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Abstract

In this paper, we derive a viscous generalization of the Dysthe [1] system
from the weakly viscous generalization of the Euler equations introduced by
Dias, Dyachenko, & Zakharov [2]. This “viscous Dysthe” system models the
evolution of a weakly viscous, nearly monochromatic wave train on deep water.
It includes only one free parameter, which can be determined empirically. It
contains a term that provides a mechanism for frequency downshifting in the
absence of wind and wave breaking. The system does not preserve the spectral
mean. Numerical simulations demonstrate that the spectral mean typically de-
creases and that the spectral peak decreases for certain initial conditions. The
linear stability analysis of the plane-wave solutions of the viscous Dysthe system
demonstrates that waves with frequencies closer to zero decay more slowly than
waves with frequencies further from zero. Comparisons between experimental
data and numerical simulations of the nonlinear Schrödinger, dissipative nonlin-
ear Schrödinger, Dysthe, and viscous Dysthe systems establish that the viscous
Dysthe system accurately models data from experiments in which frequency
downshifting was observed and experiments in which frequency downshift was
not observed.

1. Introduction

In the late 1970s, Lake et al. [3] and Lake & Yuen [4] conducted physical
experiments that investigated the evolution of nonlinear wave trains on deep
water. They found that the growth of the Benjamin-Feir instability is followed
by a shift in the spectral peak, the frequency corresponding to the Fourier mode
with largest magnitude, to a frequency closer to zero. Subsequent experiments,
including those in Su et al. [5] and Melville [6], demonstrated that the ampli-
tude of the lower sideband grows and eventually overtakes that of the carrier
wave. These later experimental studies focused on waves with larger steepness
and involved wave breaking. More recently, Segur et al. [7] conducted similar
experiments without wave breaking or wind. They found that frequency down-
shifting (FD) is not observed (in their tank) if the waves have what they refer to
as “small or moderate” amplitudes and that FD is observed if the amplitude of
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the carrier wave is “large” or if the sideband perturbations are “large enough.”
They also found that if FD occurs then (i) the spectral mean (defined below)
decreases monotonically as the waves travel down the tank and (ii) FD occurs
in the higher harmonics before it occurs in the fundamental. The goal of the
current work is to provide a mathematical justification for FD that does not
rely on wind or wave breaking.

There are two quantities that are commonly used to quantify frequency
downshifting: the spectral peak, ωp, and the spectral mean, ωm. The spectral
mean (in Hertz) at a location x in tank is given by

ωm(x) =
P(x)

M(x)
, (1)

where M (in cm2) and P (in cm2/sec) are defined by

M(x) =
1

L

∫ L

0

|B|2dt, (2a)

P(x) =
i

2L

∫ L

0

(

BB∗
t −BtB

∗
)

dt. (2b)

Here B (in cm) is a measure of the slow evolution of the complex envelope of a
nearly monochromatic train of plane waves; x (in cm) is the horizontal coordi-
nate in the direction of wave propagation; t (in sec) is the temporal coordinate;
L (in sec) is the t period of B; and ∗ represents complex conjugate. We note
that while some studies use P by itself as a measure of FD, we focus on ωp and
ωm.

Zakharov [8] derived the cubic nonlinear Schrödinger (NLS) equation from
the Euler equations as a model for the evolution of the envelope of a nearly
monochromatic wave group. The NLS equation preserves the spectral mean, so
it cannot be used to model FD. Dysthe [1] carried out the NLS perturbation
analysis one order higher to obtain what is now known as the Dysthe system.
Lo & Mei [9] numerically solved the NLS equation and Dysthe system and
established that the Dysthe system more accurately predicts the evolution of
mildly sloped, narrow-banded, weakly nonlinear waves over longer time periods
than does the NLS equation. They also found that dissipative generalizations of
the Dysthe system are required to model waves of moderate steepness over long
distances. Finally, their numerical studies showed that the Dysthe system did
not lead to a permanent FD even though the Dysthe system does not preserve
the spectral mean. Segur et al. [7] established that the dissipative NLS equation
accurately models the evolution of waves trains in which no FD occurred and
that it cannot model FD because it preserves the spectral mean. The dissipative
NLS equation was used as an ad-hoc model without formal justification until
Dias, Dyachenko, & Zakharov [2] derived it from a weakly viscous generalization
of the Euler equations. The first step in the current work is to carry out the
Dysthe perturbation analysis starting from the Dias, Dyachenko, & Zakharov
weakly viscous generalization of the Euler equations in order to derive a new
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system, which we call the viscous Dysthe system. Readers interested in wind
and wave-breaking justifications for FD are referred to Trulsen & Dysthe [10],
Hara & Mei [11], Kato & Oikawa [12], Brunetti & Kasparian [13], Brunetti et
al. [14], and Islas & Schober [15].

The paper is organized as follows: Section 2 contains the derivation of the
viscous Dysthe system. Section 3 contains a summary of the properties of this
new equation. Section 4 contains comparisons of viscous Dysthe predictions
with experimental data from two experiments, ne of which exhibited FD.

2. Derivation of the viscous Dysthe equation

Dias, Dyachenko, & Zakharov [2] introduced the following system for an
infinitely-deep, weakly viscous fluid

φxx + φyy + φzz = 0, for −∞ < z < η, (3a)

φt +
1

2

∣

∣∇φ
∣

∣

2
+ gη = −2ν̄φzz, at z = η, (3b)

ηt + ηxφx + ηyφy = φz + 2ν̄∆η, at z = η, (3c)

|∇φ| → 0, as z → −∞. (3d)

Here φ = φ(x, y, z, t) represents the velocity potential of the fluid; η = η(x, y, t)
represents the free-surface displacement; t is the temporal coordinate; x and y
are horizontal coordinates; z is the vertical coordinate; g represents the acceler-
ation due to gravity; and ν̄ > 0 represents the kinematic viscosity of the fluid.
This model assumes that gravity and viscosity are the only forces acting on the
fluid. The Euler equations are obtained from (3) by setting ν̄ = 0.

As frequency downshifting is most commonly observed in time series recorded
at various locations in the direction of wave propagation, assume

η(x, y, t) = ǫ3η̄ + ǫBeiω0t−ik0x + ǫ2B2e
2(iω0t−ik0x) + · · ·+ c.c., (4a)

φ(x, y, z, t) = ǫ2φ̄+ ǫA1e
k0z+iω0t−ik0x + ǫ2A2e

2(k0z+iω0t−ik0x) + · · ·+ c.c., (4b)

where ω0 > 0 and k0 > 0 represent the frequency and wave number of the
carrier wave respectively; ǫ = 2a0k0 ≪ 1 is a dimensionless parameter known
as the wave steepness; a0 represents a typical wave amplitude; and c.c. stands
for complex conjugate. Assuming k0 > 0 determines the z dependence in φ.
The choice ω0 > 0 implies that the wave train travels in the positive x direction
as t increases. The A’s and φ̄ depend on the slow variables X = ǫx, Y = ǫY ,
Z = ǫz, and T = ǫt, while the B’s and η̄ depend on X , Y and T . Next, assume

Aj = Aj0 + ǫAj1 + ǫ2Aj2 + ǫ3Aj3 + . . . , for j = 1, 2, 3, . . . , (5a)

Bj = Bj0 + ǫBj1 + ǫ2Bj2 + ǫ3Bj3 + . . . , for j = 2, 3, 4, . . . , (5b)

η̄ = η̄0 + ǫη̄1 + ǫ2η̄2 + . . . , (5c)
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φ̄ = φ̄0 + ǫφ̄1 + ǫ2φ̄2 + . . . . (5d)

Following the work of Dias, Dyachenko, & Zakharov, assume that viscous effects
are small by setting ν̄ = ǫ2ν. Substituting (4) and (5) into (3) and completing
the fourth-order perturbation analysis gives the deep-water dispersion relation-
ship,

gk0 = ω2
0 , (6)

the system that defines B and φ̄0,

2iω0

(

BT +
g

2ω0
BX

)

+ ǫ
( g

4k0
BXX −

g

2k0
BY Y + 4gk30 |B|2B + 4ik20ω0νB

)

+ ǫ2
(

−
ig

8k20
BXXX +

3ig

4k20
BXY Y + 2igk20B

2B∗
X

+ 12igk20|B|2Bx + 2k0ω0Bφ̄0X − 8k0ω0νBX

)

= 0, at Z = 0, (7a)

φ̄0Z = 2ω0

(

|B|2
)

X
, at Z = 0, (7b)

φ̄0XX + φ̄0ZZ = 0, for−∞ < Z < 0, (7c)

φ̄0Z → 0, as Z → −∞, (7d)

and
B2 = k0B

2 +O(ǫ), (8a)

B3 =
3

2
k20B

3 +O(ǫ). (8b)

Equations (8a) and (8b) define the leading-order contributions to the ampli-
tudes of the second and third harmonics of the carrier wave respectively.

Interchanging the forms of the assumptions in equations (5a) and (5b) and
following a similar procedure while focusing on the leading-order term of the
velocity potential instead of the leading-order term of the surface displacement
gives

2iω0

(

AT +
g

2ω0
AX

)

+ ǫ
( g

4k0
AXX −

g

2k0
AY Y + 4k40|A|

2A+ 4ik20ω0νA
)

+ ǫ2
(

−
ig

8k20
AXXX +

3ig

4k20
AXY Y − 2ik30A

2A∗
X

+ 12ik30|A|
2Ax + 2k0ω0Aφ̄0X − 8k0ω0νAX

)

= 0, at Z = 0, (9a)

φ̄0Z =
2k20
ω0

(

|A|2
)

X
, at Z = 0, (9b)

φ̄0XX + φ̄0ZZ = 0, for−∞ < Z < 0, (9c)

φ̄0Z → 0, as Z → −∞. (9d)

In essence, this system defines A1 in equation (5a).
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The systems in (7) and (9) are related by

B = −
ik0
ω0

A+ ǫ
1

2ω0
AX + ǫ2

(

−
i

8k0ω0
AXX +

i

4k0ω0
AY Y −

ik40
2gω0

|A|2A
)

+O(ǫ3),

(10a)

A =
iω0

k0
B+ǫ

ω0

2k20
BX+ǫ2

(

−
3iω0

8k30
BXX+

iω0

4k30
BY Y −

ik0ω0

2
|B|2B

)

+O(ǫ3). (10b)

In order to nondimensionalize and enter into a coordinate frame moving
with the linear group velocity, ω0

2k0

, apply the following change of variables. For
simplicity, assume that there is no Y dependence. Let

k0B(X,Y, T ) = B̃(ξ, χ), (11a)

k20
ω0

A(X,Y, Z, T ) = Ã(ξ, χ, ζ), (11b)

k20
4ω0

φ̄0(X,Y, Z, T ) = Φ̃(ξ, χ, ζ), (11c)

4k20
ω0

ν = δ, (11d)

χ = ǫk0X, (11e)

ξ = ω0T − 2k0X, (11f)

ζ = k0Z. (11g)

This change of variables leads to (where tildes have been dropped for conve-
nience)

iBχ +Bξξ + 4|B|2B + iδB + ǫ
(

− 8iB2B∗
ξ − 32i|B|2Bξ

− 16BΦξ + 5δBξ

)

= 0, at ζ = 0, (12a)

Φζ = −
(

|B|2
)

ξ
, at ζ = 0, (12b)

4Φξξ +Φζζ = 0, for−∞ < ζ < 0, (12c)

Φζ → 0, as ζ → −∞, (12d)

and

iAχ +Aξξ + 4|A|2A+ iδA+ ǫ
(

− 32i|A|2Aξ − 16AΦξ

+ 5δAξ

)

= 0, at ζ = 0, (13a)

Φζ = −
(

|A|2
)

ξ
, at ζ = 0, (13b)

4Φξξ +Φζζ = 0, for−∞ < ζ < 0, (13c)

Φζ → 0, as ζ → −∞. (13d)
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We call the systems given in equations (12) and (13) the viscous Dysthe system
for the surface displacement (the vB system) and the viscous Dysthe system for
the velocity potential (the vA system) respectively. These equations describe
the evolution of a narrow-banded, weakly nonlinear, weakly viscous fluid. The
NLS equation is obtained from equation (12a) or (13a) by setting δ = ǫ = 0.
The Dysthe systems for the surface displacement (the DB system) and velocity
potential (the DA system) are obtained by setting δ = 0 in equations (12) and
(13) respectively.

It is important to note that there is only one free parameter in the viscous
Dysthe systems. This parameter, δ, is empirically determined by fitting the
decay of M. This makes the viscous Dysthe systems qualitatively different
than other FD models that have two (or more) free parameters that can be
used to fit M, P , or other quantities.

3. Properties of the viscous Dysthe system

3.1. Mass and linear momentum

Using the variables introduced in equations (4) and (11), the quantities M
and P can be rewritten as

M(χ) =
ǫ2

k20

1

ǫω0L

∫ ǫω0L

0

|B|2dξ, (14a)

P(χ) =
ǫ3ω0

k20

i

2ǫω0L

∫ ǫω0L

0

(

BB∗
ξ − BξB

∗
)

dξ. (14b)

Trulsen & Dysthe [16] showed that the DA system preserves both M and P
in χ, while the DB system preserves M, but not P . Moreover, they established
that the sign of Pχ in DB system is not definite and therefore the Dysthe system
can predict frequency upshifting. Lo & Mei [9] conducted numerical studies of
the DB system and did not observe a permanent downshift in any of their
simulations. These results suggest that the B2B∗

ξ term (the only term that
differentiates the DB and DA systems) is not the mechanism for FD.

The DA system is Hamiltonian while the DB system system is likely not
Hamiltonian (see, for example, Carter [17] and Segur, Henderson, & Ham-
mack [18]). Gramstad & Trulsen [19] derived a Hamiltonian generalization of
the VB system. Although we do not study this equation here, we expect that
the results shown below will generalize to it because the viscosity term, 5ǫδBξ,
provides the mechanism for FD.

The χ dependencies of M and P in the vB system are given by

Mχ = −2δM− 10
δ

ω0
P , (15a)

Pχ = −2δP − 10
δ

ω0
Q−

16

ω0
R, (15b)
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where

Q =
ǫ4ω2

0

k20

1

ǫω0L

∫ ǫω0L

0

|Bξ|
2dξ, (16a)

R =
ǫ4ω2

0

k20

1

ǫω0L
Im

(

∫ ǫω0L

0

|B|2B∗Bξξdξ
)

. (16b)

Further
(

ωm

)

χ
=

( P

M

)

χ
= −

10δ

ω0M2

(

MQ−P2
)

−
16

ω0

R

M
. (17)

Equation (15a) shows that M decreases more rapidly when P > 0 and more
slowly when P < 0. This suggests a preference for waves with negative wave
number in ξ. The first term on the right-hand side of (15b) establishes that to
leading-order the absolute value of P decreases in χ. The second term causes
P to decrease regardless of the sign of P . Unfortunately, no general statements
can be made about the R term, which arises in the viscosity-free DB system,
because it does not have a definite sign [16].

The Cauchy-Schwarz inequality establishes that (MQ − P2) ≥ 0. This
establishes that viscosity (δ > 0) causes the spectral mean to decrease. The sign
of the R/M term can vary, so FD in the spectral mean sense is not necessarily
guaranteed. Finally, equation (17) establishes that FD is a higher-order in
ǫ effect. This corroborates the Segur et al. result that the dissipative NLS
equation preserves the spectral mean.

3.2. Plane-Wave Solutions

Consider solutions of the vB system with the following form

B(ξ, χ) = B0 exp
(

ilξ + wr(χ) + iwi(χ) + iρ
)

, (18)

where B0, l, and ρ are real constants and wr and wi are real-valued functions.
This gives

Φ(ξ, χ, ζ) = 0, (19a)

w′
r(χ) + δ(1 + 5ǫl) = 0, (19b)

w′
i(χ) + l2 − 4B2

0(1 + 6ǫl)e2wr(χ) = 0. (19c)

The parameter ρ does not play a role in the ODEs that define ωr and ωi

because of the gauge invariance of the vB system. This allows all complex B0

to be considered by assuming, without loss of generality, that B0 is a positive
constant. The solution of this system is

wr(χ) = −δ(1 + 5ǫl)χ, (20a)

wi(χ) = −l2χ+
2B2

0(1 + 6ǫl)

δ(1 + 5ǫl)

(

1− e−2δ(1+5ǫl)χ
)

. (20b)

The constants of integration were chosen so that these (viscous) solutions limit
to the solutions of the (nonviscous) DB system in the δ → 0 limit. Note that
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(20a) establishes that if δ > 0, then to leading order all plane-wave solutions
of the vB system decay to zero as χ → ∞. Just as in the NLS equation and
the Dysthe systems, choosing l 6= 0 corresponds to shifting the frequency of the
carrier wave. The function ωr depends on l in such a way that it takes into
account the correct (up to the order of the equation) rate of dissipation for the
shifted carrier wave. Therefore, we assume l = 0 for the remainder of the paper.

3.3. Linear stability analysis

In order to study the stability of solutions of the form given in equation (18),
we consider perturbed solutions of the form

Bpert(ξ, χ) =
(

B0 + µu(ξ, χ) + iµv(ξ, χ)
)

exp
(

wr(χ) + iwi(χ)
)

, (21a)

Φpert(ξ, χ, ζ) = 0 + µp(ξ, χ, ζ), (21b)

where µ is a small real parameter; u, v, and p are real-valued functions; and
wr and wi are given in equation (20). Note that the decay due to wr has
been factored out in equation (21a). This allows the evolution of the surface
displacement perturbation, µ(u + iv), to be directly compared to the constant
B0. Therefore, if u and/or v grow without bound in χ, we say that the solutions
is linearly unstable (even though the magnitude of the entire perturbed solution
may decay to zero).

Substituting (21) into (12), linearizing in µ, and separating into real and
imaginary parts leads to a system of coupled partial differential equations (PDEs)
that have constant coefficients in ξ and ζ. Without loss of generality, assume

u(ξ, χ) = U(χ)eiqξ + U∗(χ)e−iqξ, (22a)

v(ξ, χ) = V (χ)eiqξ + V ∗(χ)e−iqξ, (22b)

p(ξ, χ, ζ) = −sign(q)B0

(

iU(χ)eiqξ − iU∗(χ)e−iqξ
)

e2|q|ζe−2δχ, (22c)

where q is a real constant, and U and V are complex-valued functions. The
form for p given in equation (22c) is used because it satisfies Laplace’s equation
and the bottom boundary condition. Substituting (22) into the coupled PDEs
gives

(

U
V

)′

=
(

A1 + e2wr(χ)A2

)

(

U
V

)

, (23)

where prime means derivative with respect to χ and A1 and A2 are the constant
matrices defined by

A1 =

(

0 q2 − 5iǫδq
−q2 + 5iǫδq 0

)

, (24a)

A2 =

(

40iǫqB2
0 0

8(1− 2ǫ|q|)B2
0 24iǫqB2

0

)

. (24b)

The classical instability result for the NLS equation, i.e. any q satisfying q2 <
8B2

0 gives instability, is obtained by solving equation (23) with ǫ = δ = 0. To
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our knowledge, an exact solution of (23) when ǫ and δ are nonzero is not known.
The matrix A1 determines the large-χ behavior of the solution because the χ
dependent term is integrable on χ ∈ [0,∞) (see, for example, Coddington &
Levinson [20]). The eigenvalues of A1 are

λA1
= ±iq2 ± 5ǫδq. (25)

This establishes that the long-term solution of (23) is given by

(

U
V

)

=

(

−ic1 ic2
c1 c2

)(

exp
(

(iq2 + 5ǫδq)χ
)

exp
(

(−iq2 − 5ǫδq)χ
)

)

, (26)

where c1 and c2 are the constants of integration. Substituting this back into
equation (21a) gives

Bpert =
(

B0 + 2iµc1 exp
(

− iqξ − iq2χ+ 5ǫδqχ
)

+ 2iµc2 exp
(

iqξ − iq2χ− 5ǫδqχ
)

)

ewr(χ)+iwi(χ). (27)

The leading-order surface displacement in physical coordinates corresponding
to this perturbed plane-wave solution of the vB system is

η(x, t) = d0 exp
(

iω0t+ if0(x)− 4ν̄
k30
ω0

x
)

+ d1 exp
(

iω0(1− ǫq)t+ if1(x) − 4ν̄
k30
ω0

(1 − 5ǫq)x
)

+ d2 exp
(

iω0(1 + ǫq)t+ if2(x)− 4ν̄
k30
ω0

(1 + 5ǫq)x
)

+ c.c. (28)

where the dj are complex constants and the fj are real-valued functions.

Observations:

• If q 6= 0 then A1 has an eigenvalue with positive real part in the viscous
(δ > 0) case. Therefore all plane-wave solutions of the vB system are lin-
early unstable. The growth rate of the instability is 5ǫδ|q|. This instability
is not a Benjamin-Feir-like instability because all spatially dependent per-
turbations lead to exponential growth. This instability is similar to the
“enhanced Benjamin-Feir” instabilities that arise in other dissipative gen-
eralizations of the NLS equation (see, for example, Bridges & Dias [21] or
Carter & Contreras [22]).

• If q is positive, then the c1 term in (27) grows exponentially in χ while
the c2 term decays exponentially in χ. If q is negative, then the c2 term
grows while the c1 term decays. The fact that perturbations with negative
wave numbers grow while perturbations with positive wave numbers decay
suggests FD.
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• In equation (27) the decay due to ωr has been factored out. This decay
is an O(1) effect, while the growth of the instability is an O(ǫ) effect.
Although this means decay typically dominates the growth, it also means
that some modes decay more slowly than others.

• Equation (28) shows that the amplitude of the carrier wave (the wave with
frequency ω0 > 0) decays exponentially in x.

– If q > 0, then the amplitude of the wave with frequency ω0(1 − ǫq)
(the lower sideband) decays more slowly in x than the amplitude
of the carrier wave. The mode with frequency ω0(1 + ǫq) (the up-
per sideband) decays more rapidly in x than the carrier wave. This
suggests FD.

– If q < 0, then the mode with frequency ω0(1 − ǫq) (the upper side-
band) decays more rapidly in x than the carrier wave. The mode
with frequency ω0(1 + ǫq) (the lower sideband) decays more slowly
in x than the carrier wave. This suggests FD.

• Repeating these calculations for the B∗ term in (4) show that the wave
with frequency −ω0(1 + ǫ|q|) decays more rapidly than the carrier wave
(the wave with frequency −ω0 < 0) which decays more rapidly than the
wave with frequency −ω(1 − ǫ|q|). These results further establish that
waves with frequencies closer to zero decay more slowly than waves with
frequencies further from zero.

• The growth rate 5ǫδ|q| and equation (8a) establish that the instability
in the second harmonic (the B2 term in (4a)) grows twice as fast as the
instability in the fundamental (the B term in (4a)). This suggests that
FD will be observed in the higher harmonics before it is observed in the
fundamental (just as was observed by Segur et al.)

4. Comparisons with experiments

In this section we test the validity of the vB system by comparing its pre-
dictions with data from two physical experiments of one-dimensional, nearly
monochromatic wave trains on deep water and predictions from the NLS, dissi-
pative NLS, and Dysthe equations. The waves were created by a plunger-type
wave maker that oscillates vertically at one end of a 43-foot long and 10-inch
wide wave channel. Waves traveled in only one direction, toward increasing x.
Time series were collected by eleven or twelve (depending on the experiment)
wave gauges located 128+50(m−1) cm from the wave maker werem = 1, . . . , 12.
The tank was long enough that reflections off the far wall did not play a role.
The data come from the experiments originally presented in Segur et al. [7].
Complete experimental details are found in Section 6 of that paper.

The first experiment examines the evolution of a nearly monochromatic wave
train formed by a carrier wave perturbed by sidebands of “moderate” amplitude.
The second experiment examines the evolution of a nearly monochromatic wave

10



train formed by a very similar carrier wave perturbed by sidebands of “large”
amplitude. FD was observed in the second experiment, but not in the first.
For each experiment, the wave gauges recorded time series lasting 23.4 seconds.
The experimental initial conditions were comprised of a carrier wave with a
frequency of 3.33 Hz (ω0 = 20.9 rad/sec, k0 = 0.447 cm−1) and one upper and
one lower seeded sideband each separated from the carrier wave by 0.171 Hz
(∆ω = 1.07 rad/sec).

All model PDEs were solved numerically by assuming periodic boundary
conditions in ξ and using split-step pseudospectral methods that allow the linear
parts of the PDEs to be solved exactly in Fourier space. The initial conditions
for the PDEs were

B(ξ, χ = 0) =
k0
ǫ

3
∑

n=−3

an einξ/(78ǫ). (29)

Here a0 represents the experimentally-measured complex amplitude of the car-
rier wave, a−1 represents the amplitude of the first lower sideband, etc., mea-
sured at the first wave gauge. This form was selected for the initial conditions
because it contains all of the waves with significant amplitudes at the first gauge.

4.1. Moderate-amplitude experiment

Table 1 contains the values of the physical parameters for this experiment.
Figure 1 contains plots of the Fourier amplitudes versus x, the distance from the
first wave gauge in centimeters. Unlike the plots and data in Segur et al., the
data here are not scaled. Figure 2 shows how M, P , ωp, and ωm evolved as the
wave train progressed down the tank. Although the amplitudes of the sidebands
increase, the amplitude of the carrier wave is dominant at all measurement sites,
so the experimental spectral peak was constant. Additionally, the experimental
spectral mean was constant to within experimental error. Therefore, neither
FD in the spectral peak nor in spectral mean sense occurred in this experiment.

The leading-order version of equation (15a) establishes that (to leading or-
der) M decays exponentially. Using an exponential best fit determines the only
free parameter in the system, δ = 0.264. This value was used in the numerical
simulations of the dissipative NLS equation and the viscous Dysthe system.

Table 2 contains the following quantitative measure of the differences (in
centimeters) between the experimental data and PDE predictions

diffPDE
n =

J
∑

j=1

∣

∣

∣
2
∣

∣aexptn (50j)
∣

∣− 2
∣

∣aPDE
n (50j)

∣

∣

∣

∣

∣
, (30)

where aexptn (x) and aPDE
n (x) represent the experimentally measured and numer-

ically predicted (using the model PDE) amplitudes of the nth wave at the gauge
located x cm from the first wave gauge, J = 11 for the moderate-amplitude
experiment, and J = 10 for the large-amplitude experiment.
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parameter symbol value
frequency of carrier wave (rad/sec) ω0 20.94
wave number of carrier wave (cm−1) k0 0.447

frequency separating sidebands (rad/sec) ∆ω 1.07
initial amplitude of carrier wave (cm) a0 (5.78 + 9.15i) ∗ 10−2

initial amplitude of first upper sideband (cm) a1 (0.93− 1.33i) ∗ 10−2

initial amplitude of second upper sideband (cm) a2 (−0.28− 0.11i) ∗ 10−2

initial amplitude of third upper sideband (cm) a3 (−0.03 + 0.04i) ∗ 10−2

initial amplitude of first lower sideband (cm) a−1 (0.35− 1.38i) ∗ 10−2

initial amplitude of second lower sideband (cm) a−2 (0.03 + 0.24i) ∗ 10−2

initial amplitude of third lower sideband (cm) a−3 (0.04 + 0.02i) ∗ 10−2

wave steepness (dimensionless) ǫ = 2|a0|k0 9.68 ∗ 10−2

viscosity coefficient (dimensionless) δ 0.264

Table 1: Experimental parameters for the moderate-amplitude experiment.
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Figure 1: Plots of the amplitudes (in cm) of the carrier wave and the six nearest sidebands
versus the distance (in cm) from the first wave gauge for the moderate-amplitude experiment.
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Figure 2: Plots of M, P, ωp, and ωm versus the distance (in cm) from the first wave gauge
for the moderate-amplitude experiment.

PDE n = 0 n = −1 n = 1 n = −2 n = 2 n = −3 n = 3
NLS 0.536 0.782 0.652 0.621 0.585 0.393 0.423

Dysthe 0.158 0.055 0.065 0.085 0.040 0.051 0.022
dNLS 0.617 0.853 0.565 0.358 0.494 0.124 0.369
vB 0.136 0.036 0.050 0.037 0.050 0.015 0.028

Table 2: Comparisons between the experimental data and numerical predictions for the
moderate-amplitude experiment using the diffPDE

n
norm that is defined in equation (30).
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Figure 1 and Table 2 establish that the dissipative theories (viscous Dysthe
and dissipative NLS) do a much better job modeling the evolution of the ampli-
tudes of the carrier wave and the six nearest sidebands than do the conservative
theories (NLS and Dysthe). Both conservative models greatly overpredict the
growth of the sidebands. The vB system predictions are more accurate than
the dissipative NLS predictions for five of the seven amplitudes. The differences
between the vB system and dissipative NLS predictions in the other two cases
are within experimental error. The vA system (results not shown) provides
predictions that are qualitatively similar to the vB predictions.

Figure 2 shows that the dissipative theories do a much better job predict-
ing the evolution of M than do the conservative theories. The NLS equation
incorrectly predicts a temporary downshift in the spectral peak at x ≈ 425.
The Dysthe system incorrectly predicts a downshift in the spectral peak that
starts at x ≈ 450 and lasts beyond the length on the tank. The Dysthe sys-
tem predicts increases in P and ωm that were not observed in the experiment.
It is not possible to determine if the NLS equation, dissipative NLS equation,
or viscous Dysthe system provides the best prediction for the spectral mean
because all changes are within the bounds of experimental measurement error.
However, note that the viscous Dysthe system predicts a small downshift in
the spectral mean in the length of the tank. Numerical simulations of the vB
system over long tank lengths show permanent FD in both the spectral mean
and spectral peak senses. We hypothesize that FD may have been observed in
the moderate-amplitude experiment had the wave tank been longer.

4.2. Large-amplitude experiment

Table 3 contains the values of the physical parameters for the large-amplitude
experiment. Figure 3 contains plots of the Fourier amplitudes versus distance
from the first gauge. Table 4 contains the diffPDE

n comparisons and Figure 4
contains plots of M, P , ωp, and ωm versus x. In this experiment, the amplitude
of the first lower sideband overtakes that of the carrier wave for the first time
somewhere between the gauges at x = 300 cm and x = 350 cm. The lower
sideband overtakes the carrier wave again between the gauges at x = 400 cm
and x = 450 cm. After that, the first lower sideband remains dominant until
the end of the experiment. Therefore, FD in the spectral peak sense occurred
in this experiment. The spectral mean has a clear downward trend, so FD in
the spectral mean sense also occurred. An exponential fit of the experimental
M data determines δ = 0.321.

Figure 3 and Table 4 show that the vB system provides the most accurate
prediction for the evolution for six of the seven amplitudes. The dissipative NLS
equation does a better job for the n = −1 mode, though the difference between
its predictions and those of the vB system is within experimental error. Just
as in the moderate-amplitude case, the two conservative theories overpredict or
greatly overpredict the initial growth of all sidebands.

Figure 4 shows the dissipative theories more accurately model the evolution
of M than do the conservative theories. The Dysthe system predicts a dra-
matic increase in P while the vB system predicts a brief upshift followed by a
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parameter symbol value
frequency of carrier wave (rad/sec) ω0 20.94
wave number of carrier wave (cm−1) k0 0.447

frequency separating sidebands (rad/sec) ∆ω 1.07
initial amplitude of carrier wave (cm) a0 (−5.71 + 8.81i) ∗ 10−2

initial amplitude of first upper sideband (cm) a1 (0.09− 3.41i) ∗ 10−2

initial amplitude of second upper sideband (cm) a2 (0.69 + 1.44i) ∗ 10−2

initial amplitude of third upper sideband (cm) a3 (−0.36− 0.27i) ∗ 10−2

initial amplitude of first lower sideband (cm) a−1 (1.02 + 3.34i) ∗ 10−2

initial amplitude of second lower sideband (cm) a−2 (0.89 + 0.16i) ∗ 10−2

initial amplitude of third lower sideband (cm) a−3 (−0.15− 0.13i) ∗ 10−2

wave steepness (dimensionless) ǫ = 2|a0|k0 9.40 ∗ 10−2

viscosity coefficient (dimensionless) δ 0.321

Table 3: Experimental parameters for the large-amplitude experiment.

PDE n = 0 n = −1 n = 1 n = −2 n = 2 n = −3 n = 3
NLS 0.5830 0.2929 0.2983 0.3092 0.2149 0.2452 0.3948

Dysthe 0.4801 0.0921 0.0951 0.2437 0.1752 0.1618 0.1064
dNLS 0.5525 0.4056 0.2973 0.3799 0.2247 0.1591 0.2274
vB 0.3964 0.0940 0.0406 0.1455 0.0818 0.0127 0.0827

Table 4: Quantitative comparisons between the experimental data and numerical predictions
for the large-amplitude experiment using the diffPDE

n
norm defined in equation (30).

downward trend. The vB system predicts that the amplitude of the first lower
sideband will overtake that of the carrier wave at x ≈ 225 cm. This is earlier
than what was observed in the experiment and is related to the fact that the vB
system overpredicts the amplitudes of the first and second lower sidebands. The
NLS equation and Dysthe system both predict a temporary downshift in the
spectral peak. As expected, NLS and dissipative NLS equations predict that the
spectral mean is constant. The vB system predicts a temporary small upshift in
the spectral mean followed by a downward trend that follows the experimental
data. The downshift predicted by the vB system is permanent over the length
scales examined. In summary, the vB system provides the most accurate model
for all four quantities in this figure.

The accuracy of the vB system comes from a combination of the higher-order
viscous term and the higher-order nonlinear terms. Predictions from the NLS
equation with the two viscous terms added (results not shown) are much less
accurate than those from the vB system.

We are grateful to Maura Brunetti, Shusen Ding, Diane Henderson, and
Harvey Segur for helpful discussions. We are also grateful to the referees for
their valuable comments and suggestions. This material is based upon work
supported by the National Science Foundation under grant DMS-1107476.
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Figure 3: Plots of the amplitudes (in cm) of the carrier wave and the six nearest sidebands
versus the distance (in cm) from the first wave gauge for the large-amplitude experiment.
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Figure 4: Plots of M, P, ωp, and ωm versus the distance (in cm) from the first wave gauge
for the large-amplitude experiment.
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