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Abstract— Regular expressions are a powerful string 
processing tool. However, they are error-prone and receive little 
error checking from the compiler as most regular expressions are 
syntactically correct. This paper describes EGRET, a tool for 
generating evil test strings for regular expressions. EGRET 
focuses on common mistakes made by developers when creating 
regular expressions and develops test strings that expose these 
errors. EGRET has found errors in 284 out of 791 regular 
expressions. Prior approaches to test string generation have 
traversed all possible paths in the equivalent nondeterministic 
finite state automaton leading to the generation of too many 
strings. EGRET keeps the set of test strings to a manageable 
number: Fewer than 100 test strings were generated for 96% of 
the regular expressions; a manageable 307 test strings were 
generated for the most complex regular expression. 

Keywords— testing; regular expressions; test generation 

I. INTRODUCTION 
Regular expressions are widely used in a variety of 

computer programming tasks such as processing stylized input, 
validating data entered into a form on a web page, and 
searching for different types of text. Despite their widespread 
use, regular expressions are error-prone. First, the "language" 
used to specify regular expressions is designed to be compact, 
using punctuation marks to represent different operations, 
allowing complex regular expressions to be written succinctly. 
Second, when the regular expression is compiled at run-time, 
only limited error-checking related to syntax is done. Most 
regular expressions are free of syntax errors.  

This paper describes the EGRET (Evil Generation of 
Regular Expression Tests) tool. EGRET takes a regular 
expression as input and generates test strings. The "evil" aspect 
of EGRET focuses on generating test strings to expose 
common errors made by programmers. Some strings generated 
by EGRET are actually intended to be rejected by the regular 
expression. EGRET creates two lists of test strings: accepted 
strings and rejected strings. A user can quickly scan both of 
these lists and identify strings that are incorrectly classified. 
Even if no bugs are found, the user has higher confidence that 
the regular expression is working as intended.  

 EGRET works by converting the regular expression into a 
specialized nondeterministic finite state automaton (NFA). The 
resulting NFA is traversed to obtain a set of basis paths. The 
strings that correspond to these paths form an initial set of test 
strings. These strings are processed further to generate 
additional strings. For each character set, character class, and 

wildcard, a set of interesting characters is created and one test 
string will be added for each interesting character. For each 
repeat quantifier, test strings are generated for different 
iteration counts of the corresponding substring that are near the 
boundaries. 

The design decisions of EGRET focus on common 
mistakes for regular expressions. In general, the regular 
expression language makes it easy to write regular expressions 
that are overly simple and accept more strings than it should. 
For example, a poor regular expression that accepts a floating 
point number is "[0-9,.]+". This will properly accept all 
floating point numbers but it will also accept strings such as 
"1,,00", "3.4.5", and simply ".". Writing a regular 
expression that properly rejects poorly formatted entries is 
more difficult. EGRET helps find these issues by generating 
strings that are likely to be incorrect. It has generated 
problematic strings such as ".@." for an e-mail regular 
expression and "200)00000000" for a phone number regular 
expression.  

Since the strings are manually analyzed, the number of test 
strings generated must be manageable. One approach is to 
traverse all of the paths in the NFA while limiting the number 
of iterations of any loops. However, this generates too many 
paths and resulting strings. EGRET does not suffer from path 
explosion problem in several ways. First, only a set of basis 
paths are traversed. The number of basis paths is linear while 
likely retaining all of the interesting combinations. Second, the 
number of iterations for repeat quantifiers is limited to values 
near the boundary. Lastly, a set of interesting characters is 
selected for each character set that is likely to find bugs 
without creating a string for each possible character.  

This paper makes the following research contributions: 

• A technique for generating regular expression test 
strings targeted at finding bugs. Using EGRET, we 
were able to find bugs in 284 out of 791 regular 
expressions extracted from RegExLib.com [11] and six 
Python programs. 

• Optimizations to the technique that minimize the 
number of test strings that are generated. 96% of the 
707 regular expressions generated fewer than 100 test 
strings. The most complex regular expression 
generated 307 test strings. 

• The EGRET tool and source code is available for use 
at: http://fac-staff.seattleu.edu/elarson/web/egret.htm. 

http://fac-staff.seattleu.edu/elarson/web/egret.htm


The remainder of the paper is organized as follows. Section 
II gives an overview of EGRET while section III gives more 
details on the test string generation process. Results are 
discussed in section IV. Section V outlines related work and 
section VI concludes. 

II. OVERVIEW 
The process of generating evil strings in EGRET is shown 

in Fig. 1. A Python wrapper takes the regular expression and 
passes it to a C++ engine. The regular expression engine 
developed by Bendersky [3] was used as a starting point and 
has been significantly modified. The engine parses the regular 
expression and converts it into an equivalent NFA. The NFA is 
traversed to get a set of basis paths forming the initial set of 
test strings. The last phase in the engine adds additional evil 
test strings. Then each test string is tested against the regular 
expression generating a list of accepted strings and a list of 
rejected strings. The lists are then displayed to the user. More 
details of the test string generation process are in Section III. 

A. User Interface 
EGRET contains a command-line interface and a graphical 

web interface. They both operate in a similar fashion. A user 
enters a regular expression and receives a list of accepted string 
and rejected strings. EGRET may also emit error and warning 
messages in certain situations. An optional feature allows users 
to see the contents of any groups for an accepted string. The 
web interface also allows the user to enter their own test string 
and determine if the string is accepted or rejected. The 
command-line interface also supports file input/output. 

B. Supported Regular Expression Elements 
A summary of what regular expression elements are 

supported is provided in TABLE I. The table is broken down 
into three groups: supported, ignored, and unsupported. The 
C++ engine ignores elements in the ignored group but test 
strings will be generated anyway. However, the results may be 
substandard depending on how the ignored element is used. If a 
regular expression contains an element that is in the 
unsupported group, EGRET aborts. Regular expressions that 
contain syntax errors are also rejected.  

EGRET only generates strings that are entire string matches 
but does check that the begin and end anchors are used 

correctly. The Python wrapper uses the method fullmatch 
to test the strings against the regular expression. Optional flags, 
such as multiline mode, are not used nor are they supported. 

III. GENERATING TEST STRINGS 
This section describes each of the four phases used in the 

generation of test strings and concludes with an example. 

A. Parser 
The parser is responsible for converting the regular 

expression into a parse tree. The parser also detects regular 
expressions that are poorly constructed. 

There are nine types of nodes in the parse tree: 

• ALTERNATION: Represents alternation '|'. 
• CONCATENTATION: Represents concatenation of 

two regular expression elements.  
• REPEAT: Represents all repeat quantifiers: ?, *, +, 

??, *?, +?, and user-defined repeats quantifier such as 
{2,5}. The lower bound and upper bound (if one 
exists) are stored with the node. Since EGRET is only 
focused on whether the entire string is accepted or 
rejected, the lazy quantifiers such as *? are treated the 
same as the corresponding greedy quantifier.  

• GROUP: Represents any set of parentheses. It could be 
a named group, a nameless group, or non-capturing 
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Fig. 1. Process for Generating Evil Test Strings 

TABLE I.  PYTHON REGULAR EXPRESSION SUPPORT 

Supported 

• Alternation: | 
• Repeat quantifiers: ?, *, +, ??, *?, +? 
• User-defined repeat quantifiers: {2,5} 
• Wildcards: . 
• Character sets: [A-Z\s_] 
• Character classes: \w 
• Groups: () 
• Anchors: ^, $, \A, \Z 

Ignored • Word boundaries: \b, \B 
• Lookahead / lookbehind assertions 

Unsupported 

• Non-printable ASCII characters 
• Non-ASCII characters 
• Newlines and carriage returns 
• Flags: ?i, ?m 
• Backreferences 
• Conditional patterns  

  



parentheses – no distinction is made between the three 
types in the generation of strings. 

• CHARACTER: Represents a specific individual 
character including escaped characters such as \( and 
characters specified using octal or hexadecimal values. 

• CHARACTER SET: Represents any construct that 
corresponds to a single character but there are several 
choices. This includes character sets (such as [A-
Z_;+]), character classes (such as \w), and wildcards 
'.'. A character set node retains the list of items that 
comprise the character set1 and a flag that indicates if 
the set is negated (using ^) or not.  

• CARET: Represents the ^ and the /A beginning-of-
string anchors. Since multiline mode is not supported, 
these two anchors are equivalent. 

• DOLLAR: Represents the $ and the /Z end-of-string 
anchors. Since multiline mode is not supported, these 
two anchors are equivalent. 

• IGNORED: Represents ignored elements as noted in 
TABLE I. 

B. Convert to NFA 
The parse tree is converted into a specialized NFA. A 

traditional approach (as described in [7]) is used to convert 
concatenation and the matching of individual characters. A 
transition between NFA states can either be an individual 
character, a character set, an anchor (^ or $), or an epsilon 
transition. Only one transition is generated for a character set, 
but the set of allowable characters is retained and used when 
creating evil strings. 

The translation of repeating constructs deviates from the 
traditional approach. Instead of creating a loop in the NFA, 
special "begin repeat" and "end repeat" states are respectively 
added to the beginning and end of each repeating construct. 
These states keep track of the type of construct (?, *, +, 
{n,m}) along with the acceptable ranges for the user-specified 
repeat quantifier. By representing the loops in this manner, the 
resulting NFA is a directed acyclic graph. 

C. Traverse the NFA 
The NFA is traversed to generate an initial set of test 

strings. A set of basis paths [20] is generated in a depth-first 
manner using the backtracking algorithm shown in Fig. 2. 
Generating basis paths takes O(n) time where n is the number 
of decision points. The only decision points in the NFA are due 
to alternation. If there are n alternation nodes, there are n + 1 
basis paths.  

During development, we tried alternative approaches: 
complete path coverage and state coverage (due to the nature 
of how the NFA is constructed, transition coverage is identical 
to state coverage). Complete path coverage generated too many 
paths to be reasonably analyzed by a person for many of the 
regular expressions. In Section IV-D, we show results for 
EXREX [16], a tool that uses full path coverage for traversal. 
State coverage did not generate enough paths causing the 

                                                           
1 Character classes can and wildcards must appear outside a character set, not 
in braces []. In these cases, a character set node with a single item is created. 

possibility to miss certain problems. This is best illustrated 
using the example in Section III-E. 

For each path, a string is formed by taking the characters 
from the transitions that comprise the path. For character set 
transitions, an acceptable character is chosen from the set. 
When a repeat quantifier is discovered, the substring between 
the "begin repeat" and "end repeat" states is noted. If the lower 
bound is zero or one, the substring is added once to the test 
string. In other words, the test string has one iteration of the 
substring. If the lower bound is two or more, the substring will 
be repeated until the lower bound is met. 

A path may contain the anchors ^ or $. No character is 
added to string for either anchor. Instead, error checking takes 
place for these errors: 

• A ^ anchor occurs after the first character. 
• A $ anchor occurs before the last character. 
• Some, but not all, strings start with an ^. 
• Some, but not all, strings end with an $. 

 
The first two errors are caused by a poorly formed regular 

expression. The last two errors target a common error: 
forgetting that alternation has lower precedence than the 
anchors. For example, using the regular expression 
"^cat|dog$" instead of "^(cat|dog)$" to match either 
the string "cat" or "dog". 

The output of this phase is an initial list of test strings that 
all satisfy the regular expression under two assumptions: (a) 
there are no errors due to an anchor being in the middle of the 
string and (b) the regular expression does not contain any 
ignored elements from TABLE I. We assume both of these 
assumptions are met in the next section. 

D. Create Evil Strings 
This phase takes the test strings generated by traversing the 

NFA and creates additional evil test strings. There are two 
methods for creating evil strings: (a) altering the number of 
iterations for each repeat quantifier and (b) changing the 
character used for a character set. To avoid an explosion of test 
strings, each repeat quantifier and character set is associated 
with a single path (and corresponding test string) that contains 
that element. New test strings are only generated for that path, 
not all of the paths that contain a particular element. 

FIND_BASIS_PATHS(curr_state, path) 
1 if curr_state is the final state: 
2    add path to list 
3    mark all states in path as visited 
4 else if curr_state.visited: 
5    next_state = lowest-numbered state that has a transition   

      from curr_state to next_state 
6    FIND_BASIS_PATHS(next_state, path + curr_state) 
7 else: 
8    for each next_state that has a transition from curr_state  

      to next_state: 
9    FIND_BASIS_PATHS(next_state, path + curr_state) 
Fig. 2. Backtracking Algorithm for Generating Basis Paths 



To alter the number of iterations for a repeat quantifier, the 
test string is divided into three parts: a prelude, the repeating 
substring, and a postlude. Adding new strings is simply 
concatenating these parts with the proper number of iterations 
for the repeating substring. The number of iterations depends 
on the repeat quantifier as summarized in TABLE II. The 
number of iterations in the initial test string are bold and 
italicized. Strings containing the other iteration counts are 
added during this step.2 

The choice of the number of iterations is inspired by 
boundary value testing. Many of the iteration counts violate the 
repeat quantifier causing the string to be rejected by the regular 
expression.3 This borrows a key idea from modified condition / 
decision coverage (MC/DC). Since the rest of string satisfies 
the regular expression, the number of iterations will 
independently determine whether the string is accepted or 
rejected by the regular expression. 

Altering character sets is done in a similar manner. The test 
string is divided into a prelude, the character from the character 

                                                           
2 For nonsensical bounds such as {0,0}, EGRET aborts with an error message.  
3 Unless the string could be accepted using a completely different path 
through the regular expression. That is why the test strings are tested against 
the regular expression at the end of the process. 

set, and a postlude. A set of interesting characters is created 
based on the contents of the character set. For each character in 
this interesting set, an additional test string is created using that 
character in place of the original character. 

The process of creating the set of interesting characters has 
two distinct phases. During the first phase, the contents of the 
character set are scanned and processed according to TABLE 
III. The Add to Set column indicates which characters should 
be added to the set. The Flags Set column indicates which, if 
any, of these four flags are set: uppercase, lowercase, digits, 
and punctuation. These flags are used in the second phase to 
possibly add more characters to the set. When adding 
characters to the set, there often is a choice of characters such 
as "a letter in range" or "a digit"; the character with the 
smallest ASCII value (closest to 'A', 'a', or '0') is chosen. This 
choice was made to keep the algorithm deterministic during 
development, testing, and evaluation. We envision adding an 
option to select the character randomly in the future.  

When processing character classes and wildcards, EGRET 
ensures that at least one character is chosen from each 
interesting subset. For instance, there will be at least one test 
string where the \w is replaced with an uppercase letter, 
another where it's replaced with a lowercase letter, a string 
where it's replaced with a digit, and a fourth string where it's 
replaced with an underscore.  

EGRET performs checks for poorly-constructed ranges. 
First, ranges must be confined to only digits, only uppercase 
letters, or only lowercase letters. Ranges such as A-z cause 
EGRET to abort with an error. Second, EGRET checks that 
ranges do not overlap with other ranges or characters specified 
within the same character set. During evaluation, this error 
only occurred twice but did flag this poorly written character 
set: "[1-31]". 

The second phase is best illustrated using an example. If the 
uppercase flag is set, one more uppercase letter will be added 
to the set if possible. The uppercase letter will be chosen such 
that it does not match any specified characters and is outside 
any specified ranges. For example, the character set "[AB-
FGR-UW]" will generate the characters: A (for the letter A), B 
(for the range B-F), G (for the letter G), R (for the range R-U), 
W (for the letter W), and H (representative uppercase letter that 
does not match any letter or range). An additional letter will 
not be added if all 26 uppercase letters are "covered" by either 
an individual letter or from a range. The most common 
situation where this occurs is when the entire range A-Z is 
specified. In this scenario, no additional letters are selected 
since A-Z covers the entire range of uppercase letters. The 
same approach is used for the lowercase and digit flags.  

The punctuation flag is handled differently. First, it is only 
set when all the punctuation marks are acceptable: opposite 
character classes such as \W, wildcards, and negated character 
sets using ^. When the flag is set, each punctuation mark that 
appears somewhere in the regular expression, not just in the 
character set, is added to set of interesting characters. This 
choice was made because the punctuation marks that appear 
elsewhere in the regular expression are the punctuation marks 
that are more likely to need to be excluded. Consider a regular 

TABLE II.  NUMBER OF ITERATIONS FOR REPEAT QUANTIFIERS 

Repeat Quantifier Number of Iterations 
* or {0,} 0, 1, 2 
+ or {1,} 0, 1, 2 
? or {0,1} 0, 1, 2 
{0,n} or {,n} 0, 1, n, n + 1 
{m,n} (m > 0 and n > m) m – 1, m, n, n + 1 
{m} or {m,m}(m > 0) m – 1, m, m + 1 
{m,} (m > 1) m – 1, m 

TABLE III.  CHARACTER SET PROCESSING 

Character Set Item Add to Set Flags Set 
Uppercase character x x Uppercase 
Lowercase character x x Lowercase 
Digit character x x Digit 
Other character x x none 
Uppercase range x-y a letter in range Uppercase 
Lowercase range x-y a letter in range Lowercase 
Digit range x-y a digit in range Digit 
Character class \w an uppercase letter 

a lowercase letter 
a digit 
_ (underscore) 

none  

Character class \d digit none 
Character class \s <space> none 
Character classes \W, \D, \S an uppercase letter 

a lowercase letter 
a digit 
_ (underscore) 
<space> 

Punctuation 

Wildcard . an uppercase letter 
a lowercase letter 
a digit 
<space> 

Punctuation 

Any negated character set an uppercase letter 
a lowercase letter 
a digit 
<space> 

Punctuation 

 



expression "\(.+\)". The '(' and ')' will be both be added to 
the set of interesting characters leading to the generation of test 
strings "(()" and "())". If there are no punctuation marks, 
the "_" is added to the set of interesting characters so that it 
contains at least one punctuation mark. 

This approach specifically targets a common problem – a 
wildcard is incorrectly used instead of a more restricted 
character set. To combat this problem, different types of 
characters and punctuation marks are added for wildcards. A 
related problem is a negated character set that does not fully 
specify what needs to be excluded. In addition, not all of the 
characters in the interesting set result in test strings that are 
accepted – some strings will be rejected. The goal is to give the 
user confidence that strings that should be accepted are 
accepted and strings that should be rejected are indeed rejected. 

E. Example 
An example of the process of generating strings from a 

regular expression is shown in Fig. 3. The regular expression, a 
slightly simplified version of a buggy regular expression from 
RegExLib.com [11], accepts a United States phone number in 
the form "(555)-555-5555". The parentheses around the 
area code are optional and a period '.' can be used instead of a 
dash '-' to delimit the different parts of the phone number. The 
regular expression also ensures that area codes do not start with 
0 or 1 as US area codes do not begin with those digits. 

The first part of Fig. 3 shows the NFA corresponding to the 
regular expression. The two alternation operators are 
represented by the two outgoing transitions at states 14 and 24. 
Epsilon (∈) edges allow transitions between states without 
consuming any input characters. Other transitions include 
individual characters ('(', '-' and ')') and character sets 
(includes[2-9], \d, and the wildcard .). The repeat 
quantifiers (?, {2}, {3}, and {4}) are associated with a pair 
of states one representing the beginning and one representing 
the end. For instance, state 6 is start state for {2} and state 9 is 
the end state for {2}. 

The next step is to generate the basis paths from the NFA. 
The first path chooses states 15 and 25 at the two decision 
points. This results in choosing the '-' in both alternation 
decisions. To form the test string, an acceptable value is chosen 
for each character set. For ranges, the lowest value is chosen 
meaning that 2 is chosen for the range [2-9] and 0 is chosen 
for \d. With these choices, the test string "(200)-000-
0000" is formed. 

A second path is found by backtracking to state 24 and 
choosing state 27 instead. This means that a wildcard is used 
instead of the '-'. For wildcards, the lowercase 'a' is chosen 
resulting in a problematic test string of "(200)-000a0000". 
The third and final basis path is created by backtracking to 
state 14 and choosing state 15 resulting in the test string 
"(200)a000-0000". 

To illustrate the importance of basis paths, imagine the 
wildcards are actually periods (like the author intended). The 
author likely intended if the test string has a dash at state 14, 
there would also be a dash at state 24. Similarly, if the test 

string has a period at state 14, there should also be a period at 
state 24. This is a common problem in where the author of the 
regular expression forgets to use a backreference. Generating 
paths to obtain state coverage could result in only two paths: 
one that chooses both dashes and one that chooses both 
periods. By using basis path coverage, three paths are 
generated guaranteeing there will be at least one path that 
chooses a period at one decision point and a dash at the other.  

The next phase generates additional evil strings by 
modifying the iteration counts for repeat qualifiers and by 
choosing different characters for character sets. For the ? 
represented in state 3, the corresponding substring for the 
repeat quantifier is simply the string "(". Based on TABLE II, 
a string is created with no iterations "200)-000-0000" and 
a string is created with two iterations "((200)-000-0000". 
Even though state 3 appears in all three paths, this modification 
only occurs in one of the paths (path 1 in this case). The same 
modifications are applied to the ? represented in state 13.  

State 9 represents the {2} repeat quantifier. The substring 
between the begin state (state 6) and the end state is the string 
"0". In the initial path string, this string is repeated forming the 
string "00" which satisfies the {2} requirement. New strings 
are created, again using TABLE II, to create paths that have 
one iteration "0" and three iterations "000". Similar 
modifications are applied to states 23 and 33. 

A character set transition occurs between states 4 and 5 
with the character set [2-9]. According to TABLE III, a 
value in the range is chosen (2 in this case) and the digit flag is 
set. By setting the digit flag, an additional value is chosen 
outside the range: 0 is selected from either 0 or 1. This forms 
the test string "(000)-000-0000". As with repeat 
quantifiers, this modification is only applied to one path. 

The wildcard between states 17 and 18 requires several 
different characters to be used. First, TABLE III indicates 
different strings using an uppercase letter ('A'), a lowercase 
letter ('a'), a digit ('0'), and a space. In addition, the punctuation 
flag is set. This means that all punctuation marks that appear 
elsewhere in the regular expression must be used in place of 
the wildcard in a test string. In this example, the punctuation 
marks consist of '(', ')', and '-'. The initial string uses the 
lowercase letter 'a' so six new strings are created by replacing 
the 'a' with each of these: 'A', '0', ' ', '(', ')', and '-'. The string 
with the '-' is a duplicate of the initial test string "(200)-
000-0000" so it is discarded. The same set of characters is 
used to replace the wildcard between states 27 and 28. 

The three \d character classes do not require any 
modification as the interesting set of characters only has one 
character: the digit '0'. Since the initial test string already uses 
this character, no additional test strings are generated. 

In total, 21 additional test strings are created during the evil 
string generation phase. These 21 strings are added to the 3 
initial test strings to create a list of 24 test strings. The 24 
strings are tested against the regular expression to determine if 
they match or not. The list of accepted strings and rejected 
strings are displayed to the user. 



By scanning the list of accepting strings, the user should be 
able to identify they forgot to escape the period so the period is 
treated as a wildcard. As a result it permits phone numbers 
with 11 digits, as denoted by the string "(200)0000-0000", 
to be incorrectly accepted. The user can also see that 
improperly formatted phone numbers "(200-000-0000" 
and "200)-000-0000" are accepted. 

The rejected strings do not reveal any bugs in this example. 
However, they do provided the user confidence that phone 
numbers with area codes that start with 0 or 1 are rejected since 

"(000)-000-0000" is rejected. It also assures the user that 
a phone number with the incorrect number of digits will be 
rejected (once the wildcard problem is fixed). 

IV. RESULTS 
To evaluate the approach, we used regular expressions 

from the regular expression library RegExLib.com [11]. The 
library has eight primary categories as shown in TABLE IV. 
We extracted every regular expression from these eight 
categories. Some of the regular expressions were not written 

Regular expression:  \(?[2-9]\d{2}\)?(-|.)\d{3}(-|.)\d{4} 

NFA: 

1 3 6 8 94 190 2 5 7 10 11 12 13 14

15 16

17 18

21 23 2920 22 30 31 32 3324

25 26

27 28

Begin
?

End
?

Begin
{2}

End
{2}

Begin
?

End
?

Begin
{3}

End
{3}

Begin
{4}

End
{4}

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ 

∈ 

∈ 

∈ 

∈ 

∈ 
‘(‘ [2-9] ‘)‘

\d

‘-‘

Wild
card(.)

Wild
card(.)

‘-‘

∈ \d ∈ ∈ 

∈ 

∈ ∈ 

∈ 

∈ ∈ ∈ \d

 
Basis paths: 

1: 0-…-14-15-16-19-…-24-25-26-29-…-33 
2: 0-…-14-15-16-19-…-24-27-28-29-…-33 
3: 0-…-14-17-18-19-…-24-25-26-29-…-33 

Initial Strings: 

(200)-000-0000 
(200)-000a0000 
(200)a000-0000 

 

Generate Additional Strings: 

State 3 (path 1): Replace '(' with '' and '(('  
State 5 (path 1): Replace '2' with '0'  
State 9 (path 1): Replace '00' with '0' and '000'  
State 13 (path 1): Replace ')' with '' and '))'  
State 18 (path 3): Replace 'a' with 'A', '0', ' ', '(', ')', and '-'  
State 23 (path 1): Replace '000' with '00' and '0000'  
State 28 (path 2): Replace 'a' with 'A', '0', ' ', '(', ')', and '-' 
State 33 (path 1): Replace '0000' with '000' and '00000' 

 

  

0 and 2 iterations for ? 
one digit outside [2-9] 
1 and 3 iterations for {2} 
0 and 2 iterations for ? 
uppercase letter, digit, space, and each punctuation mark for wildcard . 
2 and 4 iterations for {3} 
uppercase letter, digit, space, and each punctuation mark for wildcard . 
3 and 5 iterations for {4} 

 
Accepted Strings: 

(200) 000-0000 
(200)(000-0000 
(200))000-0000 
(200)-000 0000 
(200)-000(0000 
(200)-000)0000 
(200)-000-0000 
(200)-00000000 
(200)-000A0000 
(200)-000a0000 
(200)0000-0000 
(200)A000-0000 
(200)a000-0000 
(200-000-0000 
200)-000-0000 
 

Rejected Strings: 

((200)-000-0000 
(000)-000-0000 
(20)-000-0000 
(200))-000-0000 
(200)-00-0000 
(200)-000-000 
(200)-000-00000 
(200)-0000-0000 
(2000)-000-0000 

Fig. 3. Example for Generating Test Strings  



for Python – these were converted to Python regular 
expressions. A few regular expressions were excluded because 
they contained an element that was not supported in Python 
(the most common being Unicode categories such as 
\p{Letter}). There is a total of 785 regular expressions that 
are supported in Python. Of these 785 regular expressions, 93 

contain an element that is not supported by our tool (see 
TABLE I). Testing was carried out using the 692 remaining 
regular expressions. 

In addition, we manually extracted regular expressions 
from six different Python programs as shown in TABLE IV. 
We did not include regular expressions for substitutions, splits, 
or regular expressions that involved a (non-constant) variable. 
From these six programs, 104 regular expressions were 
extracted. Five regular expressions contained unsupported 
elements resulting in 99 regular expressions to test. 

A. Bugs Found 
The bug finding capability was evaluated by looking at the 

output generated by EGRET. First, any warning or error 
messages were investigated. A bug occurs if the message 
clearly points to a bug. Second, the generated strings were 
analyzed. A bug occurs if any of the accepted strings should be 
rejected and any of the rejected strings should be accepted. 
Bugs were divided into seven categories plus an other 
classification for bugs that don't fall into one of the earlier 
categories. TABLE V describes the seven categories. For each 
category, an actual buggy regular expression is given along 
with the offending error message or generated test string. The 
first two errors in TABLE V (bad range and anchor usage) are 
exclusively detected using error messages. Character set bugs 
are most often detected by analyzing test strings but could be 
detecting an error message in some cases. The other four types 
of bugs are exclusively caught by analyzing test strings – no 
error messages exists. Bugs found in the other category were 
all caught by analyzing test strings except for four regular 
expressions that contained syntax errors.  

The act of determining bugs is subjective. The first three 
categories (bad range, anchor usage, character set) in TABLE 
V were straightforward to evaluate – they all refer to mistakes 
that are more similar to syntax errors than logical flaws in the 
regular expression. These errors are also easy to fix when 
detected. The fourth category (delimiter mismatch) was also 
straightforward to detect but the bugs are often not that 
significant. For example, it may not matter if the regular 
expression accepts poorly formatted phone numbers such as 
"555-555.5555" or "(555555-5555" provided the correct 
number of digits are provided. The last three categories 
(negation, wildcard, wrong repeat) along with all the bugs in 
the other classification are more subjective.  

Fortunately, each regular expression in RegExLib.com 
contains a brief description. Unfortunately, these descriptions 
often lacked detail on what precisely should be accepted or 
rejected. We often had to infer what the author was to trying to 
accomplish with a given regular expression. For issues found 
in the actual Python programs, we did not investigate the 
source code further to determine if additional checks were 
present to mitigate the bug. In all cases that we detected a bug, 
we felt it was something worthy of additional investigation.  

TABLE VI shows the number of bugs found across the 
different categories and programs: 284 of the 791 (36%) 
regular expressions contained a bug. Note that several regular 
expressions contained multiple bugs so the total number of 
bugs (347) is higher than the number of the buggy regular 

TABLE IV.  REGULAR EXPRESSIONS USED IN EVALUATION 

 
  Regexes Tested Not 

supported 

RegExLib 
Library 
Category 

address / phone 104 98 6 
dates / time 135 117 18 
email 38 33 5 
markup / code 63 50 13 
misc 173 150 23 
numbers 107 102 5 
string 91 73 18 
uri 74 69 5 

Python 
Program 

advas (0.2.5) 16 16 0 
beautifulsoup4 (4.3.2) 7 7 0 
pychecker (0.8.19) 4 4 0 
pymetrics (0.8.1) 6 5 1 
tables (3.1.1) 8 8 0 
Trac (1.0.1) 63 59 4 

 
Library total 785 692 93 

 
Programs total 104 99 5 

 
Total 889 791 98 

 
TABLE V.  TYPES OF REGULAR EXPRESSION BUGS 

Bad Range: Any range that includes anything that is not a letter or digit. 

Example: ^[D-d][K-k]-[1-9]{1}[0-9]{3}$ 
Error message: ERROR: Range is likely incorrect: D-d  
Anchor Usage: Incorrect use of ^ and $ anchors. 

Example: ^[-+]?\d+(\.\d+)?|[-+]?\.\d+?$ 
Error message: 
WARNING: some but not all strings start with a ^ 
String with ^ anchor:    +0.0 
String with no ^ anchor: +.0 
WARNING: some but not all strings end with a $  
String with $ anchor:    +.0 
String with no $ anchor: +0.0 
Character Set: Using regex elements incorrectly in a character set or used 
braces instead of parentheses. 

Example (taken from a time regular expression): 
[AM|PM|am|pm]{2,2} 
Incorrectly accepted strings: Mm, |m 
Delimiter Mismatch: Not having consistent delimiters or incomplete 
parentheses, braces, or brackets.  

Example: href[ ]*=[ ]*('|\")([^\"'])*('|\") 
Incorrectly accepted strings: href = 'a", href = "a' 
Negation: Using negation in a character set (using ^) or using an opposite 
character class (such as \D) but not removing all possibilities. 

Example: 
href=[\"\']?((?:[^>]|[^\s]|[^"]|[^'])+)[\"\']? 
Incorrectly accepted string: href=''' 
Wildcard: Using a wildcard when some possibilities should be excluded 
or forgetting that the "." is a wildcard. 

Example (email address, \x2E is a period): (\w+?@\w+?\x2E.+) 
Incorrectly accepted string: a@a.. 
Wrong Repeat: Using the wrong repeat quantifier. 

Example (matching US currency with either 0 or 2 digits past the decimal 
point): ^\d+(?:\.\d{0,2})?$ 
Incorrectly accepted string: 0.0 
 



expressions (284). For each of the seven categories, there were 
at least 20 bugs. The most common mistake was a delimiter 
mismatch – many due to regular expressions that accept 
incorrectly formatted phone numbers and dates. These results 
demonstrate that EGRET is effective at finding bugs. 

Of the 347 bugs, 48 were detected using an error message 
and 299 were detected by analyzing the test strings. Of the 48 
detected by error message: 22 are anchor usage errors, 22 are 
bad ranges, and 4 are cases where the regular expression has a 
syntax error. There are three false alarms, situations where the 
error message did not refer to a bug. Two of these cases were 
situations where an anchor usage warning was emitted but the 
author intended to have some matches that match the beginning 
of the line and some that do not. The third false alarm signaled 
a character set with overlapping ranges. While the character set 
was sloppily written, it was indeed correct. 

The remaining 299 bugs were detected by analyzing the 
generated strings. All but three bugs were detected by finding a 
string that was accepted but should have been rejected. Three 
bugs were detected by finding a string that was rejected that 
should have been accepted. Two bugs are wrong repeat bugs 
and the third bug was in the other category. Note that, by 
definition, wrong repeat is the only type of the seven bug types 
in that could be detected in this manner.  

Here is one of the faulty regular expressions: 
 ^(\d{1,3}'(\d{3}')*\d{3}(\.\d{1,3})?| 
\d{1,3}(\.\d{3})?)$    

According to the description, this regular expression can 
accept up to three digits past the decimal point. However, the 
string "0.00" is generated and rejected by the regular 
expression. The error is the last {3} should be {1,3}. Even 
though only three bugs were detected using rejected strings, 
there is the potential for more bugs. For example, several 
floating point number regular expressions allowed ".0" for a 
number but rejected "0." (or vice versa). There was not 
enough information in the description to determine if this was 
the intended behavior or a bug. A user creating a regular 
expression for floating point values can look at the accepted 
and rejected values and determine whether both sets look 

correct. The use of whitespace was another situation where 
looking at both accepting and rejecting strings was helpful.  

In addition, 59 regular expressions contained an ignored 
element from TABLE I. Out of these 59 regular expressions, 
13 (22%) were considered buggy. As noted earlier, the tool 
generates substandard results when a regular expression 
contains an unsupported element so this lower percentage is 
not surprising. 

B. Strings Generated 
In this section, we explore the number of strings generated 

by the tool. For this section, we only consider the 707 fully-
supported regular expressions; the 59 regular expressions that 
contain an ignored element and the 25 regular expressions that 
abort with an error message are not considered. Fig. 4 divides 
the regular expressions into histogram buckets based on how 
many test strings were generated. 

Most regular expressions generated a relatively few number 
of strings. Over half (55%) of the regular expressions 
generated fewer than 20 strings, 80% generated fewer than 40 
strings, and 96% generated fewer than 100 strings. Fourteen 
regular expressions generated more than 130 strings. The most 
strings generated by a regular expression was 307 strings. 

The number of strings generated is loosely proportional to 
the number of tokens in the regular expression. The scatterplot 
in Fig. 5 shows this relationship. As you can see, many regular 
expressions have a small number of tokens and subsequently a 
small number of generated strings. A higher number of tokens 
results in a higher number of paths but the types of regular 
expression elements also plays a role in the number of test 
strings. Fig. 5 also shows that the number of test strings is 
roughly linear with respect to the number of tokens. This 
shows that our approach scales to large regular expressions. 

Fig. 4 also shows the number of buggy regular expressions 
for each histogram bucket. Not surprisingly, there were 
relatively fewer bugs for smaller regular expressions. Of the 
202 regular expressions with 9 or fewer test strings, 24 (12%) 
were buggy. Over half (115 of 201 or 57%) of the regular 
expressions with at least 30 test strings contained a bug. This 

TABLE VI.  BUGS FOUND  

Category / Program 
Regexes 
Tested 

Buggy 
Regexes 

Bad 
Range 

Anchor 
Usage 

Character 
Set 

Delimiter 
Mismatch Negation Wild 

card 
Wrong 
Repeat Other  

address / phone 98 40 4 5 6 20 3 3 7 6  
dates / time 117 59 2 2 18 26 0 1 5 26  
email 33 12 3 0 1 1 2 2 0 5  
markup / code 50 23 0 0 0 9 7 10 1 4  
misc 150 51 4 8 6 11 9 8 5 12  
numbers 102 23 0 2 0 0 0 4 6 13  
string 73 31 2 4 9 2 2 1 2 12  
uri 69 26 4 1 1 2 4 3 1 11  
advas 16 0 0 0 0 0 0 0 0 0  
beautifulsoup 7 3 0 0 0 0 1 1 0 1  
pychecker 4 1 0 0 0 1 0 0 0 0  
pymetrics 5 0 0 0 0 0 0 0 0 0  
tables 8 0 0 0 0 0 0 0 0 0  
Trac 59 15 3 0 0 0 3 8 1 0  
Regex Library 692 265 19 22 41 71 27 32 27 89  
Programs 99 19 3 0 0 1 4 9 1 1  
Total 791 284 22 22 41 72 31 41 28 90  
            



indicates that writing complex regular expressions correctly is 
hard, thereby motivating the need for a tool like EGRET. 
These figures show that, while having a moderate number of 
test strings is helpful, it is not necessary to have an excessive 
number of test strings in order to find bugs. 

C.  Performance 
Performance was measured for each regular expression by 

calculating the time it took EGRET to run in command line 
mode on a Linux machine with a 3.4 GHz Intel I7-4770 Quad 
Core processor with 8 GB of memory. In each case, EGRET 
took less than a second. The most complex regular expression 
in our study (the point in the upper-right corner of Fig. 5) 
consists of 826 tokens. This regular expression generated the 
most strings (307) and was the slowest (0.3 seconds). 

Another aspect of performance is the time it takes to 
manually process the list of the regular expressions and look 
for items that are incorrect. During our evaluation, we 
manually looked at generated tests for each regular expression 
and informally noted how long it took to analyze the two lists. 
Our biggest challenge was figuring out what the regular 
expression was precisely trying to accomplish. For most buggy 
regular expressions, strings that should not be accepted stuck 
out and were easy to identify. Even with regular expressions 
that had over 100 generated test strings, it was generally 
straightforward to analyze the lists. A more formal usability 
study with likely users is left as future work. 

D. Comparison to EXREX  
EGRET was compared to another regular expression string 

generation tool EXREX [16]. The comparison looks at bug 
finding capabilities and number of strings generated. 

EXREX converts the regular expression into an NFA like 
EGRET but with two key differences. First, repeat quantifiers 
follow a normal NFA construction that creates a loop in the 
NFA. The second key difference is that each edge is either an 
epsilon transition or an individual character. Character classes 
and sets will add one edge for each valid character. For 
wildcards, opposite character classes, and negated character 
sets, the initial set is the range of ASCII values from 32 (space) 
to 122 (lowercase 'z'). This includes all digits, uppercase 
letters, lowercase, and most punctuation marks.4 To generate 
the strings, EXREX simply generates strings for each unique 
path. For loops formed by repeat quantifiers, the number of 
iterations is capped by a user-defined parameter. The default 
limit is 20 but we set the parameter to 2 during this evaluation 
for a more fair comparison.  

The number of generated test strings is massive as seen in 
TABLE VII. For instance, a regular expression consisting of a 
single wildcard "." generates 91 test strings, one for each of 
the ASCII characters from 32 to 122. The regular expression 
".+" generates 8,372 strings (91 one-character strings + 912 
two-character strings). Looking at TABLE VII, only 98 of the 
regular expressions generated fewer than 100 test strings. 193 
regular expressions generated over one million test strings and 
many were several orders of magnitude greater than one 
million. One regular expression generated 6.33 × 1049 paths.5  

 The set of test strings generated by EXREX was infeasible 
to manually analyze. To gauge the bug finding capabilities, we 
created a test suite that contains simple regular expressions 
with one to two buggy regular expressions for each type of bug 
in TABLE V. This experiment found that EXREX is capable 
of finding all bug types except for anchor usage since anchors 
are essentially ignored. However, the large number of paths 

                                                           
4 Unlike EGRET, it excludes {, |, }, and ~ which have ASCII values 123-126 
but it would not be difficult to update EXREX to include these values. 
5 EXREX has a mode that will print out the number of strings instead of 
generating all of them. 
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generated will make it difficult for users to identify incorrectly 
accepted strings especially for negation and wildcard bugs 
since the regular expressions associated with those bugs 
introduce a large number of transitions in the underlying NFA. 
Since EXREX does not generate any rejected strings, it could 
miss bugs that rely on rejected strings being accepted. 

During our evaluation, we detected one instance where 
EXREX generated a test string that clearly indicated a bug that 
was not generated by EGRET. It was for the regular expression 
for floating point numbers: "\d*\.\d*". EXREX generated 
the incorrect string of ".". This was not generated for EGRET 
since it never generates a string where both \d* elements 
correspond to zero iterations. Due to the large number of 
strings generated by EXREX, it was infeasible to perform a 
systematic study to determine if other such cases existed.  

V. RELATED WORK 
There are many tools available for testing regular 

expressions. EXREX [16] generates all accepted test strings 
subject to a limit by repeat quantifiers, by traversing the 
equivalent NFA. EGRET is compared to EXREX in Section 
IV-D. Another tool for generating regular expression strings is 
at Uttool [5]. It randomly generates test strings for a regular 
expression. The user specifies the number of strings to 
generate. Other tools [2][12][13] are used to test regular 
expressions but the strings must be provided by the user. A 
nice feature of these tools is they display a visual 
representation of how the test string matches the regular 
expression. These tools complement EGRET in that when a 
problematic test string is generated, these tools can be used to 
debug the regular expression. RegExpert [4] provides a 
graphical representation of the corresponding automata for a 
regular expression. 

Significant research attention has been placed on 
automatically generating tests, typically using symbolic 
execution approaches [14][17]. Reggae [9] describes an 
approach on how to incorporate regular expressions into the 
test generation process. Their goal is to obtain branch coverage 
so they are most concerned with quickly generating a string 
that is accepted by the regular expression. Rex [19] is a 
general-purpose solver of regular expressions constraints. It 
uses a symbolic finite automaton [18], an NFA with symbolic 
transitions that represent character sets and ranges, similar to 
the NFA used in EGRET. Instead of generating test strings, the 
symbolic finite automaton is used within a constraint solver to 
check feasibility. Performance and scalability are concerns 
with constraint solvers so the underlying automata are 
optimized and minimized. Aydin et al. [1] developed a 

technique to create test strings based on vulnerabilities. A 
vulnerability signature is represented using an automaton. The 
automaton is traversed to create test strings using different 
coverage criteria: state coverage, transition coverage, and path 
coverage. HAMPI [8] is a string constraint solver that allows 
users to specify constraints in a variety of ways including using 
regular expressions. 

Additional research in regular expressions includes a type 
system designed by Spishak et al. [15]. The type system is used 
to catch regular expression syntax errors and cases where an 
invalid group number is used during extraction. Liu and Miao 
[10] describe how to create test cases from a regular expression 
and describe how to decompose the regular expression when it 
is too long. They use regular expressions derived from finite-
state models as a form of model-based testing. However, their 
approach could be applied to normal regular expressions as 
well. Hodován et al. [6] analyze regular expressions that appear 
in JavaScript scripts on web pages. They found that many of 
the regular expressions are frequently used and showed that 
caching compiled regular expressions improves performance.  

VI. CONCLUSION AND FUTURE WORK 
This paper describes EGRET, a tool for generating test 

strings for a regular expression. Developers can manually scan 
the list of strings to determine if a string is incorrectly accepted 
or incorrectly rejected. Using EGRET, we found 284 out of 
791 regular expressions to be buggy. EGRET improves upon 
existing work by generating a moderate amount of strings that 
are likely to focus on mistakes made by the developer. 307 
strings were generated for the most complex regular 
expression; fewer than 100 test strings were generated for 96% 
of the regular expressions. 

There are several avenues of future work. The most 
obvious place to start is to increase the level of support for 
regular expressions. Based on how frequently they occurred in 
the regular expressions used in the study, it is worth adding 
support for backreferences, lookahead and lookbehind 
assertions, and flags. We also would like to support regular 
expressions from other languages beyond Python. Second, we 
would like to better explore some of the tradeoffs EGRET 
makes in terms of keeping the number of generated strings low. 
We already noted one missed bug; a more systematic study is 
needed. Lastly, EGRET could be expanded to detect and/or 
warn about certain types of errors instead of relying on a test 
string that exposes the error. For instance, the character set 
"[A|B|C]" is likely incorrectly constructed because the | 
appears twice. However, error checking of this sort would need 
to be carefully constructed to minimize false alarms. 

In addition, more improvements to the user interface are 
planned. One modification includes the ability to save test 
strings since the faulty string may not be generated again after 
a regular expression is rewritten during debugging. A usability 
study with likely users is also needed. 
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TABLE VII.  NUMBER OF STRINGS GENERATED BY EXREX 

Number of Strings Regexes  
1-9 35  
10-99 63  
100-999 94  
1,000-9,999 123  
10,000-99,999 92  
100,000-999,999 64  
1,000,000+ 193  
ERROR 19  
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