

Blind speculation is difficult to implement in the current
version of SimpleScalar because SimpleScalar requires
that mispeculations be detected at fetch. Blind speculation
misses can only be detected in the core since they are
dependent on the contents of the LSQ when a load
becomes ready.

Adding blind speculation to our infrastructure was rela-
tively straightforward. Each cycle, the LSQ is scanned to
determine if any loads can be scheduled to execute. A
load can be scheduled if the address is known and there
are either no store instructions that are known to write to
the same address as the load or the store data must be
known for the most recent store to this address. Once a
load is scheduled, the LSQ is scanned, checking all
unknown store instructions that are older than the load but

younger than the last known store to the load address. If
the load address matches the store address (obtained from
the instruction state queue), the store is marked. At write-
back, the store will transfer data into the load. If the load
is still valid and completed execution, a recovery will
occur that squashes all instructions after the load. If the
instruction hasn’t completed, instructions dependent on
the load haven’t executed so it is safe to continue using
the forwarded value.

After implementing blind speculation, we performed a
small performance study. The baseline model is MASE
with blind speculation turned off. The simulation includes
different LSQ sizes and the ROB is twice the size of the
LSQ for each run. The results, shown in Table 3 ranged
from no impact (compress and perl) to a speedup of 5.4%
for m88ksim. Negligible speedups are obtained with a
LSQ size of 4 due to a lack of opportunity to apply specu-
lation. The speedups increase when the LSQ size
increases up until the point where the LSQ is not being
utilized due to frequent mispeculation. In fact, the benefit
of m88ksim decreased with larger LSQs since there is a
higher probability of a blind speculation miss.

4. Related Work
There are a number of performance modeling infrastruc-
tures available to researchers today that implement vari-
ous forms of these technologies. The Pentium Pro
simulator [17], Dinero [10], and Cheetah [22] are exam-
ples of simulators that read external traces of instructions.
Turandot [15], SMTSIM [24] and VMW [8], are simula-
tors, like SimpleScalar, that generate instructions traces
through the use of emulation. RSIM [16] is an example of
a micro-functional simulator; instructions are emulated in
the execution stage of the performance model. Unlike
MASE, it does not have a trace-driven component in the
front-end. This prevents oracle studies such as perfect
branch prediction. The idea of dynamic verification at
retirement was inspired by Breach’s Multiscalar processor
simulator [3]. Other simulation environments include
SimOS [18] and SimICS [13] which focus on system-
level instruction-set simulation. MINT [26] and ATOM
[20] concentrate on fast instruction execution.

5. Summary and future work
There are two primary components in current modeling
infrastructures: a functional simulator and a performance
model which does timing analyses of instructions and data
as they flow through the processor pipeline. While this

Table 3: Blind speculation results. Results are given as
speedups over the baseline. Speedups range from no speedup to
5.4%. As the LSQ size increases, the benefit flattens or lessens
as in the case of m88ksim.

LSQ size 4 16 64 256 1,024
cc1 0.3% 1.5% 2.3% 2.5% 2.4%
compress 0.1% 0.5% 0.2% 0.7% 0.7%
go 0.2% 1.8% 2.3% 2.3% 2.3%
ijpeg 0.2% 2.2% 2.5% 2.6% 2.6%
li -0.2% 1.6% 3.2% 3.6% 3.6%
m88ksim 1.4% 5.4% 4.1% 0.7% 1.7%
perl 0.2% 0.0% -0.1% -0.1% -0.1%
vortex 0.3% 0.8% 1.6% 1.8% 1.7%
8

division has its advantages, there are drawbacks to this
approach such as the inability to model timing dependent
computation. The solution is to integrate functional exe-
cution with performance modeling, such that programs
are executed in the performance model. This approach,
however, has two disadvantages. First, inaccuracies in the
performance model, even if they are infrequent, will cause
programs to fail. Second, a micro-functional performance
model does not lend itself to oracle-type studies.

We proposed MASE, a new performance infrastructure
that addresses problems with the trace-driven approach
found in SimpleScalar. Our simulation infrastructure has
an oracle at the front end that is directed by the fetch stage
and executes instructions using its own state. This compo-
nent provides a setting for all types of oracle studies
including perfect branch and value prediction. MASE
contains a detailed micro-functional performance model
that not only does timing analyses on instructions and
data, but also executes instructions similarly to real
microprocessors. The performance model, however, can
afford to be inaccurate for infrequent cases (e.g., partial
store forwards). This is because MASE has a checker that
provides online validation for our simulator. The checker
will detect and correct infrequent corner cases by compar-
ing the results of instructions from the performance model
and the oracle. The checker also serves as a valuable
debugging aid by identifying precisely the point at which
a model failed. MASE also supports arbitrary rollback to
any point in the instruction window, which enhances our
ability to implement aggressive speculation techniques
such as blind speculation. Lastly, our memory interface is
more realistic than SimpleScalar’s as it includes non-
deterministic memory latency modeling for memory
accesses that cannot immediately determine their latency.

We compared our new performance model to the current
version of SimpleScalar. The performance of programs
were comparable on both versions. The running time of
our simulator was approximately twice as slow as com-
pared to SimpleScalar due to increased accuracy and
micro-functional execution in our model. As a case study,
we modeled and studied blind load speculation using
MASE, something which would have been very difficult
to do with the baseline SimpleScalar performance model.

In the future, we want to incorporate microcode enhance-
ments in our simulator. Instructions can be divided into a
sequence of micro-ops and the functionality of the micro-
ops can be defined in the simulator code. Instructions
would be executed by executing the required sequence of
micro-ops. We also plan to optimize the performance of
the MASE code.

Acknowledgments
We would like to thank the anonymous reviewers for their
valuable comments. This work was supported under a
National Science Foundation Graduate Fellowship and by
the NSF CADRE program, grant no. EIA-9975286.
Equipment support was provided by Intel.

References
[1] A. Agarwal, R. Sites, and M. Horowitz. ATUM: A new technique

for capturing address traces using microcode. Proc. of the 13th
Annual Int. Symposium on Computer Architecture, June 1986.

[2] T. Austin. DIVA: A Dynamic Approach to Microprocessor Verifi-
cation. Journal of Instruction-Level Parallelism Vol. 2, Jun. 2000.

[3] S. Breach. Design and Evaluation of a Multiscalar Processor.
Ph.D. thesis, University of Wisconsin-Madison, 1999.

[4] B. Calder, G. Reinman, D. Tullsen. Selective Value Prediction.
Proc. of the 26th Annual Int. Symposium on Computer Architec-
ture, May 1999.

[5] J. Bondi, A. Nanda, and S. Dutta. Integrating a misprediction
recovery cache (MRC) into a superscalar pipeline. Proc. of the
29th Annual Int. Symposium on Microarchitecture, Dec. 1996.

[6] D. Burger and T. Austin. The SimpleScalar Tool Set, Version 2.0.
University of Wisconsin Computer Sciences Technical Report
#1342, June 1997.

[7] R. Desikan, D. Burger, and S. Keckler. Measuring Experimental
Error in Microprocessor Simulation. Proc. of the 28th Annual Int.
Symposium on Computer Architecture, July 2001.

[8] T. Diep. VMW: A Visualization-based Microarchitecture Work-
bench. Ph.D. thesis, Carnegie Mellon University, June 1995.

[9] J. Dundas and T. Mudge. Improving Data Cache Performance by
Pre-executing Instructions Under a Cache Miss. Proc. of the 1997
Int. Conference on Supercomputing, July 1997.

[10] J. Edler and M. Hill. Dinero IV Trace-Driven Uniprocessor Cache
Simulator. http://www.neci.nj.nec.com/homepages/edler/d4.

[11] A. Lai and B. Falsafi. Memory sharing predictor: The key to a
speculative coherent DSM. Proc. of the 26th Annual Int. Sympo-
sium on Computer Architecture, May 1999.

[12] M. Lipasti, C. Wilkerson, J. Shen. Value locality and load value
prediction. Proc. of the 7th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, Oct. 1996.

[13] P. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Larsson, F.
Lundholm, A. Moestedt, J. Nilsson, P. Stenström, and B. Werner.
SimICS/sun4m: A Virtual Workstation. Usenix Annual Technical
Conference, June 1998.

[14] A. Moshovos and G. Sohi. Memory Dependence Speculation
Tradeoffs in Centralized, Continuous-Window Superscalar Pro-
cessors. The 6th Annual Int. Symposium on High Performance
Computer Architecture, Jan 2000.

[15] M. Moudgill, J. Wellman, J. Moreno. Environment for PowerPC
Microarchitecture Exploration. IEEE Micro, May/June 1999.

[16] V. Pai, P. Ranganathan, and S. Adve. RSIM Reference Manual.
Version 1.0. Technical Report 9705, Department of Electrical and
Computer Engineering, Rice University, July 1997.

[17] D. Papworth. Tuning the Pentium Pro Microarchitecture. IEEE
Micro, April 1996.

[18] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete
computer system simulation: the SIMOS approach. IEEE Parallel
& Distributed Technology: Systems & Applications, Winter 1995.

[19] A. Sodani and G. Sohi. Dynamic Instruction Reuse. Proc. of the
24th Int. Symposium on Computer Architecture, June 1997.

[20] A. Srivastava and A. Eustace. ATOM: A system for building cus-
tomized program analysis tools. Proc. of the 1994 Symposium on
Programming Language Design and Implementation, June 1994.

[21] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Pro-
cessors: Improving both Performance and Fault Tolerance. Proc.
of the 9th Int. Conference on Architectural Support for Program-
ming Languages and Operating Systems, Nov. 2000.

[22] R. Sugumar and S. Abraham. cheetah - Single-pass simulator for
direct-mapped, set-associative and fully associative caches. Unix
Manual Page, 1993.

[23] TraceBase. Parallel Architecture Research Laboratory, New Mex-
ico State University. http://tracebase.nmsu.edu/tracebase.html.

[24] D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. Proc. of the 22nd Annual Int.
Symposium on Computer Architecture, June 1995.

[25] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang.
SoftSDV: A Pre-silicon Software Development for the IA-64
Architecture. Intel Technology Journal, 4th quarter 1999.

[26] J. Veenstra and R. Fowler. MINT: a front end for efficient simula-
tion of shared-memory multiprocessors. Proc. of the 2nd Int.
Workshop on Modeling, Analysis and Simulation of Computer
and Telecommunications Systems, Jan. 1994.
9

	Abstract
	1. Introduction
	2. MASE modeling architecture
	2.1 Oracle and checker execution component
	2.2 Modernization of the performance model
	2.3 Micro-functional performance model
	2.4 Recovery from any instruction
	2.5 Support for non-deterministic latencies

	3. Early analyses
	3.1 Simulation methodology
	3.2 Comparison to original model
	3.3 Use of the dynamic checker
	3.4 Case study: Blind speculation

	4. Related Work
	5. Summary and future work
	Acknowledgments
	References

