
Abstract

A common static software bug detection technique is to
use path simulation. Each execution path is simulated using
symbolic variables to determine if any software errors could
occur. The scalability of this and other path-based
approaches is dependent on the number of paths in the pro-
gram. This paper explores the number of paths in 15 differ-
ent programs. Often, there are one or two functions that
contribute a large percentage of the paths within a program.
A unique aspect in this study is that slicing was used in dif-
ferent ways to determine its effect on the path count. In par-
ticular, slicing was applied to each interesting statement
individually to determine if that statement could be analyzed
without suffering from path explosion. Results show that slic-
ing is only effective if it can completely slices away a func-
tion that suffers from path explosion. While most programs
had several statements that resulted in short path counts,
slicing was not adequate in eliminating path explosion
occurrences. Looking into the tasks that suffer from path
explosion, we find that functions that process input, produce
stylized output, or parse strings or code often have signifi-
cantly more paths than other functions.

1. Introduction

Static analysis is an important tool in software verifica-
tion and testing. It permits users to find bugs in software or
prove that operations are safe without the need for extensive
testing. Unfortunately, static analysis techniques are gener-
ally imprecise due to scalability and performance concerns.
This can result, depending how the analyses are applied, in
missed bugs or false bug reports. In general, there is a trade-
off in precision and performance. The more precise an analy-
sis is, the longer it takes to run.

A common technique used to detect bugs is path simula-
tion [3, 21]. Each execution path is simulated, with program
variables being representing symbolically. At interesting
points in the program, the symbolic variables are checked
against constraints. Violations result in a bug report. 

A major problem with path-based defect detection sys-
tems is path explosion - having too many paths to analyze in

a reasonable amount of time. One technique to address path
explosion is to use program slicing [11, 20] to remove code
not relevant to the property being verified.

Consider the sample control flow graph in Figure 1. The
nodes in the graph refer to basic blocks that contain one or
more statements. A directed edge is drawn from basic block
x to basic block y if the code in basic block y can be immedi-
ately executed after basic block x. An execution path is a
sequence of blocks from the beginning (block 1 in Figure 1)
to the end (block 18).

In Figure 1, there are ten different paths. To compute this
amount, note that all paths must go through node 5. There
are two paths to get from the start to node 5: either traversing
through node 3 or through node 4. There are five paths to get
from node 5 to the end: two paths if traversing left from node
5 to node 6 and three paths if traversing right from node 5 to
node 10. The total number of paths is obtained by multiply-
ing the number of paths to get to node 5 by the number of
paths to get to the end from node 5: 2 x 5 = 10.

A Plethora of Paths 

Eric Larson
Seattle University

elarson@seattleu.edu
 
 

Figure 1. Sample Control Flow Graph.



This assumes the choice of paths to get from the start to
node 5 is independent from the choice of paths to get from
node 5 to the end. This is not always the case - the number of
legal execution paths is often less than the number of theo-
retical paths derived from the control flow graph without fur-
ther knowledge of the code.

To show how program slicing can reduce the number of
paths, assume the statement of interest is in basic block 8 of
Figure 1. It is not necessary to analyze the paths that traverse
through basic blocks 10-17, nor is it necessary to traverse
through block 7. This leaves only two execution paths: 1-2-
3-5-6-8-9-18 and 1-2-4-5-6-8-9-18. The only difference
between the two paths is the former traverses through basic
block 3 while the latter traverses through basic block 4. Pro-
gram slicing could determine that neither basic block 3 or 4
contains a statement that the statement of interest is depen-
dent on. In this situation, the control flow graph can be fur-
ther collapsed resulting in only one path.       

This paper explores the number of execution paths in a
variety of different programs written in the C programming
language. In particular, we analyze where does path explo-
sion come from? What types of tasks result in a large number
of paths? What accounts for the difference in path counts
between different programs?

In addition, this paper outlines results of path count
experiments when program slicing is applied. For instance,
to what extent does the path count decrease when program
slicing is applied? Does program slicing eliminate or reduce
path explosion? What effect does choosing different slicing
criteria on the path count? 

This paper makes the following contributions:
A detailed analysis of paths in a program. We find that
the most of the paths in a program are contained in a
very small percentage of the functions (often just one).
A quantitative analysis on the effects of program slicing
on the number of paths in a program. We find the pro-
gram slicing can greatly reduce the number of paths but
path explosion still exists in the worst-case.
A thorough qualitative analysis that looks at the types of
tasks that lead to path explosion. We also dig deeper to
better understand the effectiveness (or lack thereof) of
program slicing. 

 The remainder of the paper is organized as follows. The
next section describes the analysis framework used to carry
out this study. Quantitative results are given in Section 3
while Section 4 examines our qualitative results. An over-
view of related work appears in Section 5. Section 6 con-
cludes and presents directions for future work. 

2. Analysis Framework

Our analysis uses a modified version of SUDS [13], a
static analysis and dynamic instrumentation infrastructure

that operates on the whole program. The dynamic instrumen-
tation portion of SUDS was not used. The main flow for
assessing the work necessary to verify an individual state-
ment consists of the following steps:

1. Performing traditional compiler analyses such as data-
flow and pointer analysis.

2. Slicing the program with respect to the slicing crite-
rion and removing irrelevant code.

3. Counting paths using the code in the slice.

2.1 Traditional Compiler Analyses

This section describes some of the key implementation
decisions for the initial phases:

Simplification: After parsing, each statement is con-
verted into a simple statement in a similar fashion to CIL
[16]. In the simple format, expression statements are con-
verted such that each operator has at most two operands.
Side effects from increment and short-circuited operators are
removed. 

Dynamic memory modeling: Dynamic memory is mod-
eled by call-site. For each static call to malloc, a dummy
variable is created with the return value pointing to the
dummy variable. System functions, or any functions where
source code does not exist, that return pointers are also mod-
eled using a dummy variable for each call.

Control flow graph: The control flow graph is created
intraprocedurally. Basic blocks that are not reachable from
the starting point are discarded.

Call graph: A complete call graph is created including
calls made by function pointers. The call graph and pointer
analysis phase are performed together until both algorithms
converge. Functions are that not reachable from main are
removed from consideration and not analyzed in further
stages. This omits signal handlers and functions passed into
system functions from analysis. 

Pointer analysis: The flow-sensitive interprocedural
pointer analysis developed by Hind et. al. [10] is used to
compute the set of variables that a pointer can point to.
Structs, unions, arrays, and dummy variables are treated as
single variables. Any updates to such variables are done in a
weak fashion without killing prior pointer relationships.

Data-flow analysis: Data-flow analysis is used to deter-
mine the set of definitions generated, killed, and used by
each statement. The analysis is done intraprocedurally using
a standard data-flow algorithm that iterates until steady state.
Basic but adequate interprocedural analysis is provided (see
[13] for details). 

2.2 Program Slicing

Program slicing [11, 20] removes instructions not rele-
vant to the operation(s) being analyzed. A backwards slicing
algorithm is employed starting with the slicing criteria. 



The slicing criteria is often an individual statement that is
of interest to the particular analysis task on hand. For this
paper, we choose array accesses and pointer dereferences to
serve as our slicing criteria. The choice of focusing on arrays
access and pointer dereference errors was made because they
are difficult to analyze thoroughly using a reasonably-sized
finite state automaton (FSA). Array references and pointer
arithmetic require integers to be modeled. For effective
results, some level of constraint or symbolic analysis is nec-
essary. For brevity, we consider a statement that contains an
array access or pointer dereference to be dangerous.

In addition to having a single dangerous statement as a
slicing criterion, we run experiments where the slicing crite-
rion consists of all dangerous statements within a given func-
tion. For comparison purposes, we also compute the “worst-
case” benefit to program slicing by using all dangerous state-
ments in the program as the slicing criterion.

 At the beginning of the slicing algorithm, only the uses
that directly relate to memory checking are initially included
in the slice. For instance, consider the statement: x = a[i];
where a is a locally declared array of five elements. The only
uses that matter to checking the array bounds are the uses
that pertain to i; the contents of array a do not matter.

Since the slice is only used for analysis and the results of
previous analyses are left in tact, no attempt is made to make
the slice executable. The slice also does not include indirect
uses from control statements since many static software bug
detection systems ignore or abstract away the condition and
simulate both directions of a control statement. 

For function calls, the following algorithm is employed:
If a function is added to the slice from reaching it by travers-
ing upward from a statement in the slicing criteria, then slice
information is propagated to all callers for this function. If a
function cannot be reached from an upward traversal but is
called from a function in the slice, then the function is added
to the slice (provided at least one statement in the function is
added to the slice). But other functions that call this particu-
lar function are not added to the slice. This prevents the slice
from propagating to a completely irrelevant section of code.
In either case, all information is propagated in a context-
insensitive manner by combining the slicing information
from multiple call sites instead of analyzing the callee func-
tion separately for each call site. 

Once the slice has been computed, the control flow graph
is reduced by removing all functions, basic blocks, and state-
ments that are not in the slice.

2.3 Path Counting

Paths are counted using the reduced control flow graph
after slicing. Each function is divided into a series of control
constructs (if, while, for, do-while, and switch). For each
control construct, both the total number of paths that reach

the end of the construct and the number of paths that reach a
return statement are computed. Starting with the beginning
of the function the number of paths in each control construct
is multiplied together. The number of early termination paths
is kept separately and added to the final count.

There were three key design decisions when implement-
ing the path counting algorithm. First, the path count is com-
puted intraprocedurally. The total number of paths for a
program is the sum of the paths for all functions. This
approximation assumes a path simulation implementation
similar to that of PREfix [3] where “leaf” functions on the
call graph are analyzed first. Summaries capturing the
behavior of the function are used by its caller functions dur-
ing analysis. However, the approximation breaks down since
function summaries may be more complex to analyze than
other statements, possibly implicitly producing complex
control flow.

The second design decision concerns loops since they
can lead to an infinite number of paths. In our baseline con-
figuration, we introduce two paths for each loop: one for not
taking the loop and one for taking the loop once (the body of
the loop can introduce additional paths). This approximation
is reasonable because many static bug detection systems use
some form of fixed-point analysis making it unnecessary to
have an infinite number of paths. To improve the approxima-
tion, it is desirable to take the contents of the loop into
account when making the approximation. This is left as
future work. Examples of loop optimization techniques are
presented in the related work section (Section 5). 

Lastly, goto statements can introduce loops and unstruc-
tured control flow. To simplify the implementation but at a
cost of imprecision, we consider goto statements to end a
path just like return statements. In the programs used, there
are very few gotos. In most cases, they are used to jump to
finishing code at the end of a function or to some error pro-
cessing code. These functions are often complex with high
path counts anyway. 

No attempt is made to remove illegal or invalid paths.
This choice is intentional since work is needed in static bug
detection systems to remove these illegal paths. In many sys-
tems, illegal paths are removed automatically but with sig-
nificant performance loss. In other systems, the burden is
shifted to the user who must filter out false bug reports - a
time consuming task that takes away from the effectiveness
of the system.

We also avoid specifying a specific threshold for path
explosion since it depends on how the paths are used and the
the computational requirements needed by the particular
analysis. For the sake of giving a number, we loosely define
functions or programs that have over 100,000 paths to suffer
from path explosion.



3. Quantitative Analysis

Our analyses was carried out using 15 programs shown
in Table 1. The number of functions only counts functions
that reachable from main. The number of statements is a
static count of the number of statements after simplification.
Statements that are not in a reachable function or basic block
are not counted.

3.1 Path Counts - No Slicing

Our initial experiment computes the number of paths
without any slicing. This provides a worst-case number of
paths for each of the programs. The results are shown in
Table 2. The first column shows the total number of paths.
The total path varies by program and ranges from 5,853
paths in space to 2.12 x 1017 paths in indent. The second col-
umn of Table 2 shows the number of paths in the function
that has the most paths and the percent of paths this particu-
lar function contributes to the overall path count. All but two
programs (othello and space) have one function that contains
over 75% of the paths. The program othello has only 11
functions and none overwhelms one another. The program
space consists of several small functions, each with a rela-
tively small path count.

In 9 of the 15 programs, there is at least one function that
contributes over 90% of the total path count. In the five pro-
grams with the largest path counts (flex, gnuchess, gzip,
indent, and thttpd), the worst-case function suffers from
massive path explosion and essentially contributes all of the
paths for that program. Each of these programs contain addi-
tional (but not many) functions that have extremely high
path counts but have orders of magnitude fewer paths than
the worst-case function.

The last two columns in Table 2 show the number and
percentage of functions that have 100 or fewer paths and the
same for functions that have more than 100,000 paths. In all
but two programs (othello and yacr2), at least 75% of the
functions have only 100 paths or less. Nine of the programs
had at least one function that contained over 100,000 paths
with flex, gnuchess, gzip, and indent all having at least seven
functions with at over 100,000 paths. The percentage of
functions with over 100,000 paths was small - diff3 had the
highest percentage (9.4%).

3.2 Path Counts - Slicing on All Dangerous

This experiment enables slicing on all dangerous state-
ments in the program. The number of paths are counted on
the program that remains after slicing. The results are shown
in Table 3. The first column shows the total path count after
slicing is applied. The second column replicates the first col-
umn from Table 2 and displays the total number of paths
without slicing while the third column shows the percent

decrease after slicing is applied. The remaining columns are
comparable to those found in Table 2 except that there is an
additional column showing the number of functions that had
zero paths - in other words, the function was completed
sliced away.

 Not surprisingly, the number of paths is greatly reduced
for all programs. Eleven programs had a reduction of over
90%. For the most part, the reduction rate is independent on
both the size of the program and the number of the paths
without slicing. However, two programs (bc and flex) saw
very little reduction in the number of paths. In both of these
programs, the worst-case function was unaffected by the
slicing due to a high number of dangerous operations in
these functions.

On average, 15.8% of the functions had zero paths rang-
ing from 5.3% (indent) to 37.5% (diff3). Each program saw
moderate increases in the number of functions with 100
paths or fewer.

Despite the decreases in the number of the paths, pro-
grams that had numerous paths before slicing still have high
path counts after slicing. While slicing reduced the path
count by orders of magnitude for all programs except bc and
flex, it was insufficient in reducing the total number of paths
to a manageable number for the programs with high path
counts. Of the nine programs that had at least one function
with over 100,000 paths, eight of those programs (all but
diff3) still had at least one functions over this arbitrary
threshold. However, the number of functions containing over
100,000 paths was reduced in these programs especially gzip
which went from having nine such functions without slicing
to only one. 

Table 1. Programs Used In Analysis.



3.3 Path Counts - Slicing on Statements

Now we explore the effect on the path count by slicing
with respect to a single statement. In these experiments, the
initial slicing criterion is a dangerous statement. All code not
relevant to verifying that operation is discarded. Then the
paths are counted using the remaining code. This is repeated
for all dangerous statements in the program.     

Figure 2 details the results of this experiment. We define
a “run” to be the slicing and subsequent path counting with
respect to one statement. If a program has n dangerous state-
ment, it will have n runs - one for each of the dangerous
statements. The graph plots the cumulative percentage of
runs that have fewer than the given number of paths. For
example, 78% of the individual operation runs for the pro-
gram ghttpd have fewer than 100 paths.

In five of the programs, all runs had fewer than 1,000
paths. Four of these programs (betaftpd, ft, ghttpd, and ks)
had relatively few paths when slicing was applied to all oper-
ations. However, the fifth program, yacr2, had 287,639 paths
in the same experiment and over three million paths without
slicing. This greatly reduces the burden to analyze yacr2. In
four other programs (diff3, find, othello, and space), over
90% of the runs have fewer than 1,000 paths. The program
bc is strange in that 13% of the runs have fewer than 100
paths but most of the remaining runs each contain around
225,000 paths.

The remaining five programs (flex, gnuchess, gzip,
indent, and thttpd) all had a significant percentage of runs
that contained over ten million paths. For these programs,
slicing based on an individual statement criterion did not
eliminate the path explosion. Except for gzip, these programs

Table 2. Path statistics - no slicing.

Table 3. Path statistics - slicing criterion of all dangerous statements.



Figure 2. Individual statement runs.

Figure 3. Individual function runs..



did not have very many runs that had few paths. The pro-
gram gzip was bimodal like bc with 59% of the runs having
fewer than 100 paths and most of the remaining runs having
around 460 million paths.

The effectiveness of slicing is determined by the worst-
case run - the run with the most paths. If the number of paths
is similar to the number of paths when slicing on all the
statements, then slicing by statement is not effective. In
Table 4, the first column repeats the number of paths when
the slicing criterion is all dangerous statements from Table 3.
The second column displays the number of paths in the
worst-case statement run. The third column displays the
number of paths in the worst-case function run; this column
is discussed in Section 3.4.

The results from Table 4 are a mixed bag. The program
that benefits the most is yacr2 where the worst-case run only
contains 818 paths, compared to the 287,639 paths when all
dangerous statements were used as the slicing criterion. The
programs betaftpd, ghttpd, and ks all had fairly small path
counts in the worst-case runs but they did not have many
paths to begin with. In four of the programs (ft, gzip, othello,
and space), the worst-case run contains almost the same
number of paths as slicing with all statements. For these pro-
grams, slicing on individual statements is not fruitful. For
four of the programs with high path counts (flex, gnuchess,
indent, thttpd), the number of paths is greatly reduced but
path explosion still exists.

3.4  Path Counts - Slicing on Functions

Figure 3 displays the results for a similar experiment but
uses functions instead of statements. The slicing criterion is
all dangerous statements within the given function. Here, a
run refers to the analysis after slicing with respect to a func-
tion. The results are similar in nature to the individual state-
ments. This is especially true for the programs that suffer
from path explosion as the cumulative percentage lines are
roughly the same. The programs with fewer paths still have a
high percentage of runs with very few paths but the slope of
the data lines are noticeably lower than the corresponding
statement data lines (especially diff3). Of particular note is
the percentage of runs with ten or less paths is significantly
reduced when compared to the statement run and that only
one program (ft) has 100% of runs with 1,000 paths or less,
compared to five such programs in the statement runs. 

To dig deeper, consult Table 4 where the last column
shows the number of paths in the worst-case function run.
First, there was little difference in the four programs (ft, gzip,
othello, and space) that had a worst-case path count that was
comparable to the paths when slicing on all statements. In
the other 11 programs, the worst-case path count for a func-
tion run is significantly higher than the worst-case statement
run and is often the same order of magnitude as the slicing
on all statements run. For these programs, the function that

triggered the worst-case run is the function with the most
paths. Referring back to Table 3, this result is not unexpected
as the function with the most paths contains over 75% of the
paths. Though not shown, the function with the second-most
paths often had a similar path count to the worst-case state-
ment run. This suggests that using function runs for func-
tions with few paths may be beneficial.

4. Qualitative Analysis

In this section, we qualitatively describe what went on
behind the scenes. First, we give a brief analysis for each
program and followed by a summary at the end.

4.1 Individual Program Analysis

bc: The two worst functions are bc_divide (performs
division for the calculator) and yyparse (parsing the opera-
tion string from the user). The results of these functions are
used by other arithmetic functions so they are almost always
included in the slice. Subsequently, a large percentage of
individual statement runs have around 200,000 - 600,000
paths.

betaftpd: The function long_listing has the most
paths before slicing with 55,297 paths. It is a function that
prints the contents of a directory like the “ls -l” command
in UNIX. Most of the complexity comes from printing out
the permission map - a series of if statements that condition-
ally print characters if a particular permission flag is set.
These decisions all get eliminated during slicing. After slic-
ing, only three functions have more than 1,000 paths - two
parse input commands, and the third is a different function
used to print the contents of a directory.

diff3: The function with the most paths is

Table 4. Worst Case Path Count Comparison.



process_diff_control which parses a diff control string
(1,558,324 paths). It still has the most paths after slicing
though many paths are removed (20,412 paths). The number
of paths decreases further when slicing using individual
statements. Outside of process_diff_control, only
main and output_diff3_merge (a file processing func-
tion) have significant path counts.

find: The function quotearg_buffer_restyled has
the most paths (over 21 million). This function modifies and
buffers a string. There are several different options and spe-
cial cases the function needs to address in addition to parsing
the string for special characters. The complexity due to pars-
ing is largely eliminated during slicing (resulting in just over
4 million paths). After slicing the function
consider_visiting (a decision-making function based
on the current state of the program) has 67,446 paths, five
functions that have between 1,000-7,200 paths, and the rest
having fewer than 1,000 paths. The statement and function
runs were very effective for runs that did not involve
quotearg_buffer_restyled or consider_visiting. 

flex: The function flexend has the highest path count
with over 700 billion paths without slicing and was one of
six functions with over 100 million paths. The function
flexend is run at the end and produces a myriad of output
based on various settings, statistics, and error conditions.
The function was unaffected by slicing internally with
almost the same number of paths after slicing. The path
count for individual runs was high for most runs. When
flexend is not in the slice, functions flexinit (processing
command line options), ntod (finite state automata conver-
sion), and gentabs (internal processing function) were
often in the slice and all had significant path counts after
slicing. 

ft: The worst function is DeleteMin - a function that
finds and deletes a minimal node from a tree-like data struc-
ture. This function only has 10,082 paths and gets reduced to
194 paths after slicing. All other functions have at most 8
paths after slicing. With only 257 paths in the slicing on all
dangerous statement runs, the individual statement and func-
tions runs are rather pointless but do have very few paths.

ghttpd: The function serveconnection accounts for
majority of the paths with and without slicing. This function
sets up a connection and handles different types of HTTP
requests. The individual statement and function runs were
effective in bringing the path count down even more. Except
for the function run using serveconnection as the slicing
criterion, all individual statement and function runs had less
than 200 paths.

gnuchess: There are 11 functions with over one million
paths before slicing. After slicing, there are still seven such
functions and five of those had over 26 billion paths. The
two functions that have the most paths are Search (search
for the best possible move) and GenMoves (generates all
possible moves). Both of these functions are very specific to

the game of chess. Most of the individual runs were unable
to slice away the path explosion found in either function.                   

gzip: The function get_method has the most paths. It
used to read the magic number of the zip file and set various
options. The good news is that 66% of the individual runs
did not include get_method in the slice. The bad news is
that for the 33% of the runs, get_method was included and
not enough paths could be removed after slicing to make the
path count more reasonable.

indent: Seven functions are primarily responsible for a
high path count. The two worst functions are output func-
tions dump_line and print_comment. The functions make
a number of decisions on how to print a line or comment
based on the input file and the options supplied by the user.
The third worst function is lexi, the lexer for the program
that divides up the input source code file into tokens. The
next four functions are various token processing functions.
Slicing and the use of individual runs helps reduce the path
counts but not enough to reduce the path explosion.

ks: The self-explanatory function PrintResults has
the most paths with 23,100 before slicing and 1,400 when
slicing on all dangerous statements. Fortunately, all of the
individual and function runs completely slice away this func-
tion (except runs using slicing criteria within the function). 

othello: The functions humanmove and validmove have
the most paths before slicing (25,057 and 12,996 paths
respectively). Most of humanmove is sliced away due to a
lack of dangerous statements as the paths come from detect-
ing different illegal inputs. This means that validmove has
the most paths after slicing. An interesting phenomenon is
noted with the statement and function runs. The worst-case
statement and function runs occurs when using slicing crite-
ria within the function testmove which itself has very few
paths. However, it is called eight times by validmove caus-
ing it not to be sliced away. Runs with slicing criteria outside
of testmove all have 100 paths or less.

space: Only one function (seqrotrg with 3,900 paths)
had more than 350 paths before slicing. After slicing, all
functions had less than 350 paths with a total of 1,892 paths.
The individual statement and function runs improved the
path count to some extent.   

thttpd: The worst function is main with over 4 trillion
paths in slicing on all dangerous statements run. Since main
always remains in the slice, the effectiveness of the individ-
ual runs is limited. In the best case individual run, main still
has 600,000 paths and often has more. The second worst
function httpd_parse_request is also present in most of
the individual runs and usually contributes over 200,000
paths.

yacr2: The function PrintChannel has the most num-
ber of paths with 2,991,744 paths before slicing and 259,328
paths after slicing on all dangerous statements. It is a func-
tion that displays results to the screen and has a large number
of independent control decisions. Since it does not produce



any data, it is not included in the slices for statements in
other functions, making the individual runs very effective for
this program.

4.2 Summarizing Remarks

By and large, most functions contain a moderate amount
of paths and do not suffer from path explosion. However,
many of the programs used in this study have at least one
function that has a significant number of paths. There were
three types of functions that seemed to generate many paths:
input processing functions, stylized output functions, and
parsing functions. The stylized output functions are often
sliced away since they are often run at the end of the pro-
gram but the input processing and parsing functions were
often included in the slices.

Not all functions that suffered from path explosion fit
into these categories. These other functions were specific to
the program under analysis. This includes, among others,
functions like as divide in bc, finite state automata conver-
sion in flex, and searching for the best move in gnuchess.
These tasks are all inherently complex so it is not unexpected
that the corresponding functions suffer from path explosion.

The effectiveness of individual runs (both statement and
functions) was solely determined on whether a function suf-
fered from path explosion was included in the slice. Since
slicing did not sufficiently reduce the number of paths within
these functions, the individual runs were only effective when
the functions were removed from the slice altogether. Even
though the worst-case performance of the individual runs
was similar to that of a run using all dangerous operations as
the slicing criteria, almost all of the programs had some
statements that could be analyzed without suffering path
explosion.

5. Related Work

Several groups have explored path-based analyses of dif-
ferent sorts. Hampapuram et. al. [9] constructed a general-
purpose path simulator. Dillig et. al. [7] developed a scalable
path-sensitive analysis that is sound and complete. Unfortu-
nately, the generated constraints are not solvable. They are
able to pose and solve queries based on conditions extracted
from the generated constraints.

Numerous research groups have explored software bug
detection. This study was inspired by path-based static veri-
fication systems including PREfix [3], ARCHER [21], and
Marple [14]. The PREfix paper [3] describes interprocedural
analysis using function summaries. Coverity Prevent [5] and
CodeSonar [8] are commercial tools that use path-based
analysis.

One deficiency in our analysis is that it does not account
for different types of loops. Loop squashing by Hu et. al.
[12] applies a series of transforming rules with the hope of

converting a loop into a conditional statement. In the
dynamic execution tool created by Stewart [19], loops that
do not have any data dependencies between iterations are
detected and executed in a single pass. ARCHER [21] tries
to match loops to commonly occurring patterns (such as an
incrementing for loop with a constant upper bound) and opti-
mizes the analysis based on the particular pattern.

 Binkley and Harman [2] compare different program slic-
ing approaches. They show that slices, on average, have a
size that is roughly 30% of the original program. Using a
context-insensitive approach increases the slice size by 50%.
They also investigate the effect of expanding structure fields,
something not done in this work. This decreased the slice
size by 2% on average. Utilizing a full context-sensitive
algorithm would likely improve the precision of our results.

Another related area of research is the use of metrics to
measure the complexity of the program. The cyclomatic
complexity [15] of a program measures the number of closed
loops in a flow graph. The Understand for C++ tool [18] uses
a variety of metrics such as number of lines, number of
inputs, number of outputs as a gauge of complexity. This
idea was expanded by Pan et. al. [17] to include program
slicing metrics. The metrics are used to classify bugs allow-
ing them to predict bugs in the future. Ball and Larus [1] use
profiling to determine which paths are executed most fre-
quently.

6. Conclusion

This paper explores the number of paths present in 15
different programs. Most functions with a program had rela-
tively few paths. Often one function contributes most of the
paths. Over half of the programs have at least one function
that suffers from path explosion.

We also explored the effect of slicing has on path counts
by using three different types of slicing criteria: all danger-
ous statements in a program, all dangerous statements in a
function, and a single dangerous statement. In general, slic-
ing reduces the number of paths in a program but it is not
sufficient to address path explosion.

The runs that slice on individual statements or functions
depend on whether a function that suffers from path explo-
sion appears in the slice. If such a function does not appear,
the resulting number of paths is often manageable - most
programs had several runs in this situation. If a function with
path explosion is in the slice, the path count is similar to the
run using all dangerous statements.

Looking further at the programs, we found that functions
that process input, produce stylized output, or parse have
high path counts often resulting in path explosion. The
results can also guide static analysis and bug detection
research. Future analyses could specifically look at these
areas and determine if there are ways to further reduce the



number of paths. Unfortunately, this does not work in all
cases as some programs also had inherently complex tasks
specific to that program that also lead to path explosion. 

In the future, we plan to explore the effects of some of
our design decisions have on the path count and whether that
changes the findings. In particular, we will analyze different
techniques for counting loops and accounting for interproce-
dural analysis. We could also expand the analysis to include
programs written in other languages such as C++. Programs
written in an object-oriented style tend to have smaller func-
tions but have more complex interprocedural relationships.

Another avenue of future work is to explore how pro-
grams with large path counts can be broken down into more
manageable pieces of program analysis tools. One possibil-
ity is to have some level of user guidance to work around
functions that have high path counts. For instance, in the bc
calculator program the multiply and parse functions could be
analyzed independently even though the multiply function
depends on the parse function. A more ideal solution would
be to have more automated analyses possibly based on heu-
ristics that analyze how a function is dependent on another
function.

Acknowledgments

We would like to thank the anonymous reviewers for
their valuable comments.

References

[1] T. Ball and J. Larus. Efficient Path Profiling. Proceedings of the
29th Annual International Symposium on Microarchitecture.
Dec. 1996.

[2] D. Binkley and M. Harman. A Large-Scale Empirical Study of
Forward and Backwards Static Slice Size and Context Sensitiv-
ity. Proc. of the 2003 International Conference on Software
Maintenance. Sept. 2003.

[3] W. Bush, J. Pincus, D. Sielaff. A static analyzer for finding
dynamic programming errors. Software Practice and Experi-
ence, July 2000.

[4] H. Chen and D. Wagner. MOPS: an Infrastructure for Examin-
ing Security Properties of Software. Proceedings of the Confer-
ence on Computer and Communications Security, November
2002.

[5] Coverity, Inc. Converity Prevent <http://www.coverity.com/
html/coverity-prevent-static-analysis.html> 2008.

[6] M. Das, S. Lerner, and M. Seigle. ESP: Path-Sensitive Verifica-
tion in Polynomial Time. Proceedings of the Conference on

Programming Language Design and Implementation, June
2002.

[7] I. Dillig, T. Dillig, And A. Aiken. Sound, Complete, and Scal-
able Path-Sensitive Analysis. Proceedings of the Conference on
Programming Language Design and Implementation, June
2008.

[8] GrammaTech, Inc. CodeSonar <http://www.grammatech.com/
products/codesonar/overview.html> 2008.

[9] H. Hampapuram, Y. Yang, and M. Das. Symbolic Path Simula-
tion in Path-Sensitive Dataflow Analysis. Proceedings of Work-
shop on Program Analysis for Software Tools and Engineering,
Sep. 2005.

[10] M. Hind, M. Burke, P. Carini, and J. Choi. Interprocedural
Pointer Alias Analysis. ACM Transactions on Programming
Languages and Systems. July 1999. 

[11] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming
Languages and Systems. Jan. 1990. 

[12] L. Hu, M. Harman, R. Hierons, and D. Binkley. Loop Squash-
ing Transformations for Amorphous Slicing. Proceedings of the
6th International Workshop on Source Code Analysis and
Manipulation, Sep. 2006. 

[13] E. Larson. SUDS: An Infrastructure for Creating Bug Detec-
tion Tools. Proc. of the Conf. on Source Code and Manipula-
tion, Sept. 2007.

[14] W. Le and M. Soffa. Marple: A Demand-Driven Path-Sensitive
Buffer Overflow Detector. Proceeding of the Conference on
Foundations of Software Engineering, Nov. 2008.

[15] T. McCabe. A Complexity Measure. IEEE Transactions on
Software Engineering, Dec. 1976. 

[16] G. Necula, S. McPeak, S. P. Rahul, W.Weimer. Cil: Intermedi-
ate Language and Tools for Analysis and Transformation of C
Programs. International Conference on Compiler Construction,
Apr. 2002

[17] K. Pan, S. Kim, and J. Whitehead. Bug Classification Using
Program Slicing Metrics. Proceedings of the 6th International
Workshop on Source Code Analysis and Manipulation, Sep.
2006.

[18] Scientific Toolworks Inc. Understand for C. http://www.sci-
tools.com/products/understand/cpp/product.php

[19] M. Stewart. Towards a Tool for Rigorous, Automated Code
Comprehension Using Symbolic Execution and Semantic Anal-
ysis.   Proc. of the 29th IEEE/NASA Software Engineering
Workshop. Mar. 2005. 

[20] M. Weiser. Program slicing. Proceedings of the 5th Interna-
tional Conference on Software Engineering, Mar. 1981.

[21] Y. Xie, A. Chou, and D. Engler. ARCHER: Using Symbolic,
Path-sensitive Analysis to Detect Memory Access Errors. Proc.
of the Symposium on the Foundations of Software Engineering,
Sep. 2003.


	Abstract
	1. Introduction
	2. Analysis Framework
	2.1 Traditional Compiler Analyses
	2.2 Program Slicing
	2.3 Path Counting

	3. Quantitative Analysis
	3.1 Path Counts - No Slicing
	3.2 Path Counts - Slicing on All Dangerous
	3.3 Path Counts - Slicing on Statements
	3.4 Path Counts - Slicing on Functions

	4. Qualitative Analysis
	4.1 Individual Program Analysis
	4.2 Summarizing Remarks

	5. Related Work
	6. Conclusion
	Acknowledgments
	References

