
Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

 38
th

 ASEE/IEEE Frontiers in Education Conference

 T1A-1

A Simple but Realistic Assembly Language for a

Course in Computer Organization

Eric Larson, Moon Ok Kim
Seattle University, elarson@seattleu.edu, kimm@seattleu.edu

Abstract - Computer science curriculums, constantly

evolving to include new material and methodologies,

have reduced the amount of time spent on low-level

computer hardware and organization. Our institution

recently combined a course on computer organization

and a course on assembly language programming into

one course covering both topics. The choice of assembly

language is a critical decision that contributes to the

success of the course. ANNA (A New Noncomplex

Architecture) is a new 16-bit instruction set architecture

that is similar to MIPS but has fewer instructions. The

instruction set, while small, is sufficient in illustrating

how high-level languages are translated into assembly,

how to design a CPU datapath, and how to implement

pipelining. Real-world assembly languages such as IA-32

or MIPS have many subtleties that complicate the

learning experience for students and consume valuable

class time. This paper describes the ANNA assembly

language and the assembler and simulator tools that can

be used in the classroom. In addition, the paper

describes how ANNA can be used effectively in a

combined course on assembly language programming

and computer organization. ANNA was used in three

courses with very positive results based on our

observations and feedback from students.

Index Terms - assembly language, computer architecture,

computer organization, computer science education.

INTRODUCTION

Curriculums are constantly evolving in computer science

departments worldwide. With new and upcoming areas such

as bioinformatics and computer security, along with the

increased use of high-level languages and specifications

during software development, computer science curriculums

have expanded coverage on these important topics.

Unfortunately, this often means that less time is spent on

low-level topics – digital design, computer organization, and

assembly language programming.

Our institution recently went from requiring two

hardware courses to one. In the two course sequence, the

first course covered digital design and computer

organization. It included the following topics: data

representation, combinational and sequential logic, computer

arithmetic, CPU organization/design, memory, and I/O. The

course also had a significant design component. The second

course was a traditional assembly language course. In

addition to programming using an assembly language,

students learned instruction set design principles and

exposed to linkers and loaders. Both courses were five-credit

quarter long courses (or equivalently three-credit semester

courses).

The new single required course essentially combines

these two courses into one five-credit quarter long course.

The basic idea is that assembly language programming is

added to the computer organization course. The assembly

language programming portion comprises about one-third of

the course. In this compressed format, the choice of

assembly language is very important. It need not be overly

complicated so students can quickly learn and program in

the language. However, the language needs to be sufficiently

adequate and realistic. This permits students to understand

how high-level programming constructs (such as loops and

function calls) are converted to assembly language and how

to design a basic CPU (control and datapath).

Real-world assembly languages such as IA-32 or MIPS

are large and complex and are not practical where assembly

language programming is only allotted one third of the

course. These languages have subtleties that make it

difficult for the student to learn the underlying principles. A

few specific examples include the IA-32 variable length

instruction set, a plethora of addressing modes, and

pseudoinstructions that map to multiple machine language

instructions.

This paper describes a simple but realistic assembly

language that was used the past three times the course was

offered. The language and underlying instruction set

architecture called ANNA (A New Noncomplex

Architecture) is similar to MIPS but is 16 bits. ANNA has

16 instructions and has 16 general purpose registers. It is a

RISC instruction set and a load-store architecture meaning

that only the load and store instructions access memory.

Base plus offset addressing is used for memory accesses and

PC-relative addressing is used for the two conditional branch

instructions.

In keeping with the simple design of ANNA, memory is

word-addressable with a word size of 16 bits. The only two

data types are integers and addresses (both 16 bits).

Characters and floating point data values are not supported.

This avoids confusing the student with assorted type size and

conversion issues. Simplified input and output instructions

merely cause the simulator prompt the user for an integer

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

 38
th

 ASEE/IEEE Frontiers in Education Conference

 T1A-2

and display the contents of a register onto the screen

respectively.

An assembler and simulator are provided for ANNA

including versions for both Windows and Linux. The source

code is available allowing instructors to tailor the instruction

set and its architecture to fit their needs.

RELATED WORK

Other educators have created simplified instruction sets for

educational purposes. The Ant project from Harvard [1] has

two variants. The 8-bit variant is designed to introduce

assembly language concepts in CS1 courses. The language is

similar to ANNA but does not have a jump and link register

instruction that is needed for function calls. The 32-bit

version is a full featured assembly language. Its underlying

architecture contains support for exceptions, virtual memory,

and supervisor mode. It makes a good choice for courses that

combine computer architecture and operating systems.

Hatfield et. al. [2] proposes using a simple MIPS-like

instruction set for use in a computer organization and

architecture. Their course emphasizes simulation and

implementation rather than assembly language

programming.

Recent textbooks have catered to this trend of

combining courses in digital design, assembly language

programming, and computer organization. The 3rd edition of

Computer Organization and Design by Patterson and

Hennessy [3] is largely a computer organization book but

includes appendices on assembly language programming

and digital design. They also use MIPS which is a rather

large instruction set and has peculiarities could hinder

students from learning the primary topics. Harris and

Harris's book [4], Digital Design and Computer Architecture

covers both topics fairly extensively. The book includes a

chapter that is devoted to assembly language programming

(MIPS). A comment in the preface of the book indicates that

other universities have expressed a need of a combined

digital design and computer architecture book to the authors.

Since most modern assembly languages employ

general-purpose registers, we did not consider accumulator-

based architectures. Some examples of simple accumulator-

based architecture include MARIE by Null and Lobur [5]

and SIC/XE by Beck [6].

DESCRIPTION OF ANNA

This section describes the architecture of the 16-bit ANNA

(A New Noncomplex Architecture) processor. It contains 16

user-visible registers and an instruction set containing 16

instructions.

Some of the key features of ANNA:

 Memory is word-addressable where a word in memory

is 16 bits or 2 bytes. An address is 16 bits corresponding

to the 64 K words of memory available.

 Memory is shared by instructions and data. A 16 bit

word either corresponds to an instruction, an integer, or

an address. No other data types are allowed.

 ANNA is a load/store architecture; the only instructions

that can access memory are the load and store

instructions.

 The ANNA processor has 16 registers that can be

accessed directly by the programmer, named r0 through

r15. Register r0 always has the value zero.

 When the program is loaded into memory, the first

instruction is placed in address zero. All registers,

including the program counter, are set to zero.

I. ANNA Instruction Set

The 16 instructions of ANNA are presented in Table I.

TABLE I

ANNA INSTRUCTION SET

Opcode Operands Description
add Rd Rs1 Rs2 Addition
sub Rd Rs1 Rs2 Subtraction
lli Rd Imm8 Set lower bits using immediate
lui Rd Imm8 Set upper bits using immediate
and Rd Rs1 Rs2 Bitwise and
or Rd Rs1 Rs2 Bitwise or
not Rd Rs1 Bitwise not
shf Rd Rs1 Rs2 Bit shift
lw Rd Rs1 Imm4 Load word from memory
sw Rd Rs1 Imm4 Store word from memory
in Rd Get a word from user input
out Rd Send a word to output
bez Rd Imm8 Branch if equal to zero
bgz Rd Imm8 Branch if greater than zero
jalr Rd Rs1 Jump and link register
halt Halt the program

All of the logical and arithmetic operands (except for

unary not) take three operands corresponding to a

destination register and two source registers. The memory

operations lw and sw both use base plus displacement

addressing. This is the most popular addressing mode in

instruction set design. It is used in the course to illustrate

how local variables can be accessed as an offset from a stack

pointer. It is also used to access arrays (assuming a constant

index) and data members of structs.

Control instructions include two conditional branch

instructions. Both of these instructions are PC-relative, just

like their counterparts in MIPS. For function calls, the jalr

(jump and link register) allows a programmer to jump to the

callee function and save the return address. The jalr also

serves as a jump register instruction by setting the link

register to r0.

Input and output is accomplished using the in and out

instructions. These instructions allow the user to input a

value or display a value in the simulator. While this

implementation is greatly simplified over actual I/O

hardware, it allows students a means of testing their

programs with different input combinations without being

overly burdensome.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

 38
th

 ASEE/IEEE Frontiers in Education Conference

 T1A-3

II. ANNA Assembler

The ANNA assembler reads an ANNA assembly language

program and either generates a machine code file or a list of

errors in the program.

The assembler has support for comments and labels.

Labels can be used as addresses for instructions with 8-bit

immediates (lui, lli, bez, bgz). Using lui and lli

allows the address of an instruction or data value to be

loaded into a register. For branches, labels can be used to

specify the target address. The assembler automatically

computes the proper PC-relative immediate.

There is one assembler directive: .fill. This directive

uses a 16-bit immediate and directs the assembler to fill the

next word of memory with the 16-bit value. This directive is

intended to be used to declare global variables in memory. In

keeping with the straightforward approach, no other

assembler directives or pseudoinstructions are supported by

the ANNA assembler.

Programs in ANNA can be divided into three sections.

The first section always contains code (since the simulator

starts executing at address zero). The second section is a

data section where global variables can be declared using

.fill directives. Finally, a third section is used for the stack. It

simply contains one .fill directive preceded by a label

indicating the start of the stack. The stack grows to higher

addresses during the program. Less complex assembly

programming exercises typically do not need data and/or

stack sections. The notion of sections are merely a

convention and is not enforced by the assembler.

A sample program written in the ANNA assembly

languages if shown in Figure 1. This program multiplies two

numbers entered by the user and displays the product. The

program initially determines the sign of the product by

checking the sign of the each input number. If a number

entered by the user is negative, it is converted into a positive

number. The main loop successively uses addition to arrive

at the final answer. Before printing the answer, the number

is converted into a negative number if the product is

negative. This simple program could be improved by using

a faster multiplication algorithm using shifts and by

checking for overflow.

III. ANNA Simulator

The ANNA simulator starts by reading in a machine code

file generated by the assembler and loading it into memory.

Registers, including the program counter, are initialized to

zero. Then, the simulator waits for user input. A screen shot

of the simulator is shown in Figure 1.

There are six panes for the simulator:

 The Code pane shows the assembly instructions, the

address for each instruction, and an arrow to the current

instruction. It also shows which instructions currently

have enabled break points set.

 The Registers pane shows the contents of each register

including the program counter (PC). Any change to a

register is automatically reflected in the display.

 The Memory pane allows the user to show the contents

of memory of up to five addresses at a time. The user

can enter an address to see its contents. As with

registers, any changes to the memory location are

automatically updated as the program runs.

 The Break Points pane allows the user to set break

points at various points in the program. The program

will stop executing if the PC matches one of the four

break point addresses (if the break point is enabled).

 The Controls pane allows the user to control execution.

The LOAD button displays a dialog box where a user

can select a machine code file to load. The RESET

button resets the current program to its initial state. The

CONTINUE button causes the simulator to execute the

program until a breakpoint is encountered, the program

halts, or the user hits the STOP button. The NEXT

button directs the simulator to execute one instruction.

 The Output pane displays output values from out

instructions and other information. If an input

Multiplication program

Register usage:

r1: constant one

r2, r3: two numbers to multiply

r4: final answer

r5: stores sign of final answer

(0-positive, nonzero - negative)

store constant one into r1

lli r1 1

lui r1 1

 # get two input numbers

in r2

in r3

check for negative numbers

 bgz r2 &posA

not r5 r5 # flip sign

sub r2 r0 r2 # negate

posA: bgz r3 &loop

not r5 r5 # flip sign

sub r3 r0 r3 # negate

 # main loop: while r3 > 0

loop: bez r3 &done

add r4 r4 r2 # add another r2 to r4

sub r3 r3 r1 # decrement r3

 bez r0 &loop

 # output answer with proper sign

done: bez r5 &disp

 sub r4 r0 r4 # negate

disp: out r4

halt

FIGURE 1

SAMPLE ANNA ASSEMBLY PROGRAM

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

 38
th

 ASEE/IEEE Frontiers in Education Conference

 T1A-4

instruction is executed, a dialog box is displayed

prompting the user for an input value.

All output numbers are displayed in both hexadecimal

and in decimal as a two complement's signed number.

Addresses can be entered in either decimal or hexadecimal.

The addresses in the code pane are displayed in decimal.

Since ANNA is word addressable and does not have any

alignment restrictions, we choose to use decimal numbers

(opposed to hexadecimal numbers) to represent addresses.

The Linux version provides similar functionality except

that is completely text based like the GNU debugger gdb.

The commands are shown in Table II.

TABLE II

ANNA SIMULATOR COMMAND REFERENCE (LINUX)

Command Description

c Continue program

n Execute next instruction

R Reset program

r Print registers

m addr Display memory contents

t Toggle trace mode

b addr Set breakpoint

x addr Remove breakpoint

X Remove all breakpoints

h Help

q Quit

IV. Documentation and Source Code

One concern when using a new tool created by the instructor

is documentation as students do not have a book to fall back

on when they get stuck. Students receive a guide that

includes a description of the ANNA architecture and of each

instruction, a section on how to write assembly files and use

the assembler, a simulator reference, and a style guide that

includes a sample program. They also receive a quick

reference card that has the list of instructions and other

useful information.

The source code for the assembler and simulator is

available and is straightforward to modify. You may decide

to alter the instruction set, reduce the number of registers,

add new assembler directives, or enhance the simulator.

The source code can also be used in conjunction with

assignments. A sample assignment may ask the student to

implement a new instruction, alter the addressing mode of

certain instructions, or to add a new feature.

COURSE OVERVIEW

This section describes the computer organization course and

how the ANNA instruction set and tools are used. The

course was taught twice using ANNA. The course met for

fifty hours during the quarter and utilized a traditional

lecture format with some time devoted to in-class exercises.

It is a sophomore level course and requires the first two

C++ programming courses as prerequisites. The course is

required by all computer science majors. It is not required,

and typically not taken, by students in other majors

(including computer engineering). One of the two primary

goals of the course is for students to obtain an understanding

of computer hardware. The second primary goal is for

students to learn how C++ code is translated into assembly

and subsequently executed in hardware at the logic gate

level. In addition, there are key fundamental computer

science concepts that are required to be covered in this

course: floating point representation (approximation and

errors), finite state machines, and caching. A breakdown of

class content is shown in Table III.

TABLE III

TOPIC COVERAGE IN COURSE

Command Lecture Hours
Data representation 4
Digital design 10

CPU components and organization 3

Assembly programming 15
Datapath and pipelining 8

Memory and caching 5

Input / output 2
Review / exams 3

The assembly language programming unit starts by

presenting the ANNA instruction set and its architecture.

Significant time is spent on how to code loops, pointer

operations, array references, and function calls using ANNA

assembly language. In the latter part of the unit, focus shifts

to instruction set design issues. Students are exposed to

FIGURE 2

ANNA SIMULATOR

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

 38
th

 ASEE/IEEE Frontiers in Education Conference

 T1A-5

accumulator and stack based instruction sets. We also

discuss as a class, the pros and cons of variable length

instruction sets and other design decisions. To illustrate the

difference between ANNA and a real instruction set,

students are given the Intel Pentium IV instruction set and is

discussed in class. The unit concludes with a brief overview

of the entire compilation process including linking and

loading.

During the unit, students complete two assembly

language programming assignments. The first assignment

involves two to three smaller programming exercises. The

second assignment consists of one larger program that

requires the student to implement function calls. Grading is

predominantly based on functionality but style is also

considered (especially comments explaining how their

registers were used). Exams include questions where

students had to translate C++ code fragments to ANNA

assembly and questions that ask students to convert between

ANNA assembly and ANNA machine language.

The ANNA assembly language is also used in the

datapath and pipelining unit. As a class, we design a single-

cycle datapath for ANNA including a control ROM. This is

followed by designs for multiple-cycle and pipelined

implementations. Each of these designs use 13 of the 16

ANNA instructions (omitting in, out, and halt). Since the

ANNA instruction set is small and word addressable, the

datapath can presented in a clear and concise manner. Yet,

the instruction set illustrates all of the key datapath elements

in a CPU. For instance, tracing a lw instruction through the

datapath requires the following: fetching the instruction,

decoding the instruction, reading the address register,

selecting the proper operands, computing the effective

address, accessing memory, and writing the result to the

register file. Homework is pencil and paper – we do not use

any logical design software. A typical homework question

asks the student to add instruction X (where X is a new

assembly instruction that is magically added to ANNA) to

the datapath.

Comparing the course content to the prior two quarter

sequence, all topics are covered in less depth. Material that

was omitted when going from two courses to one includes:

floating point arithmetic (floating point representation is

covered), carry-save addition, logic equation simplification

(Karnaugh maps, Quine-McCluskey method), digital design

process, microprogramming, and actual input/output in

assembly . As you can see, most of the omitted material

involve low-level hardware. In essence, logic design is only

taught in enough depth so that students can understand the

microarchitecture of a CPU.

FEEDBACK

The computer organization course was taught using the

ANNA ISA three times: fall 2006, spring 2007, and spring

2008. In the first two quarters, the Linux assembler and

simulator were used. At the end of the quarter, the students

were given a questionnaire that contained questions

pertaining to how well the course objectives were met and

what they thought of the ANNA tools. This section discusses

the results based on the questionnaires and experience from

the instructor.

During the spring 2008 quarter, students were permitted

to use either the Windows or Linux tools. In addition, the

number of registers used in ANNA was reduced from 16 to

8. Having only seven registers (since register r0 is always

zero) forces the students to use the registers more

judiciously. This is especially true for function calls where

one register is the stack pointer, another stores the callee

address, and a third saves the return address. This leaves

only four registers for temporary values and parameter

passing enforcing the need for a register calling convention.

Since the spring quarter was not complete before the final

submission deadline, surveys were not but we did gather

informal feedback from the class.

I. ANNA Observations

With regard to assignments involving ANNA, all of the

students felt they learned a lot when completing the

assignments. All but one student felt that assembler and

simulator were easy to use. All but one student (the same

student as before) agreed that the documentation on ANNA

was sufficient. Students had different opinions regarding the

difficulty and time commitment with a majority thinking that

the assignments were somewhat difficult and somewhat time

consuming. Since we strive to have challenging assignments,

these results are encouraging.

In the first quarter (fall 2006), a few students (including

the student who didn't like ANNA above) felt that not

enough class time was devoted to implementing function

calls in assembly. As a result, more lecture time was spent

on this topic in the spring. This came at the expense of some

minor topics in other sections. Besides this change, there

were no other significant differences between the two course

offerings.

Our experience with ANNA is that we really felt that

students were learning when doing the programming. While

the Linux version seemed to work well, we felt a Windows

version would aid in the understanding since students can

see the changes to the registers and memory immediately

after executing an instruction.

In the spring quarter, students could use either the

Windows tools or the Linux tools. Most students, but not

all, opted to use the Windows versions of the tools. Based

on informal feedback, students felt that the tools were easy

to use and aided in the learning of the material. Students

also suggested some enhancements to the tools. Among the

top suggestions were adding line numbers for the assembler

editor so they could easily find errors and some mechanism

to map labels to addresses in the simulator.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

 38
th

 ASEE/IEEE Frontiers in Education Conference

 T1A-6

II. Course Outcomes

With regard to course outcomes, students are asked whether

each of the main topics of the course on a scale from 1 (not

covered) to 5 (extensively covered). Most students thought

most of the topics were well covered (4 on the 5 point scale).

No topic received a 2 or lower from any student but very

few topics received a 5. This is not surprising considering

the inherent lack of depth in the compressed course.

From our observations, we agree with the students on

the course outcomes. The area most lacking in our opinion is

in digital design. Without teaching a simplification

technique such as Karnaugh maps, it is hard for students to

design circuits and understanding the process of converting a

finite state machine into a hardware circuit. Spending more

time on this section would help students in the datapath

section. To accommodate this change, we would likely

eliminate or greatly reduce the coverage of the multiple

cycle datapath. It is our opinion that the single-cycle

datapath is sufficient for understanding the key concepts of

how a CPU is organized. Pipelining would still be included

as it is a good example of parallelism.

Based on results so far, the spring 2008 class showed no

significant difference in terms of class performance on

exams and assignments despite having access to the

Windows tools. However, there was one notable area of

improvement: students in the spring 2008 class had a better

grasp of function calls. It is important to note that this

improvement could be due to a variety of reasons: use of

Windows tools, reducing the number of registers, different

programming assignments, and variations in the lecture.

CONCLUSION AND FUTURE WORK

This paper describes ANNA, a simple MIPS-like assembly

language. ANNA is a 16-bit architecture with 16

instructions. It was successfully used in two offerings of a

course that combined assembly language programming and

computer organization.

One change to the ANNA assembly language is to

include an addi (add immediate) instruction. Incrementing

or adding by a constant amount is a common operation for

loops and stack pointer updates. Without this instruction,

students often dedicated register r1 for the constant one

throughout the program, not a common practice in assembly

language programming.

Students suggested possible enhancements to the

Windows tools. Two suggested enhancements, mentioned

earlier, are to add line numbers to the assembly editor and to

incorporate labels into the simulator. The latter suggestion

can be accomplished by storing the labels and the actual

instructions in the machine code file and modifying the code

listing window in the simulator.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

thoughtful reviews and advice. We would also like to thank

the students taking CSSE 251 at Seattle University during

the Fall 2006, Spring 2007, and Spring 2008 quarters for

their valuable feedback on ANNA and the course itself.

REFERENCES

[1] D. Ellard, D. Holland, N. Murphy, M. Seltzer. On the Design of a

New CPU Architecture for Pedagogical Purposes. Proceedings of the

Workshop on Computer Architecture Education. May 2002.

[2] B. Hatfield, M. Rieker, L. Jin. Incorporating Simulation and

Implementation into Teaching Computer Organization and
Architecture. Proceedings of the 35th ASEE/IEEE Frontiers in

Education Conference. Oct. 2005.

[3] D. Patterson, J. Hennessy. Computer Organization and Design: The
Hardware / Software Interface, 3rd Edition. Elsevier. 2005.

[4] D. M. Harris, S. L. Harris. Digital Design and Computer Architecture.

Elsevier. 2007.

[5] L. Null, J. Lobur. The Essentials of Computer Organization and

Architecture, 2nd Edition. Jones and Bartlett Publishers. 2006.

[6] L.L. Beck. System Software: An Introduction to Systems
Programming, 3rd Edition. Addison Wesley Longman, Inc. 1997.

AUTHOR INFORMATION

Eric Larson Assistant Professor, Seattle University,

elarson@seattleu.edu.

Moon Ok Kim, Undergraduate Student, Seattle University,

kimm@seattleu.edu.

