
 1

Introduction to Debugging with gdb
Computer Science and Engineering

Seattle University

Invoking gdb

To use gdb, you must compile and link your program with the “-g” switch (other switches such
as “-Wall” can be used too). For example:

g++ -g prog1.cpp

To start gdb, type (assuming a.out is the name of the executable):

gdb a.out

When gdb starts, your program is not actually running. To have it run, type:

run optional-command-line-arguments

You can also restart your program by typing "run" anytime there is a prompt. You do not need
to retype the command line arguments unless you want to change them.

Setting and deleting breakpoints

The key to using a debugger is to place breakpoints in the program. A breakpoint is a point in
the program where the debugger will suspend the execution of the program. While the program
is suspended, the programmer can print out the values of variables and execute programs step by
step using commands described later in this document.

The command to set a break point is:

break place

This creates a breakpoint at place - the program will stop when it gets there. The place field can
be one of three things:

• The beginning of a function (example: "break swap" will stop at the beginning of the
function swap)

• The line number of the current file (example: "break 20" will stop at line number 20)
• The file name and line number (example: "break board.cpp:64" will stop line 64 in

board.cpp)

The current file is the file where the execution of the program currently is at. At the beginning of
the program, the current file is the file that contains main.

 2

To display all the current breakpoints:

info break

This will give a list of breakpoints with an ID number. This ID number can be used to disable,
enable, or delete breakpoints using these commands respectively:

disable id disables breakpoint id, can be re-enabled
enable id enables breakpoint id
delete id completely removes breakpoint id, cannot be re-enabled

Controlling the execution of the program

These commands control how much is executed:

step
Executes the current line of the program and stops on the next statement to be executed. If the
statement includes a function call, the next statement will be the first statement of the called
function.

next
Similar to step, except if the current line of the program contains a function call, it executes the
function and stops at the next line.

finish
Continue until a breakpoint is hit or the end of the current function.

continue
Continues until a breakpoint is hit or the program stops.

Displaying information

These commands give you information about the current state of the program:

print expression
Prints the value of the expression (usually just a variable) in the program.

display expression
Prints the value of the expression every time you execute a step (using step or next).

undisplay
Stops the display of expressions.

where
Prints a chain of function calls that brought the program to its current place.

 3

Other useful commands

help command
Provides a brief description of a GDB command or topic. The word "help", with no command,
lists the possible topics

quit
Leave GDB.

Debugging tips

• When you encounter a run-time error with your program such as "segmentation fault" or "bus

error", the first course of action is to invoke gdb. Run your program without any breakpoints.
The debugger will automatically stop at the point where the error occurred indicating the file
name and line number. If you stop in a system call, use the 'where' command to see the last
statement of your source code that was executed.

• gdb can also help with infinite loops or programs that seem to take a long time. While the

debugger is running, hit Ctrl-C to stop the debugger (forcing a breakpoint). gdb will indicate
where it stopped. Check out this code and see if you are in an infinite loop.

• For errors where the output doesn't give the proper value, you will need to narrow down

where the error occurred. This can be done by setting breakpoints at function boundaries and
verifying if each function is working correctly. Once you find the failing function, step
through that function to find the error. It may be necessary to re-run the program several
times before narrowing down the error. Just like program design, debugging is also done in a
top-down fashion.

• Debugging is an art. Focus on spots of your code that you are least comfortable with first,

but don't get "tunnel vision" and assume that the error is in that segment of code.

	Invoking gdb
	Setting and deleting breakpoints
	Controlling the execution of the program
	Displaying information
	Other useful commands
	Debugging tips

