
Generating Evil Test Strings for Regular Expressions

Eric Larson and Anna Kirk
Computer Science and Software Engineering

Seattle University
Seattle, WA USA

elarson@seattleu.edu and kirka1@seattleu.edu

Abstract— Regular expressions are a powerful string
processing tool. However, they are error-prone and receive little
error checking from the compiler as most regular expressions are
syntactically correct. This paper describes EGRET, a tool for
generating evil test strings for regular expressions. EGRET
focuses on common mistakes made by developers when creating
regular expressions and develops test strings that expose these
errors. EGRET has found errors in 284 out of 791 regular
expressions. Prior approaches to test string generation have
traversed all possible paths in the equivalent nondeterministic
finite state automaton leading to the generation of too many
strings. EGRET keeps the set of test strings to a manageable
number: Fewer than 100 test strings were generated for 96% of
the regular expressions; a manageable 307 test strings were
generated for the most complex regular expression.

Keywords— testing; regular expressions; test generation

I. INTRODUCTION
Regular expressions are widely used in a variety of

computer programming tasks such as processing stylized input,
validating data entered into a form on a web page, and
searching for different types of text. Despite their widespread
use, regular expressions are error-prone. First, the "language"
used to specify regular expressions is designed to be compact,
using punctuation marks to represent different operations,
allowing complex regular expressions to be written succinctly.
Second, when the regular expression is compiled at run-time,
only limited error-checking related to syntax is done. Most
regular expressions are free of syntax errors.

This paper describes the EGRET (Evil Generation of
Regular Expression Tests) tool. EGRET takes a regular
expression as input and generates test strings. The "evil" aspect
of EGRET focuses on generating test strings to expose
common errors made by programmers. Some strings generated
by EGRET are actually intended to be rejected by the regular
expression. EGRET creates two lists of test strings: accepted
strings and rejected strings. A user can quickly scan both of
these lists and identify strings that are incorrectly classified.
Even if no bugs are found, the user has higher confidence that
the regular expression is working as intended.

 EGRET works by converting the regular expression into a
specialized nondeterministic finite state automaton (NFA). The
resulting NFA is traversed to obtain a set of basis paths. The
strings that correspond to these paths form an initial set of test
strings. These strings are processed further to generate
additional strings. For each character set, character class, and

wildcard, a set of interesting characters is created and one test
string will be added for each interesting character. For each
repeat quantifier, test strings are generated for different
iteration counts of the corresponding substring that are near the
boundaries.

The design decisions of EGRET focus on common
mistakes for regular expressions. In general, the regular
expression language makes it easy to write regular expressions
that are overly simple and accept more strings than it should.
For example, a poor regular expression that accepts a floating
point number is "[0-9,.]+". This will properly accept all
floating point numbers but it will also accept strings such as
"1,,00", "3.4.5", and simply ".". Writing a regular
expression that properly rejects poorly formatted entries is
more difficult. EGRET helps find these issues by generating
strings that are likely to be incorrect. It has generated
problematic strings such as ".@." for an e-mail regular
expression and "200)00000000" for a phone number regular
expression.

Since the strings are manually analyzed, the number of test
strings generated must be manageable. One approach is to
traverse all of the paths in the NFA while limiting the number
of iterations of any loops. However, this generates too many
paths and resulting strings. EGRET does not suffer from path
explosion problem in several ways. First, only a set of basis
paths are traversed. The number of basis paths is linear while
likely retaining all of the interesting combinations. Second, the
number of iterations for repeat quantifiers is limited to values
near the boundary. Lastly, a set of interesting characters is
selected for each character set that is likely to find bugs
without creating a string for each possible character.

This paper makes the following research contributions:

• A technique for generating regular expression test
strings targeted at finding bugs. Using EGRET, we
were able to find bugs in 284 out of 791 regular
expressions extracted from RegExLib.com [11] and six
Python programs.

• Optimizations to the technique that minimize the
number of test strings that are generated. 96% of the
707 regular expressions generated fewer than 100 test
strings. The most complex regular expression
generated 307 test strings.

• The EGRET tool and source code is available for use
at: http://fac-staff.seattleu.edu/elarson/web/egret.htm.

http://fac-staff.seattleu.edu/elarson/web/egret.htm

The remainder of the paper is organized as follows. Section
II gives an overview of EGRET while section III gives more
details on the test string generation process. Results are
discussed in section IV. Section V outlines related work and
section VI concludes.

II. OVERVIEW
The process of generating evil strings in EGRET is shown

in Fig. 1. A Python wrapper takes the regular expression and
passes it to a C++ engine. The regular expression engine
developed by Bendersky [3] was used as a starting point and
has been significantly modified. The engine parses the regular
expression and converts it into an equivalent NFA. The NFA is
traversed to get a set of basis paths forming the initial set of
test strings. The last phase in the engine adds additional evil
test strings. Then each test string is tested against the regular
expression generating a list of accepted strings and a list of
rejected strings. The lists are then displayed to the user. More
details of the test string generation process are in Section III.

A. User Interface
EGRET contains a command-line interface and a graphical

web interface. They both operate in a similar fashion. A user
enters a regular expression and receives a list of accepted string
and rejected strings. EGRET may also emit error and warning
messages in certain situations. An optional feature allows users
to see the contents of any groups for an accepted string. The
web interface also allows the user to enter their own test string
and determine if the string is accepted or rejected. The
command-line interface also supports file input/output.

B. Supported Regular Expression Elements
A summary of what regular expression elements are

supported is provided in TABLE I. The table is broken down
into three groups: supported, ignored, and unsupported. The
C++ engine ignores elements in the ignored group but test
strings will be generated anyway. However, the results may be
substandard depending on how the ignored element is used. If a
regular expression contains an element that is in the
unsupported group, EGRET aborts. Regular expressions that
contain syntax errors are also rejected.

EGRET only generates strings that are entire string matches
but does check that the begin and end anchors are used

correctly. The Python wrapper uses the method fullmatch
to test the strings against the regular expression. Optional flags,
such as multiline mode, are not used nor are they supported.

III. GENERATING TEST STRINGS
This section describes each of the four phases used in the

generation of test strings and concludes with an example.

A. Parser
The parser is responsible for converting the regular

expression into a parse tree. The parser also detects regular
expressions that are poorly constructed.

There are nine types of nodes in the parse tree:

• ALTERNATION: Represents alternation '|'.
• CONCATENTATION: Represents concatenation of

two regular expression elements.
• REPEAT: Represents all repeat quantifiers: ?, *, +,

??, *?, +?, and user-defined repeats quantifier such as
{2,5}. The lower bound and upper bound (if one
exists) are stored with the node. Since EGRET is only
focused on whether the entire string is accepted or
rejected, the lazy quantifiers such as *? are treated the
same as the corresponding greedy quantifier.

• GROUP: Represents any set of parentheses. It could be
a named group, a nameless group, or non-capturing

Parser Convert to
NFA

Traverse
NFA

Create
Evil

Strings

Execute
Test

Strings

Process
Input

Python Wrapper

C++ Engine

regex test
strings

Web user interface
Command

line
Screen
or file

Fig. 1. Process for Generating Evil Test Strings

TABLE I. PYTHON REGULAR EXPRESSION SUPPORT

Supported

• Alternation: |
• Repeat quantifiers: ?, *, +, ??, *?, +?
• User-defined repeat quantifiers: {2,5}
• Wildcards: .
• Character sets: [A-Z\s_]
• Character classes: \w
• Groups: ()
• Anchors: ^, $, \A, \Z

Ignored • Word boundaries: \b, \B
• Lookahead / lookbehind assertions

Unsupported

• Non-printable ASCII characters
• Non-ASCII characters
• Newlines and carriage returns
• Flags: ?i, ?m
• Backreferences
• Conditional patterns

parentheses – no distinction is made between the three
types in the generation of strings.

• CHARACTER: Represents a specific individual
character including escaped characters such as \(and
characters specified using octal or hexadecimal values.

• CHARACTER SET: Represents any construct that
corresponds to a single character but there are several
choices. This includes character sets (such as [A-
Z_;+]), character classes (such as \w), and wildcards
'.'. A character set node retains the list of items that
comprise the character set1 and a flag that indicates if
the set is negated (using ^) or not.

• CARET: Represents the ^ and the /A beginning-of-
string anchors. Since multiline mode is not supported,
these two anchors are equivalent.

• DOLLAR: Represents the $ and the /Z end-of-string
anchors. Since multiline mode is not supported, these
two anchors are equivalent.

• IGNORED: Represents ignored elements as noted in
TABLE I.

B. Convert to NFA
The parse tree is converted into a specialized NFA. A

traditional approach (as described in [7]) is used to convert
concatenation and the matching of individual characters. A
transition between NFA states can either be an individual
character, a character set, an anchor (^ or $), or an epsilon
transition. Only one transition is generated for a character set,
but the set of allowable characters is retained and used when
creating evil strings.

The translation of repeating constructs deviates from the
traditional approach. Instead of creating a loop in the NFA,
special "begin repeat" and "end repeat" states are respectively
added to the beginning and end of each repeating construct.
These states keep track of the type of construct (?, *, +,
{n,m}) along with the acceptable ranges for the user-specified
repeat quantifier. By representing the loops in this manner, the
resulting NFA is a directed acyclic graph.

C. Traverse the NFA
The NFA is traversed to generate an initial set of test

strings. A set of basis paths [20] is generated in a depth-first
manner using the backtracking algorithm shown in Fig. 2.
Generating basis paths takes O(n) time where n is the number
of decision points. The only decision points in the NFA are due
to alternation. If there are n alternation nodes, there are n + 1
basis paths.

During development, we tried alternative approaches:
complete path coverage and state coverage (due to the nature
of how the NFA is constructed, transition coverage is identical
to state coverage). Complete path coverage generated too many
paths to be reasonably analyzed by a person for many of the
regular expressions. In Section IV-D, we show results for
EXREX [16], a tool that uses full path coverage for traversal.
State coverage did not generate enough paths causing the

1 Character classes can and wildcards must appear outside a character set, not
in braces []. In these cases, a character set node with a single item is created.

possibility to miss certain problems. This is best illustrated
using the example in Section III-E.

For each path, a string is formed by taking the characters
from the transitions that comprise the path. For character set
transitions, an acceptable character is chosen from the set.
When a repeat quantifier is discovered, the substring between
the "begin repeat" and "end repeat" states is noted. If the lower
bound is zero or one, the substring is added once to the test
string. In other words, the test string has one iteration of the
substring. If the lower bound is two or more, the substring will
be repeated until the lower bound is met.

A path may contain the anchors ^ or $. No character is
added to string for either anchor. Instead, error checking takes
place for these errors:

• A ^ anchor occurs after the first character.
• A $ anchor occurs before the last character.
• Some, but not all, strings start with an ^.
• Some, but not all, strings end with an $.

The first two errors are caused by a poorly formed regular

expression. The last two errors target a common error:
forgetting that alternation has lower precedence than the
anchors. For example, using the regular expression
"^cat|dog$" instead of "^(cat|dog)$" to match either
the string "cat" or "dog".

The output of this phase is an initial list of test strings that
all satisfy the regular expression under two assumptions: (a)
there are no errors due to an anchor being in the middle of the
string and (b) the regular expression does not contain any
ignored elements from TABLE I. We assume both of these
assumptions are met in the next section.

D. Create Evil Strings
This phase takes the test strings generated by traversing the

NFA and creates additional evil test strings. There are two
methods for creating evil strings: (a) altering the number of
iterations for each repeat quantifier and (b) changing the
character used for a character set. To avoid an explosion of test
strings, each repeat quantifier and character set is associated
with a single path (and corresponding test string) that contains
that element. New test strings are only generated for that path,
not all of the paths that contain a particular element.

FIND_BASIS_PATHS(curr_state, path)
1 if curr_state is the final state:
2 add path to list
3 mark all states in path as visited
4 else if curr_state.visited:
5 next_state = lowest-numbered state that has a transition

 from curr_state to next_state
6 FIND_BASIS_PATHS(next_state, path + curr_state)
7 else:
8 for each next_state that has a transition from curr_state

 to next_state:
9 FIND_BASIS_PATHS(next_state, path + curr_state)
Fig. 2. Backtracking Algorithm for Generating Basis Paths

To alter the number of iterations for a repeat quantifier, the
test string is divided into three parts: a prelude, the repeating
substring, and a postlude. Adding new strings is simply
concatenating these parts with the proper number of iterations
for the repeating substring. The number of iterations depends
on the repeat quantifier as summarized in TABLE II. The
number of iterations in the initial test string are bold and
italicized. Strings containing the other iteration counts are
added during this step.2

The choice of the number of iterations is inspired by
boundary value testing. Many of the iteration counts violate the
repeat quantifier causing the string to be rejected by the regular
expression.3 This borrows a key idea from modified condition /
decision coverage (MC/DC). Since the rest of string satisfies
the regular expression, the number of iterations will
independently determine whether the string is accepted or
rejected by the regular expression.

Altering character sets is done in a similar manner. The test
string is divided into a prelude, the character from the character

2 For nonsensical bounds such as {0,0}, EGRET aborts with an error message.
3 Unless the string could be accepted using a completely different path
through the regular expression. That is why the test strings are tested against
the regular expression at the end of the process.

set, and a postlude. A set of interesting characters is created
based on the contents of the character set. For each character in
this interesting set, an additional test string is created using that
character in place of the original character.

The process of creating the set of interesting characters has
two distinct phases. During the first phase, the contents of the
character set are scanned and processed according to TABLE
III. The Add to Set column indicates which characters should
be added to the set. The Flags Set column indicates which, if
any, of these four flags are set: uppercase, lowercase, digits,
and punctuation. These flags are used in the second phase to
possibly add more characters to the set. When adding
characters to the set, there often is a choice of characters such
as "a letter in range" or "a digit"; the character with the
smallest ASCII value (closest to 'A', 'a', or '0') is chosen. This
choice was made to keep the algorithm deterministic during
development, testing, and evaluation. We envision adding an
option to select the character randomly in the future.

When processing character classes and wildcards, EGRET
ensures that at least one character is chosen from each
interesting subset. For instance, there will be at least one test
string where the \w is replaced with an uppercase letter,
another where it's replaced with a lowercase letter, a string
where it's replaced with a digit, and a fourth string where it's
replaced with an underscore.

EGRET performs checks for poorly-constructed ranges.
First, ranges must be confined to only digits, only uppercase
letters, or only lowercase letters. Ranges such as A-z cause
EGRET to abort with an error. Second, EGRET checks that
ranges do not overlap with other ranges or characters specified
within the same character set. During evaluation, this error
only occurred twice but did flag this poorly written character
set: "[1-31]".

The second phase is best illustrated using an example. If the
uppercase flag is set, one more uppercase letter will be added
to the set if possible. The uppercase letter will be chosen such
that it does not match any specified characters and is outside
any specified ranges. For example, the character set "[AB-
FGR-UW]" will generate the characters: A (for the letter A), B
(for the range B-F), G (for the letter G), R (for the range R-U),
W (for the letter W), and H (representative uppercase letter that
does not match any letter or range). An additional letter will
not be added if all 26 uppercase letters are "covered" by either
an individual letter or from a range. The most common
situation where this occurs is when the entire range A-Z is
specified. In this scenario, no additional letters are selected
since A-Z covers the entire range of uppercase letters. The
same approach is used for the lowercase and digit flags.

The punctuation flag is handled differently. First, it is only
set when all the punctuation marks are acceptable: opposite
character classes such as \W, wildcards, and negated character
sets using ^. When the flag is set, each punctuation mark that
appears somewhere in the regular expression, not just in the
character set, is added to set of interesting characters. This
choice was made because the punctuation marks that appear
elsewhere in the regular expression are the punctuation marks
that are more likely to need to be excluded. Consider a regular

TABLE II. NUMBER OF ITERATIONS FOR REPEAT QUANTIFIERS

Repeat Quantifier Number of Iterations
* or {0,} 0, 1, 2
+ or {1,} 0, 1, 2
? or {0,1} 0, 1, 2
{0,n} or {,n} 0, 1, n, n + 1
{m,n} (m > 0 and n > m) m – 1, m, n, n + 1
{m} or {m,m}(m > 0) m – 1, m, m + 1
{m,} (m > 1) m – 1, m

TABLE III. CHARACTER SET PROCESSING

Character Set Item Add to Set Flags Set
Uppercase character x x Uppercase
Lowercase character x x Lowercase
Digit character x x Digit
Other character x x none
Uppercase range x-y a letter in range Uppercase
Lowercase range x-y a letter in range Lowercase
Digit range x-y a digit in range Digit
Character class \w an uppercase letter

a lowercase letter
a digit
_ (underscore)

none

Character class \d digit none
Character class \s <space> none
Character classes \W, \D, \S an uppercase letter

a lowercase letter
a digit
_ (underscore)
<space>

Punctuation

Wildcard . an uppercase letter
a lowercase letter
a digit
<space>

Punctuation

Any negated character set an uppercase letter
a lowercase letter
a digit
<space>

Punctuation

expression "\(.+\)". The '(' and ')' will be both be added to
the set of interesting characters leading to the generation of test
strings "(()" and "())". If there are no punctuation marks,
the "_" is added to the set of interesting characters so that it
contains at least one punctuation mark.

This approach specifically targets a common problem – a
wildcard is incorrectly used instead of a more restricted
character set. To combat this problem, different types of
characters and punctuation marks are added for wildcards. A
related problem is a negated character set that does not fully
specify what needs to be excluded. In addition, not all of the
characters in the interesting set result in test strings that are
accepted – some strings will be rejected. The goal is to give the
user confidence that strings that should be accepted are
accepted and strings that should be rejected are indeed rejected.

E. Example
An example of the process of generating strings from a

regular expression is shown in Fig. 3. The regular expression, a
slightly simplified version of a buggy regular expression from
RegExLib.com [11], accepts a United States phone number in
the form "(555)-555-5555". The parentheses around the
area code are optional and a period '.' can be used instead of a
dash '-' to delimit the different parts of the phone number. The
regular expression also ensures that area codes do not start with
0 or 1 as US area codes do not begin with those digits.

The first part of Fig. 3 shows the NFA corresponding to the
regular expression. The two alternation operators are
represented by the two outgoing transitions at states 14 and 24.
Epsilon (∈) edges allow transitions between states without
consuming any input characters. Other transitions include
individual characters ('(', '-' and ')') and character sets
(includes[2-9], \d, and the wildcard .). The repeat
quantifiers (?, {2}, {3}, and {4}) are associated with a pair
of states one representing the beginning and one representing
the end. For instance, state 6 is start state for {2} and state 9 is
the end state for {2}.

The next step is to generate the basis paths from the NFA.
The first path chooses states 15 and 25 at the two decision
points. This results in choosing the '-' in both alternation
decisions. To form the test string, an acceptable value is chosen
for each character set. For ranges, the lowest value is chosen
meaning that 2 is chosen for the range [2-9] and 0 is chosen
for \d. With these choices, the test string "(200)-000-
0000" is formed.

A second path is found by backtracking to state 24 and
choosing state 27 instead. This means that a wildcard is used
instead of the '-'. For wildcards, the lowercase 'a' is chosen
resulting in a problematic test string of "(200)-000a0000".
The third and final basis path is created by backtracking to
state 14 and choosing state 15 resulting in the test string
"(200)a000-0000".

To illustrate the importance of basis paths, imagine the
wildcards are actually periods (like the author intended). The
author likely intended if the test string has a dash at state 14,
there would also be a dash at state 24. Similarly, if the test

string has a period at state 14, there should also be a period at
state 24. This is a common problem in where the author of the
regular expression forgets to use a backreference. Generating
paths to obtain state coverage could result in only two paths:
one that chooses both dashes and one that chooses both
periods. By using basis path coverage, three paths are
generated guaranteeing there will be at least one path that
chooses a period at one decision point and a dash at the other.

The next phase generates additional evil strings by
modifying the iteration counts for repeat qualifiers and by
choosing different characters for character sets. For the ?
represented in state 3, the corresponding substring for the
repeat quantifier is simply the string "(". Based on TABLE II,
a string is created with no iterations "200)-000-0000" and
a string is created with two iterations "((200)-000-0000".
Even though state 3 appears in all three paths, this modification
only occurs in one of the paths (path 1 in this case). The same
modifications are applied to the ? represented in state 13.

State 9 represents the {2} repeat quantifier. The substring
between the begin state (state 6) and the end state is the string
"0". In the initial path string, this string is repeated forming the
string "00" which satisfies the {2} requirement. New strings
are created, again using TABLE II, to create paths that have
one iteration "0" and three iterations "000". Similar
modifications are applied to states 23 and 33.

A character set transition occurs between states 4 and 5
with the character set [2-9]. According to TABLE III, a
value in the range is chosen (2 in this case) and the digit flag is
set. By setting the digit flag, an additional value is chosen
outside the range: 0 is selected from either 0 or 1. This forms
the test string "(000)-000-0000". As with repeat
quantifiers, this modification is only applied to one path.

The wildcard between states 17 and 18 requires several
different characters to be used. First, TABLE III indicates
different strings using an uppercase letter ('A'), a lowercase
letter ('a'), a digit ('0'), and a space. In addition, the punctuation
flag is set. This means that all punctuation marks that appear
elsewhere in the regular expression must be used in place of
the wildcard in a test string. In this example, the punctuation
marks consist of '(', ')', and '-'. The initial string uses the
lowercase letter 'a' so six new strings are created by replacing
the 'a' with each of these: 'A', '0', ' ', '(', ')', and '-'. The string
with the '-' is a duplicate of the initial test string "(200)-
000-0000" so it is discarded. The same set of characters is
used to replace the wildcard between states 27 and 28.

The three \d character classes do not require any
modification as the interesting set of characters only has one
character: the digit '0'. Since the initial test string already uses
this character, no additional test strings are generated.

In total, 21 additional test strings are created during the evil
string generation phase. These 21 strings are added to the 3
initial test strings to create a list of 24 test strings. The 24
strings are tested against the regular expression to determine if
they match or not. The list of accepted strings and rejected
strings are displayed to the user.

By scanning the list of accepting strings, the user should be
able to identify they forgot to escape the period so the period is
treated as a wildcard. As a result it permits phone numbers
with 11 digits, as denoted by the string "(200)0000-0000",
to be incorrectly accepted. The user can also see that
improperly formatted phone numbers "(200-000-0000"
and "200)-000-0000" are accepted.

The rejected strings do not reveal any bugs in this example.
However, they do provided the user confidence that phone
numbers with area codes that start with 0 or 1 are rejected since

"(000)-000-0000" is rejected. It also assures the user that
a phone number with the incorrect number of digits will be
rejected (once the wildcard problem is fixed).

IV. RESULTS
To evaluate the approach, we used regular expressions

from the regular expression library RegExLib.com [11]. The
library has eight primary categories as shown in TABLE IV.
We extracted every regular expression from these eight
categories. Some of the regular expressions were not written

Regular expression: \(?[2-9]\d{2}\)?(-|.)\d{3}(-|.)\d{4}

NFA:

1 3 6 8 94 190 2 5 7 10 11 12 13 14

15 16

17 18

21 23 2920 22 30 31 32 3324

25 26

27 28

Begin
?

End
?

Begin
{2}

End
{2}

Begin
?

End
?

Begin
{3}

End
{3}

Begin
{4}

End
{4}

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈

∈

∈

∈

∈
‘(‘ [2-9] ‘)‘

\d

‘-‘

Wild
card(.)

Wild
card(.)

‘-‘

∈ \d ∈ ∈

∈

∈ ∈

∈

∈ ∈ ∈ \d

Basis paths:

1: 0-…-14-15-16-19-…-24-25-26-29-…-33
2: 0-…-14-15-16-19-…-24-27-28-29-…-33
3: 0-…-14-17-18-19-…-24-25-26-29-…-33

Initial Strings:

(200)-000-0000
(200)-000a0000
(200)a000-0000

Generate Additional Strings:

State 3 (path 1): Replace '(' with '' and '(('
State 5 (path 1): Replace '2' with '0'
State 9 (path 1): Replace '00' with '0' and '000'
State 13 (path 1): Replace ')' with '' and '))'
State 18 (path 3): Replace 'a' with 'A', '0', ' ', '(', ')', and '-'
State 23 (path 1): Replace '000' with '00' and '0000'
State 28 (path 2): Replace 'a' with 'A', '0', ' ', '(', ')', and '-'
State 33 (path 1): Replace '0000' with '000' and '00000'

0 and 2 iterations for ?
one digit outside [2-9]
1 and 3 iterations for {2}
0 and 2 iterations for ?
uppercase letter, digit, space, and each punctuation mark for wildcard .
2 and 4 iterations for {3}
uppercase letter, digit, space, and each punctuation mark for wildcard .
3 and 5 iterations for {4}

Accepted Strings:

(200) 000-0000
(200)(000-0000
(200))000-0000
(200)-000 0000
(200)-000(0000
(200)-000)0000
(200)-000-0000
(200)-00000000
(200)-000A0000
(200)-000a0000
(200)0000-0000
(200)A000-0000
(200)a000-0000
(200-000-0000
200)-000-0000

Rejected Strings:

((200)-000-0000
(000)-000-0000
(20)-000-0000
(200))-000-0000
(200)-00-0000
(200)-000-000
(200)-000-00000
(200)-0000-0000
(2000)-000-0000

Fig. 3. Example for Generating Test Strings

for Python – these were converted to Python regular
expressions. A few regular expressions were excluded because
they contained an element that was not supported in Python
(the most common being Unicode categories such as
\p{Letter}). There is a total of 785 regular expressions that
are supported in Python. Of these 785 regular expressions, 93

contain an element that is not supported by our tool (see
TABLE I). Testing was carried out using the 692 remaining
regular expressions.

In addition, we manually extracted regular expressions
from six different Python programs as shown in TABLE IV.
We did not include regular expressions for substitutions, splits,
or regular expressions that involved a (non-constant) variable.
From these six programs, 104 regular expressions were
extracted. Five regular expressions contained unsupported
elements resulting in 99 regular expressions to test.

A. Bugs Found
The bug finding capability was evaluated by looking at the

output generated by EGRET. First, any warning or error
messages were investigated. A bug occurs if the message
clearly points to a bug. Second, the generated strings were
analyzed. A bug occurs if any of the accepted strings should be
rejected and any of the rejected strings should be accepted.
Bugs were divided into seven categories plus an other
classification for bugs that don't fall into one of the earlier
categories. TABLE V describes the seven categories. For each
category, an actual buggy regular expression is given along
with the offending error message or generated test string. The
first two errors in TABLE V (bad range and anchor usage) are
exclusively detected using error messages. Character set bugs
are most often detected by analyzing test strings but could be
detecting an error message in some cases. The other four types
of bugs are exclusively caught by analyzing test strings – no
error messages exists. Bugs found in the other category were
all caught by analyzing test strings except for four regular
expressions that contained syntax errors.

The act of determining bugs is subjective. The first three
categories (bad range, anchor usage, character set) in TABLE
V were straightforward to evaluate – they all refer to mistakes
that are more similar to syntax errors than logical flaws in the
regular expression. These errors are also easy to fix when
detected. The fourth category (delimiter mismatch) was also
straightforward to detect but the bugs are often not that
significant. For example, it may not matter if the regular
expression accepts poorly formatted phone numbers such as
"555-555.5555" or "(555555-5555" provided the correct
number of digits are provided. The last three categories
(negation, wildcard, wrong repeat) along with all the bugs in
the other classification are more subjective.

Fortunately, each regular expression in RegExLib.com
contains a brief description. Unfortunately, these descriptions
often lacked detail on what precisely should be accepted or
rejected. We often had to infer what the author was to trying to
accomplish with a given regular expression. For issues found
in the actual Python programs, we did not investigate the
source code further to determine if additional checks were
present to mitigate the bug. In all cases that we detected a bug,
we felt it was something worthy of additional investigation.

TABLE VI shows the number of bugs found across the
different categories and programs: 284 of the 791 (36%)
regular expressions contained a bug. Note that several regular
expressions contained multiple bugs so the total number of
bugs (347) is higher than the number of the buggy regular

TABLE IV. REGULAR EXPRESSIONS USED IN EVALUATION

 Regexes Tested Not

supported

RegExLib
Library
Category

address / phone 104 98 6
dates / time 135 117 18
email 38 33 5
markup / code 63 50 13
misc 173 150 23
numbers 107 102 5
string 91 73 18
uri 74 69 5

Python
Program

advas (0.2.5) 16 16 0
beautifulsoup4 (4.3.2) 7 7 0
pychecker (0.8.19) 4 4 0
pymetrics (0.8.1) 6 5 1
tables (3.1.1) 8 8 0
Trac (1.0.1) 63 59 4

Library total 785 692 93

Programs total 104 99 5

Total 889 791 98

TABLE V. TYPES OF REGULAR EXPRESSION BUGS

Bad Range: Any range that includes anything that is not a letter or digit.

Example: ^[D-d][K-k]-[1-9]{1}[0-9]{3}$
Error message: ERROR: Range is likely incorrect: D-d
Anchor Usage: Incorrect use of ^ and $ anchors.

Example: ^[-+]?\d+(\.\d+)?|[-+]?\.\d+?$
Error message:
WARNING: some but not all strings start with a ^
String with ^ anchor: +0.0
String with no ^ anchor: +.0
WARNING: some but not all strings end with a $
String with $ anchor: +.0
String with no $ anchor: +0.0
Character Set: Using regex elements incorrectly in a character set or used
braces instead of parentheses.

Example (taken from a time regular expression):
[AM|PM|am|pm]{2,2}
Incorrectly accepted strings: Mm, |m
Delimiter Mismatch: Not having consistent delimiters or incomplete
parentheses, braces, or brackets.

Example: href[]*=[]*('|\")([^\"'])*('|\")
Incorrectly accepted strings: href = 'a", href = "a'
Negation: Using negation in a character set (using ^) or using an opposite
character class (such as \D) but not removing all possibilities.

Example:
href=[\"\']?((?:[^>]|[^\s]|[^"]|[^'])+)[\"\']?
Incorrectly accepted string: href='''
Wildcard: Using a wildcard when some possibilities should be excluded
or forgetting that the "." is a wildcard.

Example (email address, \x2E is a period): (\w+?@\w+?\x2E.+)
Incorrectly accepted string: a@a..
Wrong Repeat: Using the wrong repeat quantifier.

Example (matching US currency with either 0 or 2 digits past the decimal
point): ^\d+(?:\.\d{0,2})?$
Incorrectly accepted string: 0.0

expressions (284). For each of the seven categories, there were
at least 20 bugs. The most common mistake was a delimiter
mismatch – many due to regular expressions that accept
incorrectly formatted phone numbers and dates. These results
demonstrate that EGRET is effective at finding bugs.

Of the 347 bugs, 48 were detected using an error message
and 299 were detected by analyzing the test strings. Of the 48
detected by error message: 22 are anchor usage errors, 22 are
bad ranges, and 4 are cases where the regular expression has a
syntax error. There are three false alarms, situations where the
error message did not refer to a bug. Two of these cases were
situations where an anchor usage warning was emitted but the
author intended to have some matches that match the beginning
of the line and some that do not. The third false alarm signaled
a character set with overlapping ranges. While the character set
was sloppily written, it was indeed correct.

The remaining 299 bugs were detected by analyzing the
generated strings. All but three bugs were detected by finding a
string that was accepted but should have been rejected. Three
bugs were detected by finding a string that was rejected that
should have been accepted. Two bugs are wrong repeat bugs
and the third bug was in the other category. Note that, by
definition, wrong repeat is the only type of the seven bug types
in that could be detected in this manner.

Here is one of the faulty regular expressions:
 ^(\d{1,3}'(\d{3}')*\d{3}(\.\d{1,3})?|
\d{1,3}(\.\d{3})?)$

According to the description, this regular expression can
accept up to three digits past the decimal point. However, the
string "0.00" is generated and rejected by the regular
expression. The error is the last {3} should be {1,3}. Even
though only three bugs were detected using rejected strings,
there is the potential for more bugs. For example, several
floating point number regular expressions allowed ".0" for a
number but rejected "0." (or vice versa). There was not
enough information in the description to determine if this was
the intended behavior or a bug. A user creating a regular
expression for floating point values can look at the accepted
and rejected values and determine whether both sets look

correct. The use of whitespace was another situation where
looking at both accepting and rejecting strings was helpful.

In addition, 59 regular expressions contained an ignored
element from TABLE I. Out of these 59 regular expressions,
13 (22%) were considered buggy. As noted earlier, the tool
generates substandard results when a regular expression
contains an unsupported element so this lower percentage is
not surprising.

B. Strings Generated
In this section, we explore the number of strings generated

by the tool. For this section, we only consider the 707 fully-
supported regular expressions; the 59 regular expressions that
contain an ignored element and the 25 regular expressions that
abort with an error message are not considered. Fig. 4 divides
the regular expressions into histogram buckets based on how
many test strings were generated.

Most regular expressions generated a relatively few number
of strings. Over half (55%) of the regular expressions
generated fewer than 20 strings, 80% generated fewer than 40
strings, and 96% generated fewer than 100 strings. Fourteen
regular expressions generated more than 130 strings. The most
strings generated by a regular expression was 307 strings.

The number of strings generated is loosely proportional to
the number of tokens in the regular expression. The scatterplot
in Fig. 5 shows this relationship. As you can see, many regular
expressions have a small number of tokens and subsequently a
small number of generated strings. A higher number of tokens
results in a higher number of paths but the types of regular
expression elements also plays a role in the number of test
strings. Fig. 5 also shows that the number of test strings is
roughly linear with respect to the number of tokens. This
shows that our approach scales to large regular expressions.

Fig. 4 also shows the number of buggy regular expressions
for each histogram bucket. Not surprisingly, there were
relatively fewer bugs for smaller regular expressions. Of the
202 regular expressions with 9 or fewer test strings, 24 (12%)
were buggy. Over half (115 of 201 or 57%) of the regular
expressions with at least 30 test strings contained a bug. This

TABLE VI. BUGS FOUND

Category / Program
Regexes
Tested

Buggy
Regexes

Bad
Range

Anchor
Usage

Character
Set

Delimiter
Mismatch Negation Wild

card
Wrong
Repeat Other

address / phone 98 40 4 5 6 20 3 3 7 6
dates / time 117 59 2 2 18 26 0 1 5 26
email 33 12 3 0 1 1 2 2 0 5
markup / code 50 23 0 0 0 9 7 10 1 4
misc 150 51 4 8 6 11 9 8 5 12
numbers 102 23 0 2 0 0 0 4 6 13
string 73 31 2 4 9 2 2 1 2 12
uri 69 26 4 1 1 2 4 3 1 11
advas 16 0 0 0 0 0 0 0 0 0
beautifulsoup 7 3 0 0 0 0 1 1 0 1
pychecker 4 1 0 0 0 1 0 0 0 0
pymetrics 5 0 0 0 0 0 0 0 0 0
tables 8 0 0 0 0 0 0 0 0 0
Trac 59 15 3 0 0 0 3 8 1 0
Regex Library 692 265 19 22 41 71 27 32 27 89
Programs 99 19 3 0 0 1 4 9 1 1
Total 791 284 22 22 41 72 31 41 28 90

indicates that writing complex regular expressions correctly is
hard, thereby motivating the need for a tool like EGRET.
These figures show that, while having a moderate number of
test strings is helpful, it is not necessary to have an excessive
number of test strings in order to find bugs.

C. Performance
Performance was measured for each regular expression by

calculating the time it took EGRET to run in command line
mode on a Linux machine with a 3.4 GHz Intel I7-4770 Quad
Core processor with 8 GB of memory. In each case, EGRET
took less than a second. The most complex regular expression
in our study (the point in the upper-right corner of Fig. 5)
consists of 826 tokens. This regular expression generated the
most strings (307) and was the slowest (0.3 seconds).

Another aspect of performance is the time it takes to
manually process the list of the regular expressions and look
for items that are incorrect. During our evaluation, we
manually looked at generated tests for each regular expression
and informally noted how long it took to analyze the two lists.
Our biggest challenge was figuring out what the regular
expression was precisely trying to accomplish. For most buggy
regular expressions, strings that should not be accepted stuck
out and were easy to identify. Even with regular expressions
that had over 100 generated test strings, it was generally
straightforward to analyze the lists. A more formal usability
study with likely users is left as future work.

D. Comparison to EXREX
EGRET was compared to another regular expression string

generation tool EXREX [16]. The comparison looks at bug
finding capabilities and number of strings generated.

EXREX converts the regular expression into an NFA like
EGRET but with two key differences. First, repeat quantifiers
follow a normal NFA construction that creates a loop in the
NFA. The second key difference is that each edge is either an
epsilon transition or an individual character. Character classes
and sets will add one edge for each valid character. For
wildcards, opposite character classes, and negated character
sets, the initial set is the range of ASCII values from 32 (space)
to 122 (lowercase 'z'). This includes all digits, uppercase
letters, lowercase, and most punctuation marks.4 To generate
the strings, EXREX simply generates strings for each unique
path. For loops formed by repeat quantifiers, the number of
iterations is capped by a user-defined parameter. The default
limit is 20 but we set the parameter to 2 during this evaluation
for a more fair comparison.

The number of generated test strings is massive as seen in
TABLE VII. For instance, a regular expression consisting of a
single wildcard "." generates 91 test strings, one for each of
the ASCII characters from 32 to 122. The regular expression
".+" generates 8,372 strings (91 one-character strings + 912
two-character strings). Looking at TABLE VII, only 98 of the
regular expressions generated fewer than 100 test strings. 193
regular expressions generated over one million test strings and
many were several orders of magnitude greater than one
million. One regular expression generated 6.33 × 1049 paths.5

 The set of test strings generated by EXREX was infeasible
to manually analyze. To gauge the bug finding capabilities, we
created a test suite that contains simple regular expressions
with one to two buggy regular expressions for each type of bug
in TABLE V. This experiment found that EXREX is capable
of finding all bug types except for anchor usage since anchors
are essentially ignored. However, the large number of paths

4 Unlike EGRET, it excludes {, |, }, and ~ which have ASCII values 123-126
but it would not be difficult to update EXREX to include these values.
5 EXREX has a mode that will print out the number of strings instead of
generating all of them.

0

50

100

150

200

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100-109 110-119 120-129 130+

N
um

be
r o

f R
eg

ex
es

Test Strings GeneratedTotal Regexes Buggy Regexes

Fig. 4. Number of Test Strings Generated

0

50

100

150

200

250

300

0 200 400 600 800

Te
st

 S
tr

in
gs

 G
en

er
at

ed

Tokens

Fig. 5. Tokens vs. Test Strings Generated

generated will make it difficult for users to identify incorrectly
accepted strings especially for negation and wildcard bugs
since the regular expressions associated with those bugs
introduce a large number of transitions in the underlying NFA.
Since EXREX does not generate any rejected strings, it could
miss bugs that rely on rejected strings being accepted.

During our evaluation, we detected one instance where
EXREX generated a test string that clearly indicated a bug that
was not generated by EGRET. It was for the regular expression
for floating point numbers: "\d*\.\d*". EXREX generated
the incorrect string of ".". This was not generated for EGRET
since it never generates a string where both \d* elements
correspond to zero iterations. Due to the large number of
strings generated by EXREX, it was infeasible to perform a
systematic study to determine if other such cases existed.

V. RELATED WORK
There are many tools available for testing regular

expressions. EXREX [16] generates all accepted test strings
subject to a limit by repeat quantifiers, by traversing the
equivalent NFA. EGRET is compared to EXREX in Section
IV-D. Another tool for generating regular expression strings is
at Uttool [5]. It randomly generates test strings for a regular
expression. The user specifies the number of strings to
generate. Other tools [2][12][13] are used to test regular
expressions but the strings must be provided by the user. A
nice feature of these tools is they display a visual
representation of how the test string matches the regular
expression. These tools complement EGRET in that when a
problematic test string is generated, these tools can be used to
debug the regular expression. RegExpert [4] provides a
graphical representation of the corresponding automata for a
regular expression.

Significant research attention has been placed on
automatically generating tests, typically using symbolic
execution approaches [14][17]. Reggae [9] describes an
approach on how to incorporate regular expressions into the
test generation process. Their goal is to obtain branch coverage
so they are most concerned with quickly generating a string
that is accepted by the regular expression. Rex [19] is a
general-purpose solver of regular expressions constraints. It
uses a symbolic finite automaton [18], an NFA with symbolic
transitions that represent character sets and ranges, similar to
the NFA used in EGRET. Instead of generating test strings, the
symbolic finite automaton is used within a constraint solver to
check feasibility. Performance and scalability are concerns
with constraint solvers so the underlying automata are
optimized and minimized. Aydin et al. [1] developed a

technique to create test strings based on vulnerabilities. A
vulnerability signature is represented using an automaton. The
automaton is traversed to create test strings using different
coverage criteria: state coverage, transition coverage, and path
coverage. HAMPI [8] is a string constraint solver that allows
users to specify constraints in a variety of ways including using
regular expressions.

Additional research in regular expressions includes a type
system designed by Spishak et al. [15]. The type system is used
to catch regular expression syntax errors and cases where an
invalid group number is used during extraction. Liu and Miao
[10] describe how to create test cases from a regular expression
and describe how to decompose the regular expression when it
is too long. They use regular expressions derived from finite-
state models as a form of model-based testing. However, their
approach could be applied to normal regular expressions as
well. Hodován et al. [6] analyze regular expressions that appear
in JavaScript scripts on web pages. They found that many of
the regular expressions are frequently used and showed that
caching compiled regular expressions improves performance.

VI. CONCLUSION AND FUTURE WORK
This paper describes EGRET, a tool for generating test

strings for a regular expression. Developers can manually scan
the list of strings to determine if a string is incorrectly accepted
or incorrectly rejected. Using EGRET, we found 284 out of
791 regular expressions to be buggy. EGRET improves upon
existing work by generating a moderate amount of strings that
are likely to focus on mistakes made by the developer. 307
strings were generated for the most complex regular
expression; fewer than 100 test strings were generated for 96%
of the regular expressions.

There are several avenues of future work. The most
obvious place to start is to increase the level of support for
regular expressions. Based on how frequently they occurred in
the regular expressions used in the study, it is worth adding
support for backreferences, lookahead and lookbehind
assertions, and flags. We also would like to support regular
expressions from other languages beyond Python. Second, we
would like to better explore some of the tradeoffs EGRET
makes in terms of keeping the number of generated strings low.
We already noted one missed bug; a more systematic study is
needed. Lastly, EGRET could be expanded to detect and/or
warn about certain types of errors instead of relying on a test
string that exposes the error. For instance, the character set
"[A|B|C]" is likely incorrectly constructed because the |
appears twice. However, error checking of this sort would need
to be carefully constructed to minimize false alarms.

In addition, more improvements to the user interface are
planned. One modification includes the ability to save test
strings since the faulty string may not be generated again after
a regular expression is rewritten during debugging. A usability
study with likely users is also needed.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers

for their valuable comments.

TABLE VII. NUMBER OF STRINGS GENERATED BY EXREX

Number of Strings Regexes
1-9 35
10-99 63
100-999 94
1,000-9,999 123
10,000-99,999 92
100,000-999,999 64
1,000,000+ 193
ERROR 19

REFERENCES
[1] A. Aydin, M. Alkhalaf, and T. Bultan, “Automated Test Generation

from Vulnerability Signatures,” in 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation, 2014, pp.
193–202.

[2] F. Beck, S. Gulan, B. Biegel, S. Baltes, and D. Weiskopf, “RegViz:
Visual Debugging of Regular Expressions,” in Companion Proceedings
of the 36th International Conference on Software Engineering - ICSE
Companion 2014, 2014, pp. 504–507.

[3] E. Bendersky, “Finite State Machines and Regular Expressions.”
[Online].
Available: http://www.gamedev.net/page/resources/_/technical/general-
programming/finite-state-machines-and-regular-expressions-r3176.

[4] I. Budiselic, S. Srbljic, and M. Popovic, “RegExpert: A Tool for
Visualization of Regular Expressions,” in EUROCON 2007 - The
International Conference on “Computer as a Tool,” 2007, pp. 2387–
2389.

[5] “Generate String from/Match Regular Expression Online - Uttool.”
[Online]. Available: http://uttool.com/text/regexstr/default.aspx.
[Accessed: 20-Oct-15]

[6] R. Hodován, Z. Herczeg, and A. Kiss, “Regular Expressions on the
Web,” in 12th IEEE International Symposium on Web Systems
Evolution (WSE), 2010, pp. 29–32.

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., 2006.

[8] A. Kiezun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D.
Ernst, “HAMPI: A Solver for Word Equations over Strings, Regular
Expressions, and Context-Free Grammars,” ACM Trans. Softw. Eng.
Methodol., vol. 21, no. 4, pp. 1–28, Nov. 2012.

[9] N. Li, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Reggae:
Automated Test Generation for Programs Using Complex Regular
Expressions,” in 2009 IEEE/ACM International Conference on
Automated Software Engineering, 2009, pp. 515–519.

[10] P. Liu and H. Miao, “A New Approach to Generating High Quality Test
Cases,” in 2010 19th IEEE Asian Test Symposium, 2010, pp. 71–76.

[11] “RegExLib.com.” [Online]. Available: http://www.regxlib.com.
[12] “RegExr: Learn, Build, & Test RegEx.” [Online].

Available: http://www.regexr.com.
[13] “Regular Expressions 101.” [Online]. Available: https://regex101.com.
[14] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing

Engine for C,” in Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(ESEC/FSE), 2005, pp. 263–272.

[15] E. Spishak, W. Dietl, and M. D. Ernst, “A type system for regular
expressions,” in Proceedings of the 14th Workshop on Formal
Techniques for Java-like Programs - FTfJP ’12, 2012, pp. 20–26.

[16] A. Tauber, “EXREX - regular expression string generator.” [Online].
Available: https://github.com/asciimoo/exrex.

[17] N. Tillmann and J. de Halleux, “Pex–White Box Test Generation for
.NET,” Tests Proofs - Lect. Notes Comput. Sci., vol. 4966, pp. 134–153,
2008.

[18] M. Veanes, “Applications of Symbolic Finite Automata,” Implement.
Appl. Autom., vol. 7982, pp. 16–23, Jul. 2013.

[19] M. Veanes, P. de Halleux, and N. Tillmann, “Rex: Symbolic Regular
Expression Explorer,” in 2010 Third International Conference on
Software Testing, Verification and Validation, 2010, pp. 498–507.

[20] A. H. Watson and T. J. McCabe, “Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric,” NIST Special
Publication 500-235, Sept. 1996.

http://www.gamedev.net/page/resources/_/technical/general-programming/finite-state-machines-and-regular-expressions-r3176
http://www.gamedev.net/page/resources/_/technical/general-programming/finite-state-machines-and-regular-expressions-r3176
http://uttool.com/text/regexstr/default.aspx
http://www.regxlib.com/
http://www.regexr.com/
https://regex101.com/
https://github.com/asciimoo/exrex

	I. Introduction
	II. Overview
	A. User Interface
	B. Supported Regular Expression Elements

	III. GENERATING TEST STRINGS
	A. Parser
	B. Convert to NFA
	C. Traverse the NFA
	D. Create Evil Strings
	E. Example

	IV. Results
	A. Bugs Found
	B. Strings Generated
	C. Performance
	D. Comparison to EXREX

	V. Related Work
	VI. Conclusion and Future Work
	Acknowledgment
	References

