

Automatic Checking of Regular Expressions

Eric Larson
Seattle University
Seattle, WA USA

elarson@seattleu.edu

Abstract—Regular expressions are extensively used to process
strings. The regular expression language is concise which makes
it easy for developers to use but also makes it easy for developers
to make mistakes. Since regular expressions are compiled at run-
time, the regular expression compiler does not give any feedback
on potential errors. This paper describes ACRE – Automatic
Checking of Regular Expressions. ACRE takes a regular
expression as input and performs 11 different checks on the
regular expression. The checks are based on common mistakes.
Among the checks are checks for incorrect use of character sets
(enclosed by []), wildcards (represented by .), and line anchors (^
and $). ACRE has found errors in 283 out of 826 regular
expressions. Each of the 11 checks found at least seven errors.
The number of false reports is moderate: 46 of the regular
expressions contained a false report. ACRE is simple to use: the
user enters a regular expressions and presses the check button.
Any violations are reported back to the user with the incorrect
portion of the regular expression highlighted. For 9 of the 11
checks, an example accepted string is generated that further
illustrates the error.

Keywords—regular expressions; software bug detection; testing

I. INTRODUCTION

Regular expressions are a popular mechanism for
processing strings that are in a particular format such as dates,
email addresses, and phone numbers. Regular expressions are
used in searching, validating data on a web page form, and data
processing. Regular expressions are specified using a concise
language with punctuation marks representing different
operations.

Like most programming languages, the regular expression
language has nuances that can lead to bugs. One problem is
that very few regular expressions fail to compile. For instance,
while unbalanced parentheses will cause a failure, unbalanced
braces [] will not. Another problem is that some symbols have
different meanings in different situations. The ^ symbol could
refer to the “beginning of the string”, a negated character set,
or a ^ symbol depending on where it is relative to other
elements in the regular expression. These rules can be
confusing and easy to forget during development.

It is important that regular expressions are correct. Faulty
regular expressions could reject strings that are acceptable
leading to incorrect behavior. Regular expressions could also
accept strings that should be rejected. A program could also
operate incorrectly or crash as a result of an incorrectly
accepted string. An extreme case is a web form that uses a bad
regular expression to validate data that could possibly be
exploited to intentionally crash the server.

This paper describes ACRE (Automatic Checking of
Regular Expressions), a tool that detects mistakes in regular

expressions. ACRE is simple to use, the user enters a regular
expression and presses the check button. Any errors are
reported back to the user. ACRE is similar to the warnings
given by many high-level language compilers. Since regular
expressions are typically compiled at run-time, it is not
appropriate for these compilers to give warnings.

ACRE consists of a set of 11 checkers summarized in
TABLE I. The checkers focus on common mistakes when
developing regular expressions. When an error is reported, the
portion of the regular expression that triggered the error is
highlighted. Nine checkers also give an example string that is
accepted and likely not intended to be accepted. Four checkers
also give a suggested fix.

 Four of the checkers analyze character sets. Character sets
are surrounded by [] and contain a list of characters. The
character set matches one character that is in the list. In
addition, the character sets can contain ranges such as A-Z and
character classes such as \d which both serve as a shorthand
for common sets of characters. One problem with character
sets is the meaning of several characters changes when they are
inside a character versus outside a character set. In most cases,
a punctuation mark inside a character set matches that
punctuation mark. For instance, a | matches a vertical bar |
inside a character set but is used for alternation outside the
character set. Developers can forget this and sometimes use the
| inside the character set to separate the cases. One of the
checkers in ACRE looks for this case. A few punctuation
marks have different meanings inside the character set. The
hyphen - matches a hyphen outside the character set but is used
to represent a range (in most cases) inside a character set.
Another checker in ACRE looks at properly specified ranges.

Another source of problems is the wildcard which can
match any character. Often some characters, especially
punctuation marks used as delimiters or separators, should be
excluded. One checker detects likely cases where the wildcard
is too wild and doesn’t exclude characters. A related checker
analyzes situations where punctuation marks are likely
incorrectly repeated.

Other checkers look for mismatched and/or unbalanced
parenthesis, braces, double quotes, and single quotes. One
checker detects cases where the regular expression appears to
be accepting numbers but ends up accepting strings that have
no digits. Two checkers ensure appropriate usage of the ^ and
$ line anchors.

Our prior approach to detecting regular expression errors
used test generation. EGRET [17] generated a set of test strings
that are accepted and rejected by the regular expression. The
user has to scan the list of strings to determine if an error
occurred. ACRE improves this process by reporting checker

violations directly, removing the requirement to scan the list of
strings. The downside to ACRE is that the checkers are narrow
and will miss bugs that are not specifically detected by the
checker. With only 11 individual checkers, ACRE was able to
catch 75% of the possible bugs that could be detected using test
generation.

This paper makes the following research contributions:

• A description of 11 checkers that can be used to find
regular expression bugs.

• An evaluation of the checkers. ACRE was able to find 283
bugs out of 826 regular expressions extracted from
RegExLib.com [21] and six Python programs.

• ACRE is available for use, including the source code, at
http://fac-staff.seattleu.edu/elarson/web/regex.htm.

The remainder of the paper is organized as follows. Section
II gives an overview of the ACRE engine. Section III describes
each of the 11 checkers in detail. Section IV describes
limitations. Results are discussed in section V. Section VI
outlines related work and section VII concludes.

II. ACRE ENGINE

ACRE operates on Python regular expressions and uses a
modified version of the EGRET engine [17]. The regular
expression is read from the command line or web interface.
Then the regular expression is compiled. If the compilation
fails, ACRE ends with the compilation error message. Very
few regular expressions have compiler errors. The most
common cases for compiler errors are unbalanced parentheses,
ranges that are out of order (such as Z-A), and incorrectly
formed Python-specific extensions that have more complicated
syntax.

The regular expression is parsed and converted into a
specialized acyclic NFA using a modified version of a regular
expression to NFA conversion tool developed by Bendersky
[4]. A traditional approach [15] is used to convert
concatenation and the matching of individual characters.
However, there are several key differences in the specialized
NFA compared to the traditional approach. First, character sets,
which can match multiple characters, occupy a single edge
instead of creating an edge for each individual character. The
contents of the character set is retained for the checkers.

Character classes and the wildcard are considered to be
character sets. Second, repeating quantifiers introduce a "begin
repeat" edge immediately before the repeating subexpression
and an "end repeat" edge immediately after. All forms of
repeating quantifiers are expressed this way: *, +, ?, {n},
{m,n} The lower bound and upper bound (if one exists) are
retained. A loop is not formed – the resulting NFA is a directed
acyclic graph. Third, the begin anchor (^), end anchor ($), and
backreferences (such as \1) are considered to be special
characters and also appear on edges like normal characters.
Fourth, groups or parentheses are discarded as the NFA already
demonstrates proper precedence. Lastly, ignored elements are
converted to epsilon transitions. Word boundaries (\b), flags,
lookahead assertions, lookbehind assertions, and conditional
patterns are considered to be ignored elements. These ignored
elements are not used by the checkers. All of these ignored
elements are zero-width; they do not match or consume input
characters. TABLE II summarizes how each regular expression
element is processed in the conversion to the NFA.

 Once the NFA is constructed, it is traversed to generate a
set of paths such that each element in the regular expression is
present in at least one path. A path consists of an ordered set of
edges in the NFA.

The checker phase analyzes each path independently.
TABLE I shows how the 11 checkers can be classified on how
they are applied: four checkers are applied to individual
character sets, six checkers are applied to individual paths, and
one checker is applied to the set of paths. ACRE applies the
four character set checkers to any character sets present in the
path and then applies the six path checkers to the path itself.
The one checker that is applied to the set of paths is executed at
the end. The individual checkers are independent of one
another and can be executed in any order. The 11 individual
checkers are described in section III.

Paths often overlap. Character sets are only checked once –
on the first path that has the character set. The character set
checks are not applied if encountered on subsequent paths. The
individual path checkers are applied to each path possibly
leading to duplicate error messages. If the same error occurs in
the same location, only one error message is reported. Multiple
reports are given if the same error occurs in multiple locations
or if different errors occur in the same location.

Any violations are reported back to the user. Most
violations include an example string that should be accepted by
the regular expression. In these cases, the example string is
matched against the regular expression. If the example string is
not accepted, the example string is suppressed but the error is
still reported without the example string. Cases where this may
occur are described in Section IV.

III. ACRE CHECKERS

The 11 checkers were derived after analyzing the different
types of bugs detected using test generation from EGRET [17].
Many of the bugs were common across different regular
expressions and we hypothesized that checkers could
automatically detect some of these common errors. We
developed heuristics based on these errors but soon discovered

TABLE I. ACRE CHECKER SUMMARY

Checker Applied To Example Fix
Bad Range Character Set No Yes
Separator in Character Set Character Set Yes Yes
Duplicate Character Character Set No No
Lone Brace in Character Set Character Set Yes No
Optional Brace Path Yes No
Duplicate Punctuation Only
Character Set Path Yes No

Wildcard Next to Punctuation Path Yes Yes
Repeat Punctuation Path Yes No
Digit Too Optional Path Yes No
Anchor in the Middle Path Yes No
Consistent Anchor Usage Set of Paths Yes Yes

that multiple checkers were needed for some checkers because
there are many ways of writing regular expressions. After
implementing a heuristic within a checker, it was evaluated by
comparing the results to EGRET. Many checkers needed
refinement to either improve bug detection capabilities and/or
reduce false alarms.

This section describes each of the 11 checkers. Examples of
the error reports are given in TABLE III. All of the examples
are actual bugs detected by ACRE except for the Anchor in the
Middle Checker (all regexes with this error are long and
difficult to comprehend). Some of the other regular expressions
were slightly edited for brevity.

A. Bad Range Checker

The bad range checker detects invalid ranges within a
character set. One example of a bad range is A-z. This is
interpreted as a range from ASCII character A to ASCII
character z. While it includes all of the uppercase letters and all
of the lowercase letters, the range includes six punctuation
marks that are between the uppercase and lowercase letters in

the ASCII encoding. Another similar type of bad range is D-d.
It includes all of the characters from D to d including the
uppercase letters E-Z and the lowercase letters a-c.

Another bad range is +-=. This often appears in a set of
punctuation marks where the user wants to include the -. The
compiler interprets this as a range, not as three separate
punctuation marks.

The bad range checker works by analyzing each range and
determining whether it is a good range or not. A range is
considered good if it meets one of the criteria: (a) only
lowercase letters, (b) only uppercase letters, (c) only digits, or
(d) only non-displayable ASCII characters (0-31). The last case
is commonly used in negated character sets where the user
wants to exclude all non-displayable characters. Any range that
is not considered good will be reported as a violation. The
regular expression compiler catches bad ranges where the
lower bound has a greater ASCII value than the upper bound
such as F-A. Since ACRE immediately rejects regular
expressions that do not compile, this checker does not consider
those cases.

When the violation is reported, a suggested fix is provided.
The fix depends on the type of bad range. For punctuation
ranges, the - is moved to the end of the character set. Ranges
such as D-d are replaced with Dd. The range A-z is replaced
with A-Za-z. ACRE checks other ranges in the character set
such that repetition is avoided.

B. Separator in Character Set Checker

This checker detects cases where the user likely incorrectly
used a | in a character set as alternation. The | in a character set
matches the | character. This checker also reports violation
when a , is also likely to be used a separator of items.

The checker reports a violation if one or more of the
following cases are true (the last two cases only apply to
character sets that are not negated):

• Separator (| or ,) appears multiple times in the character
set: [a,b,c]

• Separator (| or ,) is the only punctuation mark and it
appears in the middle of the character set: [dog|cat]

• Character set consists of three items and the second
(middle) item is a separator (| or ,): [a|b]

When ACRE reports a violation, an example string and
suggested fix are displayed to the user. In the example string,
the separator (| or ,) is intentionally chosen as the character
that matches the character set in question. In most cases, the fix
is simply the character set with the separators removed:
[A,B,C] becomes [ABC]. However, cases such as 0|9 or 0,9
will be corrected to 0-9. In addition, if the separator is a | and
the character set does not contain any ranges, the fix will
replace character set braces with parentheses creating an
alternation as demonstrated in the example in TABLE III. Note
that the fix is not perfect because the {2,2} would have to be
removed but sufficiently demonstrates what the problem is.

TABLE II. CONSTRUCTING THE NFA

Regex Element Corresponding NFA

CHARACTER
a

CHARACTER SET
[abc]

ALTERNATION
a|b

CONCATENTATION
ab

REPETITION
a*

BEGIN ANCHOR
^

END ANCHOR
$

GROUP
(a)

BACKREFERENCE
\1

IGNORED
\b

TABLE III. EXAMPLE CHECKER REPORTS

Bad Range Checker ^[0-9]{4}\s{0,2}[a-zA-z]{2}$

VIOLATION (bad range): The fragment A-z is interpreted as a range
...Regex: ^[0-9]{4}\s{0,2}[a-zA-z]{2}$
...Suggested fix: [a-zA-Z]

Separator in Character Set
Checker

(^([0-9]|[0-1][0-9]|[2][0-3]):([0-5][0-9])(\s{0,1})([AM|PM|am|pm]{2,2})$) time

VIOLATION (charset sep): Likely use of | in character set for alternation
...Regex:(^([0-9]|[0-1][0-9]|[2][0-3]):([0-5][0-9])(\s{0,1})([AM|PM|am|pm]{2,2})$)
...Suggested fix: (AM|PM|am|pm)
...Example accepted string: 0:00 ||

Duplicate Character
Checker

^(([1-9])|(0[1-9])|(1[0-2]))\/((0[1-9])|([1-31]))\/((\d{2})|(\d{4}))$ date

VIOLATION (duplicate char): Duplicate characters in character set: 1
...Regex: ^(([1-9])|(0[1-9])|(1[0-2]))\/((0[1-9])|([1-31]))\/((\d{2})|(\d{4}))$

Lone Brace in Character
Set Checker

^[{\(]?[0-9a-fA-F]{8}[-]?([0-9a-fA-F]{4}[-]?){3}[0-9a-fA-F]{12}[\)}]?$

VIOLATION (lone brace): Found (in charset but not), could lead to unbalanced ()
...Regex: ^[{\(]?[0-9a-fA-F]{8}[-]?([0-9a-fA-F]{4}[-]?){3}[0-9a-fA-F]{12}[\)}]?$
...Example accepted string: (aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa}
VIOLATION (lone brace): Found) in charset but not (, could lead to unbalanced ()
...Regex: ^[{\(]?[0-9a-fA-F]{8}[-]?([0-9a-fA-F]{4}[-]?){3}[0-9a-fA-F]{12}[\)}]?$
...Example accepted string: {aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa)

Optional Brace Checker ^([0-9](|-)?)?(\(?[0-9]{3}\)?|[0-9]{3})(|-)?([0-9]{3}(|-)?[0-9]{4})$ phone number

VIOLATION (optional brace): Optional (and) found - accepts strings that have one but
not the other
...Regex: ^([0-9](|-)?)?(\(?[0-9]{3}\)?|[0-9]{3})(|-)?([0-9]{3}(|-)?[0-9]{4})$
...Example accepted string: 0 (000 000 0000

Duplicate Punctuation Only
Character Set Checker

href=[\"\']?((?:[^>]|[^\s]|[^"]|[^'])+)[\"\']?

VIOLATION (duplicate punc charset): Duplicate character set of punctuation marks can
lead to mismatched punctuation usage
...Regex: href=[\"\']?((?:[^>]|[^\s]|[^"]|[^'])+)[\"\']?
...Example accepted string: href="a'

Wildcard Next to
Punctuation Checker

^.+@[^\.].*\.[a-z]{2,}$ email address

VIOLATION (wild punctuation): Wildcard may wish to exclude adjacent punctuation mark @
...Regex: ^.+@[^\.].*\.[a-z]{2,}$
...Suggested fix: [^@]
...Example accepted string: @@aevil.aa

Repeat Punctuation
Checker

(^(\+?\-? *[0-9]+)([,0-9]*)([0-9])*$) number

VIOLATION (repeat punctuation): Punctuation mark may be repeated two or more times: ,
...Regex: (^(\+?\-? *[0-9]+)([,0-9]*)([0-9])*$)
...Example accepted string: +- 0,,,0

Digit Too Optional Checker ^\d*\.?\d*$ floating point number

VIOLATION (digit too optional): Digit range allows for zero digits causing a string
with no digits to be accepted
...Regex: ^\d*\.?\d*$
...Example accepted string: empty string

Anchor in the Middle
Checker

^$\d\.\d\d$ money amount

VIOLATION (anchor middle): Generated string has $ anchor in the middle: 0.00
...Regex: ^$\d\.\d\d$

Consistent Anchor Usage
Checker

^\d{5}-\d{4}|\d{5}$ zip code

VIOLATION (anchor usage): Some but not all strings start with a ^ anchor
...String with ^ anchor: 00000-0000
...String with no ^ anchor: 00000
...Suggested fix: ^(\d{5}-\d{4}|\d{5})$

C. Duplicate Character Checker

The duplicate character checker detects cases where a
character is specified twice in a character set. This suggests a
poorly written character set that is likely not meeting the
intentions of the user.

A character is considered to be part of a character set if it is
explicitly mentioned as a character or part of a range. Character
classes such as \d or \W are ignored since sometimes users use
multiple character classes that overlap such as \d and \w but
the overlap doesn’t affect the correctness.

The duplicate character checker does not trigger an error if
the character set contains a bad range and/or a separator error
as those checkers give more precise error warnings. When
ACRE reports the violation, the duplicate characters are
specified.

D. Lone Brace in Character Set Checker

This checker is concerned with balancing “braces”. The set
of braces include parentheses (), curly braces {}, and square
braces []. The purpose of this checker is to detect cases where
strings with unbalanced braces are incorrectly accepted. A
violation is reported if a character set contains the left brace but
does not contain the corresponding right brace.

For instance, a violation is reported if a character set
contains a (but does not contain a). The reported violation
includes an example string that is accepted where the (matches
the character set and) is avoided from being selected whenever
possible. It is often the case that there are two character sets,
one containing (and one containing). The example string will
choose the (from the first character set and choose something
other than) in the second character set1. In addition, a second
error is reported on the second character set which will choose
) for the second character set but something other than (from
the first character set.

E. Optional Brace Checker

This checker is also concerned with balancing braces
(parentheses, curly braces, and square braces). This checker
looks for braces that are optional such as \(? or \]{0,1}. If a
brace is optional, it can lead to accepting strings with
unbalanced braces.

A violation is reported if a path contains an optional left or
right brace. If the path contains both an optional left brace and
the corresponding optional right brace, ACRE will highlight
both parts of the regular expression. The generated example
string will include the left brace but exclude the right brace
demonstrating the imbalance.

A violation is also reported if the path only includes one
optional brace. The example string is generated like the
previous checker: The optional character is selected and the
corresponding brace is not selected whenever possible.

1Internally, ACRE treats character sets with a single character, such as [(],
as individual characters (not character sets). This means there are always at
least two characters in a character set.

F. Duplicate Punctuation Only Character Set Checker

This checker detects situations where identical character
sets that contain only punctuation marks appear on a path.
Punctuation marks are often used as delimiters of fields in text
and typically the same delimiter should be used throughout the
string. As an example, in some cases, the user has the choice of
using quotation marks " or single quotes ' to enclose a string.
Either choice is acceptable as the long as the same choice is
made at the beginning and the end.

The checker works by looking at each character set in the
path. If the character set allows something other than
punctuation marks or spaces, the character set is ignored. If the
character set contains only punctuation, the contents are
recorded. If another character set is encountered along the path
with the exact same contents, then a violation is signaled. Note
that the identical character sets must be on the same path. It is
not an error if the identical character sets appear in the regular
expression but are not on the same path due to alternation. This
is common and acceptable situation.

There are two exceptions where violations are not signaled
even though they meet the above requirements. First, while
space characters are acceptable, there has to be at least one
punctuation mark – character sets such as [\t] are ignored.
Second, the character sets [-+] or [+-] are also ignored. For
these character sets the + and – refer to positive or negative
signs and not being used as delimiters. This rule reduces false
alarms for regular expressions that match numbers in scientific
notation or a list of numbers that may be positive or negative.

The example string generated with the error chooses one
punctuation mark for the first character set and a different
punctuation mark for the second character set.

G. Wildcard Next to Punctuation Checker

The regular expression wildcard . matches any character.
While this is convenient to use, it is often the case where some
characters should be excluded. This checker detects cases
where a wildcard is adjacent to a punctuation mark. Since
punctuation marks are often used as separators between
different parts of the string, the user may not want the wildcard
to match the punctuation mark.

The checker works by looking for wildcards on the path. If
there is a wildcard, both the previous character before the
wildcard and the next character after the wildcard is further
analyzed. If the adjacent character is a punctuation mark, a
violation is reported. The adjacent character only refers to
explicit characters but those explicit characters could be nested
within a repeat quantifier. If the item adjacent to the wildcard is
a character set, wildcard, line anchor, or the beginning/ending
of the regular expression, no violation is reported.

The checker also analyzes negated character sets using ^. If
a negated character set is adjacent to a punctuation mark (using
the same rules described above) and the punctuation mark is
not excluded from the character set, a violation is reported.

The violation report includes an example string where the
adjacent punctuation mark is used to match the wildcard (or
negated character set) creating a string that has at least two

consecutive punctuation marks. In addition, a fix is shown. For
wildcards, a negated character set with the punctuation mark is
shown. For negated character sets, the punctuation mark is
added to the set of disallowed characters.

H. Repeat Punctuation Checker

This checker also detects cases where punctuation may be
incorrectly repeated. A violation occurs if a repeat quantifier
that allows more than one but not a fixed limit such as {2} is
applied to one of the following:

• punctuation character
• (non-negated) character set only containing punctuation

marks
• (non-negated) character set containing an explicit period

and/or explicit comma (explicit means it is intentionally
specified by the user and not part of a range nor part of a
character class such as \D)

The goal is to detect errors where consecutive punctuation
is not permitted. As noted before, punctuation is often used as a
separator and typically not used consecutively. Periods and
commas are specifically called out because they are almost
always used as separators. By allowing repetition, this could
suggest a poorly written regular expression that accept
numbers have consecutive commas or decimals points or email
address with nothing but periods before and/or after the @.

The example string generated with this report shows a
string where three consecutive punctuation marks match the
repeat quantifier.

I. Digit Too Optional Checker

The digit too optional checker focuses on regular
expressions that match some form of number. A common
mistake is to incorrectly accept strings with no digits. This
checker has two phases. In the first phase, it looks for cases
where digits are optional. This includes cases: \d?, \d*,
\d{0,}, and \d{0,n}. The character sets [0-9] or [1-9]
can be used in place of \d in the above examples. If a path
contains one of these elements, the checker moves into the
second phase. In the second phase, an example string is
generated in such a way that each optional repeat quantifier
(such as * or ?) is matched zero times. If the resulting string
does not have any digits then an error is reported.

The violation includes the generated example string during
the second phase of the checker. In many violations (including
the example in TABLE III), the generated example string is the
empty string.

J. Anchor in the Middle Checker

The anchor in the middle checker detects cases where a line
anchor (^ or $) appears in the middle of a regular expression
such that characters could appear before and after the line
anchor. This is a poorly written regular expression that leads to
rejecting strings that should be accepted.

The checker traverses the path using two flags that are
initially off: character flag and end anchor flag. When a
character or character set edge is processed, the character flag

is set; the regular expression has matched at least one character
at that point in the regular expression. When an end anchor $ is
encountered, the end anchor flag is set. An error occurs if a
begin anchor ^ edge is encountered after the character flag is
set. This signifies that a begin anchor is encountered after at
least one character. It is also an error if a character or character
set edge is encountered after the end anchor flag is set. This
signifies that at least one character is part of the regular
expression after the end anchor.

The error report highlights both the line anchor and either
the character before (for ^) or the character after (for $). An
example string is shown but is actually not accepted by the
regular expression due to the misplaced anchor.

K. Consistent Anchor Usage Checker

The consistent anchor usage looks at the entire set of paths.
An error is reported if some of the paths start with a begin
anchor ^ and some paths do not. Similarly, an error is reported
if some paths end with an end anchor $ and some paths do not.
The most common situation where this occurs is when
developers forget that the concatenation of line anchors has
higher precedence than alternation. For instance, ^dog|cat$
matches strings that start with dog or end with cat. If the user
only wanted to match the word dog or the word cat, then this is
the correct regular expression: ^(dog|cat)$

The violation report gives two accepted strings: one with an
anchor and one without the anchor. It also gives a suggested fix
where all line anchors are removed and the entire regular
expression is wrapped within a parentheses surrounded by line
anchors: ^(…)$

IV. LIMITATIONS

ACRE currently only supports regular expressions from
Python. Python was chosen due to familiarity and that the
regular expression syntax is very similar to Perl like many
other regular expression implementations. More specifically,
regular expressions in Python use the same metacharacters and
character classes as Perl but have a different set of extensions
with differing syntax. These extensions are largely ignored by
ACRE and are not used by any of the checkers. As such,
ACRE could be easily extended to other regular expression
implementations, especially those that are similar to Perl.

ACRE supports all Python regular expression elements
except Unicode characters beyond normal ASCII characters.
The lack of support of Unicode characters was due to lack of
support in the original EGRET engine that ACRE uses. We
plan to add support for Unicode characters in the future.
Currently, if a regular expression has such a Unicode character,
ACRE will abort with an error message.

Word boundaries (\b), flags, lookahead assertions,
lookbehind assertions, and conditional patterns are ignored
during checking. Presence of these elements could lead to false
alarms. False alarms can also occur because the checks are
written to point out likely errors with the regular expression.
Occasionally a check may report a violation that is not actually
an error based on user intention.

ACRE generates example strings for many of the checkers.
These example strings are intended to be accepted by the
regular expression to illustrate the error. There are three cases
where the string is not accepted by the regular expression and
subsequently suppressed (the error is still reported without the
example string). The first case is when a regular expression
contains one of the ignored elements listed above (such as a
word boundary) since the test generation module also ignores
these elements. A second case is when regular expression has a
line anchor in the middle. When this occurs, the regular
expression often rejects all strings. The last case is when the
regular expression has a backreference and the error is in the
group captured by the backreference.

V. RESULTS

To evaluate the approach, we used regular expressions
from the regular expression library RegExLib.com [21]. The
library has eight primary categories as shown in TABLE IV.
We extracted every regular expression from these eight
categories. Some of the regular expressions were not written
for Python – these were converted to Python regular
expressions. A few regular expressions were excluded because
they contained an element that was not supported in Python
regular expressions (the most common being Unicode
categories such as \p{Letter}). A total of 781 regular
expressions that are supported in Python. Of these 781 regular
expressions, 33 did not successfully compile and were
immediately rejected by ACRE. In addition, 24 contained a
non-ACSII Unicode character not currently supported by
ACRE. Evaluation was carried out using the 724 remaining
regular expressions.

In addition, we manually extracted regular expressions
from six different Python programs as shown in TABLE IV.
We did not include regular expressions for substitutions, splits,
or regular expressions that involved a (non-constant) variable.
From these six programs, 104 regular expressions were

extracted. Two regular expressions contained non-ASCII
Unicode characters resulting in 102 regular expressions. In
total, 826 regular expressions were used during the evaluation.

A. Bugs Found

The bug finding capability was evaluated by looking at the
output generated by ACRE. Each violation is analyzed to
determine whether the report referred to a bug or not.

The act of determining bugs is subjective. Each regular
expression in RegExLib.com contains a brief description.
Unfortunately, these descriptions often lacked detail on what
precisely should be accepted or rejected. We often had to infer
what the author was to trying to accomplish with a given
regular expression. For issues found in the actual Python
programs, we did not investigate the source code further to
determine if additional checks were present to mitigate the bug.
In all cases that we detected a bug, we felt it was something
worthy of additional investigation.

TABLE V shows the number of bugs found across the
different categories and programs: 283 of the 826 (34%)
regular expressions contained a bug. Several regular
expressions contained multiple bugs so the total number of
bugs (355) is higher than the number of the buggy regular
expressions (283). If a regular expression had multiple reports
from the same checker, this was considered to be just one bug.
In most cases, it was same bug replicated in multiple locations
within the regular expression – the nature of the regular
expression language does cause portions of the regular
expression to be replicated. If a regular expression had bugs
reported from different checkers, the bugs were considered to
be separate bugs.

Each of the checker found at least seven bugs and four
checkers found at least 40 bugs: Wildcard Next to Punctuation
Checker (86), Repeat Punctuation Checker (66), Separator in
Character Set Checker (52), and Duplicate Punctuation Only
Character Set Checker (40). These results show the checkers
are effective at finding errors in regular expressions.

The Wildcard Next to Punctuation Checker found several
issues in the markup / code and uri categories that included
errors involving duplicate >> in HTML code or quotes inside
quotes such as """. The checker also found 24 errors in the
Trac. Trac uses a / as delimiter and it is possible to match
strings consecutive // in many cases.

The Repeat Punctuation Checker found several bugs that
matched email addresses. Many of the bugs were due to
accepting strings with several consecutive periods for the user
name and/or email domain. The Duplicate Punctuation Only
Character Set Checker found several issues with mismatched
delimiters for regular expression that match phone numbers
and dates. The Digit Too Optional Checker, not surprisingly,
found 19 bugs in regular expressions that tried to match
numbers but also accept strings with no digits.

The checkers were less effective at finding bugs in regular
expressions in Python programs. Only four of the eleven
checkers found bugs in Python programs with the Wildcard
Next to Punctuation Checker accounting for most of the bugs.
We consider the Separator in Character Set Checker,

TABLE IV. REGULAR EXPRESSIONS USED IN EVALUATION

 Num
Regex

Eval
Compile

Error
No

Support

RegExLib
Library
Category

address / phone 105 99 5 1
dates / time 135 125 10 0
email 38 34 4 0
markup / code 63 59 3 1
misc 168 153 3 12
numbers 107 102 2 3
string 91 82 2 7
uri 74 70 4 0

Python
Program

advas (0.2.5) 16 16 0 0
beautifulsoup4
(4.3.2)

7 7 0 0

pychecker
(0.8.19)

4 4 0 0

pymetrics
(0.8.1)

6 6 0 0

tables (3.1.1) 8 8 0 0
Trac (1.0.1) 63 61 0 2
Library total 781 724 33 24
Programs total 104 102 0 2
Total 885 826 33 26

Duplicate Character Checker, Anchor in the Middle Checker,
and Consistent Anchor Usage Checker to target very obvious
mistakes (while the other checkers catch somewhat more subtle
errors). None of these four checkers found any errors in the
Python programs. We conclude that ACRE is less useful, but
still has value, in regular expressions that appear in released
code that has been tested. We feel that ACRE is more useful
when a developer is creating the regular expression and the
overall number of bugs found reflect that effectiveness for that
particular use case.

B. False Alarms

All 11 checkers are designed to highlight possible bugs but
false alarms are possible where a violation does not actually
refer to a bug. TABLE VI shows the number of false alarms by
program and by checker. 46 of the 826 regular expressions
(6%) had at one least false alarm. Of those 46 regular
expressions, 13 also had bugs, leaving 33 regular expressions
(4%) with only false alarms.

Regular expressions with multiple false alarms are counted
in the same manner as bugs. Five regular expressions contained
false alarms from two different checkers culminating in 51
different false alarms over 46 regular expressions.

The Wildcard Next to Punctuation Checker with 20 false
alarms and the Repeat Punctuation Checker with 13 false
alarms account for most of the false alarms. However, these
checkers also detected the most bugs so it is likely an
acceptable tradeoff. Five other checkers had two to six false
alarms while four checkers had no false alarms.

There were some common false alarm cases. For the
Wildcard Next to Punctuation Checker, there were three
common cases: a) \\. is used to represent an escaped
character. The escaped character can certainly be used to
represent a backslash as \\ is a legal and commonly-used
escaped character. b) File systems allow consecutive / within a
file path. c) Source code comments can start with the character
used to designate the comment. For instance, /** is the start of
a valid C comment. A common false alarm in the Repeat

Punctuation Checker is regular expression that matches (or a
portion matches) alphanumeric strings with periods and based
on the description, having multiple periods is acceptable. In all
six Digit Too Optional false alarm cases, ACRE properly
indicated that an empty string was accepted but the empty
string was explicitly allowed based on the description that
accompanied the regular expression.

One concern in bug detection systems that can produce
false alarms is that it could require significant time to manually
analyze the results. ACRE’s output is designed to allow the
user to quickly determine whether a violation is actually a bug.
The entire regular expression is displayed with the faulty part
highlighted. In most cases, it only took us a few seconds to
determine whether a report was a false alarm or not analyzing
the results. In the few cases that took longer, we had to take
time to determine the intent of the user. An actual user would
have a better idea of what the regular expression is precisely
trying to match.

TABLE V. BUGS FOUND

Category /
Program

Regexes Buggy
Bad

Range
Sep
| or ,

Dup
Char

Lone
Brace

Opt
Brace

Dup
Punc
Sets

Wild
Card

Repeat
Punc

Digit
Too
Opt

Anchor
Middle

Anchor
Usage

address / phone 99 35 3 7 1 5 15 8 2 7 2 1 5
dates / time 125 44 0 24 2 1 0 21 0 2 0 6 1
email 34 19 0 0 0 0 2 1 2 15 1 0 0
markup / code 59 25 0 1 1 1 0 3 19 4 0 0 1
misc 153 39 2 7 1 1 5 3 12 6 4 0 8
numbers 102 23 0 1 0 0 1 0 0 2 19 0 2
string 82 25 2 11 2 1 0 2 4 3 0 0 5
uri 70 34 2 1 1 1 1 0 15 21 0 0 1
advas 16 0 0 0 0 0 0 0 0 0 0 0 0
beautifulsoup 7 3 0 0 0 0 0 1 2 1 0 0 0
pychecker 4 3 0 0 0 0 0 1 2 1 0 0 0
pymetrics 6 4 0 0 0 0 0 0 4 0 0 0 0
tables 8 0 0 0 0 0 0 0 0 0 0 0 0
Trac 61 29 3 0 0 1 0 0 24 4 0 0 0
Regex Library 724 244 9 52 8 10 24 38 54 60 26 7 23
Programs 102 39 3 0 0 1 0 2 32 6 0 0 0

Total 826 283 12 52 8 11 24 40 86 66 26 7 23

TABLE VI. FALSE ALARMS

Category /
Program

False
Alarms

 Checker
False

Alarms
address / phone 1 bad range 0
dates / time 1 separator in char set 0
email 4 duplicate char 2
markup / code 10 lone brace 2
misc 7 optional brace 0
numbers 4 duplicate punc char set 2
string 3 wildcard next to punc 20
uri 6 repeat punctuation 13
advas 0 digit too optional 6
beautifulsoup4 2 anchor in the middle 0
pychecker 1 consistent anchor usage 6
pymetrics 1 Total 51
tables 1
Trac 5
Library total 36
Programs total 10
Total 46

C. Comparison to Test Generation

Our prior work found bugs in regular expressions using test
generation with a tool called EGRET [17]. EGRET generates
strings from the regular expression that are both accepted and
rejected from the strings focusing on common mistakes from
users. Users have to scan the list of strings and determine
whether there is a string that should be accepted or not.

We compare our approach to a theoretical version of
EGRET that includes the example strings generated from
ACRE in addition to any strings generated from EGRET. Nine
of the eleven checkers generate an example string. While
ACRE does not generate a test string for bad ranges2, a test
string could be created for a bad range that selects an
unintended character to represent the character set with the bad
range. To summarize, this theoretical approach to test
generation should be able to capture all of the bugs that ten of
the eleven checkers encountered. This accounts for 275 of the
283 bugs detected. Two issues could lower this number: a)
Implementation issues such as handling trickier constructs such
as lookahead assertions and backreferences are difficult to
implement in a test generation environment; it is easier for the
checkers in ACRE to ignore these constructs. b) Humans are
required to look at the resulting list of generated strings and
notice there is an error. It is difficult to quantify either of these.

The Duplicate Character Checker is the one checker that is
not easily replicated in a test generation system. The checker
found eight bugs. Those regular expressions were run in
EGRET to determine if a bug could be found and we
discovered that four of the eight cases resulted in a generated
test string that demonstrates the error. Consequently, four bugs
detected by the checker were unable to be detected by EGRET.

Test generation systems will always have the ability to find
more bugs because the user that is analyzing the test strings
knows that the string should accept or not accept. This
knowledge is lost in the checkers which are narrow, focused on
a particular problem. For instance, assume a regular expression
is trying to match dates. If it accepts strings that don’t look like
a date, this is going to be readily apparent when test strings are
generated. The error will be missed by ACRE unless it
specifically contains one of the errors that ACRE is looking
for.

The same regular expressions that ACRE used were run in
EGRET and were manually analyzed. EGRET found 94 buggy
regular expressions that were missed by ACRE. Looking at
these 94 regular expressions, we find that most of them require
specific knowledge of what types of strings the regular
expression accepts. Additional checkers could be created for a
few of these regular expressions but the errors are less common
than those found by the current checkers.

To summarize, ACRE and EGRET combined were able to
detect 377 buggy regular expressions. ACRE alone was able to
find 283 of 377 bugs. This means that ACRE is able to quickly
find 75% of the bugs using a set of 11 checkers. Using ACRE
is actually easier for the user since it doesn’t required looking

2We feel that a test string is not necessary for the bad range checker, the error
report and fix are sufficient.

at several test strings and provides specific information about
the error to aid in debugging.

VI. RELATED WORK

ACRE is inspired by a variety of lint tools including
LCLint [7], Splint [8], PCLint [10], DLint [11], and Android
Lint [12]. Like ACRE, these lint tools employ a variety of
checks, most of them are relatively simple, that detect likely
programming mistakes. CodeSonar [13] implements a number
of source code checks and allows user to implement their own
custom checkers. Compilers such as gcc [9] incorporate checks
as warnings. To the best of our knowledge, ACRE is the first
tool that applies these type of checks to regular expressions.

There are several tools that can be used to test regular
expressions including RegViz [3], RegExr [20], and Regular
Expressions 101 [22]. These tools allow the user to enter a
regular expression and a test string. The tool will determine
where the test string is accepted or rejected by the regular
expression. These tools contain a graphical interface that
provides a visual representation of how the test string matches
the regular expression. RegExpert [5] includes a graphical
representation of the automata corresponding to the regular
expression.

Test generation is a popular approach to finding bugs in
regular expressions. EGRET [17] generates evil test strings
given a regular expression. The evil test strings are generated
based on common programming mistakes and kept to a
moderate number so the user can easily scan the list of strings.
EXREX [24] also generates test strings. It generates all
accepted test strings limiting unbounded repeat quantifiers
(such as *) to a fixed number of iterations. Reggae [18] can
generate create tests for functions that include regular
expressions. Liu and Miao [19] describe how to create test
cases from a regular expression and decompose the regular
expression when it is too long.

Research groups have shown that writing and
comprehending regular expressions is difficult. Chapman et al.
[6] performed a study on functionally equivalent but
syntactically different regular expressions. They found that
certain elements were easier to comprehend than others and
created a set of guidelines for writing easy to comprehend
guidelines. ACRE could be expanded to ensure that any
stylistic guidelines are met or possibly rewrite the regular
expression using a set of guidelines. Hollmann and Hanenberg
[14] found that users were more able to quickly understand a
regular expression in a visual representation than the standard
textual representation. Bartoli et al. [1] developed a system that
automatically creates a regular expression based on examples.
Then, (Bartoli et al. [2]) a study was performed comparing the
performance of the system with human developers. They found
the system to have similar performance in both time and
accuracy with an experienced developer. Both the system and
the developers made mistakes further illustrating the need for a
tool such as ACRE.

Other relevant work on regular expressions include a type
system created by Spishak et al. [23] for programs that use
regular expressions to capture regular expression syntax errors
and invalid group numbers during extraction. Lämmel and

Zaytsev [16] use checks similar to ACRE to detect and correct
errors in grammars while extracting a grammar from a text-
based source such as a web page. Grammars, like regular
expressions, use parentheses and vertical bars as
metacharacters and occasionally are specified incorrectly. Rex
[25] is a general-purpose solver of regular expressions
constraints for use in program analysis and bug detection tools.

VII. CONCLUSION AND FUTURE WORK

This paper describes the ACRE tool that automatically
checks regular expressions. ACRE consists of a set of 11
checkers that focus on common mistakes made by developers.
ACRE is easy to use – users simply enter a regular expression
and press the check button. Out of 826 regular expressions,
ACRE found 283 buggy regular expressions and 46 contained
false alarms.

In the future, additional checkers could be added to ACRE.
One specific example is a checker that looks at alternation and
cases where one or more of the choices is unnecessary such as
-|.|\s. In this case, the wildcard (which probably should
have been an escaped period) makes the other choices
unnecessary indicating a poorly-written regular expression that
is likely incorrect.

Another direction of future work is to refine the checkers
within ACRE to reduce false alarms. Can ACRE recognize
cases where an alphanumeric string is being used and eliminate
false alarms within the Repeat Punctuation Checker while still
finding bugs? We would like more checkers to provide
suggested fixes. For the Optional Brace Checker, a regular
expression could be suggested that requires both or none of the
braces.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers
for their valuable comments. The author would also like to
thank Tyler Hartje for his contributions to the ACRE engine
and initial versions for two of the checkers used in this project.

REFERENCES

[1] A. Bartoli, G. Davanzo, A. De Lorenzo, E. Medvet, and E. Sorio,

“Automatic Synthesis of Regular Expressions from Examples,” IEEE
Comput., vol. 47, no. 12, pp. 72–80, Dec. 2014.

[2] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao, “Can a Machine
Replace Humans in Building Regular Expressions? A Case Study,”
IEEE Intell. Syst., vol. 31, no. 6, pp. 15–21, Nov. 2016.

[3] F. Beck, S. Gulan, B. Biegel, S. Baltes, and D. Weiskopf, “RegViz:
Visual Debugging of Regular Expressions,” in Companion Proceedings
of the 36th International Conference on Software Engineering - ICSE
Companion 2014, 2014, pp. 504–507.

[4] E. Bendersky, “Finite State Machines and Regular Expressions.”
[Online]. Available:
https://www.gamedev.net/articles/programming/general-and-gameplay-
programming/finite-state-machines-and-regular-expressions-r3176.
[Accessed: 14-Jun-2018].

[5] I. Budiselic, S. Srbljic, and M. Popovic, “RegExpert: A Tool for
Visualization of Regular Expressions,” in EUROCON 2007 - The
International Conference on “Computer as a Tool,” 2007, pp. 2387–
2389.

[6] C. Chapman, P. Wang, and K. T. Stolee, “Exploring regular expression
comprehension,” in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2017, pp. 405–416.

[7] D. Evans, J. Guttag, J. Horning, Y. M. Tan, D. Evans, J. Guttag, J.
Horning, and Y. M. Tan, “LCLint: a tool for using specifications to
check code,” ACM SIGSOFT Softw. Eng. Notes, vol. 19, no. 5, pp. 87–
96, Dec. 1994.

[8] D. Evans and D. Larochelle, “Improving Security Using Extensible
Lightweight Static Analysis,” IEEE Softw., vol. 19, no. 1, pp. 42–51,
2002.

[9] Free Software Foundation, “GCC, the GNU Compiler Collection.”
[Online]. Available: https://gcc.gnu.org/. [Accessed: 14-Jun-2018].

[10] Gimple Software, “PC-lint.” [Online]. Available:
http://www.gimpel.com/html/pcl.htm. [Accessed: 14-Jun-2018].

[11] L. Gong, M. Pradel, M. Sridharan, and K. Sen, “DLint: dynamically
checking bad coding practices in JavaScript,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis - ISSTA
2015, 2015, pp. 94–105.

[12] Google Developers, “Improve your code with lint checks.” [Online].
Available: https://developer.android.com/studio/write/lint. [Accessed:
14-Jun-2018].

[13] GrammaTech, “GrammaTech CodeSonar.” [Online]. Available:
https://www.grammatech.com/products/codesonar. [Accessed: 14-Jun-
2018].

[14] N. Hollmann and S. Hanenberg, “An Empirical Study on the Readability
of Regular Expressions: Textual Versus Graphical,” in 2017 IEEE
Working Conference on Software Visualization (VISSOFT), 2017, pp.
74–84.

[15] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., 2006.

[16] R. Lämmel and V. Zaytsev, “Recovering grammar relationships for the
Java Language Specification,” Softw. Qual. J., vol. 19, no. 2, pp. 333–
378, Jun. 2011.

[17] E. Larson and A. Kirk, “Generating Evil Test Strings for Regular
Expressions,” in 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2016, pp. 309–319.

[18] N. Li, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Reggae:
Automated Test Generation for Programs Using Complex Regular
Expressions,” in 2009 IEEE/ACM International Conference on
Automated Software Engineering, 2009, pp. 515–519.

[19] P. Liu and H. Miao, “A New Approach to Generating High Quality Test
Cases,” in 2010 19th IEEE Asian Test Symposium, 2010, pp. 71–76.

[20] “RegExr: Learn, Build, & Test RegEx.” [Online]. Available:
http://www.regexr.com. [Accessed: 14-Jun-2018].

[21] “RegExLib.com.” [Online]. Available: http://www.regxlib.com.
[Accessed: 14-Jun-2018].

[22] “Regular Expressions 101.” [Online]. Available: https://regex101.com.
[Accessed: 14-Jun-2018].

[23] E. Spishak, W. Dietl, and M. D. Ernst, “A type system for regular
expressions,” in Proceedings of the 14th Workshop on Formal
Techniques for Java-like Programs - FTfJP ’12, 2012, pp. 20–26.

[24] A. Tauber, “EXREX - regular expression string generator.” [Online].
Available: https://github.com/asciimoo/exrex. [Accessed: 14-Jun-2018].

[25] M. Veanes, P. de Halleux, and N. Tillmann, “Rex: Symbolic Regular
Expression Explorer,” in 2010 Third International Conference on
Software Testing, Verification and Validation, 2010, pp. 498–507.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

