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Motivation and Main Results

Motivation

Motivation

In the last few years there has been an enormous amount of work by

physicists concerning entanglement entropies in QFT, motivated by the
connections with condensed matter physics, black holes, etc.; However,
some very basic mathematical questions remain open. For example, most

of the entropies computed in the physics literature are infinite, so the
singularity structures, and sometimes the cut off independent quantities,
are of most interest. Often, the mutual information is argued to be finite

based on heuristic physical arguments, and one can derive the singularities
of the entropies from the mutual information by taking singular limits. But
it is not even clear that such mutual information, which is well defined as a

special case of Araki’s relative entropy, is indeed finite.
We begin to address some of these fundamental mathematical questions
motivated by the physicists’ work on entropy.
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Motivation and Main Results

Motivation and Main Results

Main Results

Unlike the main focus in recent work such as by Hollands and Sanders, the
relative entropy, in particular mutual information considered in our paper
can be computed explicitly in many cases and satisfies many conditions,

but not all, proposed by physicists such as those considered by Casini and
Huerta. Our work is strongly motivated by Edward Witten’s questions, in
particular his question to make physicists’ entropy computations rigorous.

In this talk we focus on the Chiral CFT in two dimensions, where the
results we have obtained are most explicit and have interesting connections
to subfactor theory, even though some of our results do not depend on

conformal symmetries and apply to more general QFT. The main results
are:
1) Exact computation of the mutual information (through the relative

entropy as defined by Araki for general states on von Neumann algebras)
for free fermions.
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Motivation and Main Results

Motivation and Main Results

Main Results

Note that this was not even known to be finite, for example the main
quantity defined by Hollands and Sanders is smaller. Our proof uses Lieb’s
convexity and the theory of singular integrals; to the best of our

knowledge, this and related cases are the first time that such relative
entropies are computed in a mathematical rigorous way. The results verify
earlier computations by physicists based on heuristic arguments, such as P.

Calabrese and J. Cardy and H. Casini and M. Huerta.
In particular, for the free chiral net Ar associated with r fermions, and two
intervals A = (a1, b1), B = (a2, b2) of the real line, where b1 < a2, the

mutual information associated with A,B is

F (A,B) = −
r

6
log η ,

where η = (b1−a2)(b2−a1)

(b1−a1)(b2−a2)
is the cross ratio of A,B , 0 < η < 1.
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Motivation and Main Results

Motivation and Main Results

Main Results

2) It follows from 1) and the monotonicity of the relative entropy that any
chiral CFT in two dimensions that embeds into free fermions, and their
finite index extensions, verify most of the conditions (not all) discussed for
example by Casini and Huerta. This includes a large family of chiral CFTs.

Much more can be obtained if the embedding has finite index. In this
case, we also verify a proposal of Casini and Huerta about an entropy
formula related to a derivation of the c theorem. Our theorem also

connects relative entropy and index of subfactors in an interesting and
unexpected way. There is one bit of surprise: it is usually postulated that
the mutual information of a pure state such as vacuum state for

complementary regions should be the same. But in the Chiral case this is
not true, and the violation is measured by global dimension of the chiral
CFT. The physical meaning of the last part of (2) is not clear to us.
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Motivation and Main Results

Main Results

The violation, which is in some sense proportional to the logarithm of
global index, also turns out to be what is called topological entanglement
entropy . Iqbal and Wall discuss chiral theories where entanglement

entropy cannot be defined with the expected properties due to anomalies.
The relation to our work is not clear.
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Entropy and relative entropy

Entropy and relative entropy

von Neumann entropy is the quantity associated with a density matrix ρ
on a Hilbert space H by

S(ρ) = −Tr(ρ log ρ) .

von Neumann entropy can be viewed as a measure of the lack of

information about a system to which one has ascribed the state. This
interpretation is in accord for instance with the facts that S(ρ) ≥ 0 and
that a pure state ρ = |Ψ〉〈Ψ| has vanishing von Neumann entropy.

A related notion is that of the relative entropy. It is defined for two density
matrices ρ, ρ′ by

S(ρ, ρ′) = Tr(ρ log ρ− ρ log ρ′) . (1)

Like S(ρ), S(ρ, ρ′) is non-negative, and can be infinite.
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Entropy and relative entropy

Entropy and relative entropy

Entropy and relative entropy

A generalization of the relative entropy in the context of von Neumann
algebras of arbitrary type was found by Araki and is formulated using
modular theory. Given two faithful, normal states ω, ω′ on a von Neumann

algebra A in standard form, we choose the vector representatives in the
natural cone P♯, called |Ω〉, |Ω′〉 . The anti-linear opeartor
Sω,ω′a|Ω′〉 = a∗|Ω〉, a ∈ A, is closable and one considers again the polar

decomposition of its closure S̄ω,ω′ = J∆
1/2
ω,ω′ . Here J is the modular

conjugation of A associated with P♯ and ∆ω,ω′ = S∗
ω,ω′ S̄ω,ω′ is the relative

modular operator w.r.t. |Ω〉, |Ω′〉. Of course, if ω = ω′ then ∆ω = ∆ω,ω′ is
the usual modular operator or modular Hamiltonian in physics literature.
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Entropy and relative entropy

The relative entropy w.r.t. ω and ω′ is defined by

S(ω, ω′) = 〈Ω| log ∆ω,ω′ Ω〉 = lim
t→0

ω([Dω : Dω′]t − 1)

it
,

S is extended to positive linear functionals that are not necessarily
normalized by the formula S(λω, λ′ω′) = λS(ω, ω′) + λ log(λ/λ′), where
λ, λ′ > 0 and ω, ω′ are normalized. If ω′ is not normal, then one sets

S(ω, ω′) = ∞.
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Entropy and relative entropy

For a type I algebra A = B(H), states ω, ω′ correspond to density matrices

ρ, ρ′. The square root of the relative modular operator ∆
1/2
ω,ω′ corresponds

to ρ1/2 ⊗ ρ′−1/2 in the standard representation of A on H⊗ H̄; namely
H⊗ H̄ is identified with the Hiilbert-Schmidt operators HS(H) with the

left/right multiplication of A/A′. In this representation, ω corresponds to
the vector state |Ω〉 = ρ1/2 ∈ H ⊗ H̄, and the abstract definition of the
relative entropy becomes

〈Ω| log ∆ω,ω′ Ω〉 = TrHρ
1
2 (log ρ⊗ 1 − 1 ⊗ log ρ′) ρ

1
2 = TrH(ρ log ρ−ρ log ρ′) .

(2)
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Entropy and relative entropy

As another example, let us consider a bi-partite system with Hilbert space
HA ⊗HB and observable algebra A = B(HA) ⊗ B(HB). A normal state

ωAB on A corresponds to a density matrix ρAB . One calls ρA = TrHB
ρAB

the “reduced density matrix”, which defines a state ωA on B(HA) (and
similarly for system B). The mutual information is given in our example

system by
S(ρAB , ρA ⊗ ρB) = S(ρA) + S(ρB) − S(ρAB) . (3)

For tri-partite system with Hilbert space HA ⊗HB ⊗HC and observable
algebra A = B(HA) ⊗ B(HB) ⊗ B(HC), we have the following strong

subadditivity :

S(ρAB) + S(ρAC ) − S(ρA) − S(ρABC ) ≥ 0 . (4)

Feng Xu (UCR) Relative Entropy in CFT 14 / 102



Entropy and relative entropy

Kosaki’s formula

In general it is desirable to have a formula for S(ω, ω′) directly in terms of
states. This is provided by Kosaki:

S(ω, ω′) = sup
m∈N

sup
xt+yt=1

(

lnm −

∫ ∞

m−1

(

ω(x∗

t xt)
1

t
+ ω′(yty

∗

t )
1

t2

)

dt

)

,

where xt is a step function valued in M which is equal to 0 when t is
sufficiently large. Many properties of relative entropies follow easily from
Kosaki’s formula. For an example: Let ω and φ be two normal states on a

von Neumann algebra M, and denote by ω1 and φ1 the restrictions of ω
and φ to a von Neumann subalgebra M1 ⊂ M respectively. Then
S(ω1, φ1) ≤ S(ω, φ). As another example: Let be Mi an increasing net of

von Neumann subalgebras of M with the property (
⋃

i Mi)
′′ = M. Then

S(ω1 ↾Mi , ω2 ↾Mi) converges to S(ω1, ω2) where ω1, ω2 are two normal
states on M;
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Entropy and relative entropy

Finally Let ω and ω1 be two normal states on a von Neumann algebra M.
If ω1 ≥ µω, then S(ω, ω1) ≤ lnµ−1; Here is a property of relative entropies
that does not follow directly from Kosaki’s formula: Let M be a von

Neumann algebra and M1 a von Neumann subalgebra of M. Assume that
there exists a faithful normal conditional expectation E of Monto M1. If ψ
and ω are states of M1 and M, respectively, then

S(ω,ψ · E ) = S(ω ↾M1, ψ) + S(ω, ω · E ); For type III factors, the von
Neumann entropy is always infinite, but we shall see that in many cases
mutual information is finite. By taking singular limits, we can also explore

the singularities of von Neumann entropy from mutual information which
is important from physicists’ point of view. The formal properties of von
Neumann entropies are useful in proving properties of mutual information.
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Graded nets and subnets

Graded nets and subnets

We shall denote by Möb the Möbius group, which is isomorphic to
SL(2,R)/Z2 and acts naturally and faithfully on the circle S1.

By an interval of S1 we mean, as usual, a non-empty, non-dense, open,
connected subset of S1 and we denote by I the set of all intervals. If
I ∈ I, then also I ′ ∈ I where I ′ is the interior of the complement of I .

Intervals are disjoint if their closure are disjoint. We will denote by PI the
set which consists of disjoint union of intervals.
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Graded nets and subnets

Möbius covariant net

This is an adaption of DHR analysis to chiral CFT which is most suitable

for our purposes.
By an interval we shall always mean an open connected subset I of S1

such that I and the interior I ′ of its complement are non-empty. We shall

denote by I the set of intervals in S1.
A Möbius covariant net A of von Neumann algebras on the intervals of S1

is a map

I → A(I )

from I to the von Neumann algebras on a Hilbert space H that verifies
the following:

Feng Xu (UCR) Relative Entropy in CFT 19 / 102



Graded nets and subnets

Möbius covariant

Definition(Möbius covariant net )
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Graded nets and subnets

Möbius covariant

Definition(Möbius covariant net )

A. Isotony;

B. Möbius covariance;

C. Positivity of the energy;

D. Locality;

E. Existence of the vacuum;

F. Uniqueness of the vacuum (or irreducibility);

G. Conformal covariance.
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Graded nets and subnets

A. Isotony

If I1, I2 are intervals and I1 ⊂ I2, then

A(I1) ⊂ A(I2) .
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Graded nets and subnets

A. Isotony

If I1, I2 are intervals and I1 ⊂ I2, then

A(I1) ⊂ A(I2) .

B. Möbius covariance

There is a nontrivial unitary representation U of G (the universal covering
group of PSL(2,R)) on H such that

U(g)A(I )U(g)∗ = A(gI ) , g ∈ G, I ∈ I .

The group PSL(2,R) is identified with the Möbius group of S1, i.e. the
group of conformal transformations on the complex plane that preserve the
orientation and leave the unit circle globally invariant. Therefore G has a

natural action on S1.
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Graded nets and subnets

C. Positivity of the energy

The generator of the rotation subgroup U(R)(·) is positive. Here R(ϑ)
denotes the (lifting to G of the) rotation by an angle ϑ.
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Graded nets and subnets

C. Positivity of the energy

The generator of the rotation subgroup U(R)(·) is positive. Here R(ϑ)
denotes the (lifting to G of the) rotation by an angle ϑ.

D. Graded Locality

There exists a grading automorphism g of A such that, if I1 and I2 are

disjoint intervals,

[x , y ] = 0, x ∈ A(I1), y ∈ A(I2) .

Here [x , y ] is the graded commutator with respect to the grading
automorphism g.
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Graded nets and subnets

C. Positivity of the energy

The generator of the rotation subgroup U(R)(·) is positive. Here R(ϑ)
denotes the (lifting to G of the) rotation by an angle ϑ.

D. Graded Locality

There exists a grading automorphism g of A such that, if I1 and I2 are

disjoint intervals,

[x , y ] = 0, x ∈ A(I1), y ∈ A(I2) .

Here [x , y ] is the graded commutator with respect to the grading
automorphism g.

E. Existence of the vacuum

There exists a unit vector Ω (vacuum vector) which is U(G)-invariant and

cyclic for ∨I∈IA(I ).

F. Uniqueness of the vacuum (or irreducibility)

The only U(G)-invariant vectors are the scalar multiples of Ω.Feng Xu (UCR) Relative Entropy in CFT 22 / 102



Graded nets and subnets

By a conformal net (or diffeomorphism covariant net) A we shall mean a

Möbius covariant net such that the following holds:
G. Conformal covariance There exists a projective unitary representation U
of Diff (S1) on H extending the unitary representation of G such that for

all I ∈ I we have

U(g)A(I )U(g)∗ = A(gI ), g ∈ Diff (S1),

U(g)xU(g)∗ = x , x ∈ A(I ), g ∈ Diff (I ′),

where Diff (S1) denotes the group of smooth, positively oriented

diffeomorphism of S1 and Diff (I ) the subgroup of diffeomorphisms g such
that g(z) = z for all z ∈ I ′.
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Graded nets and subnets

Moreover, setting

Z ≡
1 − iΓ

1 − i
,

we have that the unitary Z fixes Ω and

A(I ′) ⊂ ZA(I )′Z ∗

(twisted locality w.r.t. Z ).
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Graded nets and subnets

Moreover, setting

Z ≡
1 − iΓ

1 − i
,

we have that the unitary Z fixes Ω and

A(I ′) ⊂ ZA(I )′Z ∗

(twisted locality w.r.t. Z ).

Theorem 1

Let A be a Möbius covariant Fermi net on S1. Then Ω is cyclic and
separating for each von Neumann algebra A(I ), I ∈ I.
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Graded nets and subnets

If I ∈ I, we shall denote by ΛI the one parameter subgroup of Möb of
“dilation associated with I ”.
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Graded nets and subnets

If I ∈ I, we shall denote by ΛI the one parameter subgroup of Möb of
“dilation associated with I ”.

Theorem 2

Let I ∈ I and ∆I , JI be the modular operator and the modular
conjugation of (A(I ),Ω). Then we have:

(i):
∆it

I = U(ΛI (−2πt)), t ∈ R, (5)

(ii): U extends to an (anti-)unitary representation of Möb ⋉ Z2

determined by
U(rI ) = ZJI , I ∈ I,

acting covariantly on A, namely

U(g)A(I )U(g)∗ = A(ġ I ) g ∈ Möb ⋉ Z2 I ∈ I .

Here rI : S1 → S1 is the reflection mapping I onto I ′.
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Graded nets and subnets

Part (1) of the above theorem says that the modular Hamiltonian is the

boost generator, or as mathematicians would say that the modular
automorphism group is geometric, and plays an important role in recent
work on entropies in physics literature.
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Graded nets and subnets
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Graded nets and subnets

Corollary 3

(Additivity) Let I and Ii be intervals with I ⊂ ∪i Ii . Then A(I ) ⊂ ∨iA(Ii).
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Graded nets and subnets

Corollary 3

(Additivity) Let I and Ii be intervals with I ⊂ ∪i Ii . Then A(I ) ⊂ ∨iA(Ii).

Theorem 4

For every I ∈ I, we have:

A(I ′) = ZA(I )′Z ∗ .
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Graded nets and subnets

Let now G be a simply connected compact Lie group. Then the vacuum
positive energy representation of the loop group LG at level k gives rise to

an irreducible local net denoted by AGk
. Every irreducible positive energy

representation of the loop group LG at level k gives rise to an irreducible
covariant representation of AGk

. When no confusion arises we will write

AGk
simply as Gk . These CFT are what is also called

Wess-Zumino-Witten CFT with gauge group G and are important building
blocks of rational CFT.
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Graded nets and subnets

Möbius covariant representation

Assume A is a Möbius covariant net. A Möbius covariant representation π
of A is a family of representations πI of the von Neumann algebras A(I ),

I ∈ I, on a Hilbert space Hπ and a unitary representation Uπ of the
covering group G of PSL(2,R), with positive energy, i.e. the generator of
the rotation unitary subgroup has positive generator, such that the

following properties hold:

I ⊃ Ī ⇒ πĪ |A(I )= πI (isotony)

adUπ(g) · πI = πgI · adU(g)(covariance) .

A unitary equivalence class of Möbius covariant representations of A is
called superselection sector .

Feng Xu (UCR) Relative Entropy in CFT 29 / 102



Graded nets and subnets

Connes’s fusion

The composition of two superselection sectors are known as Connes’s

fusion . The composition is manifestly unitary and associative, and this is
one of the most important virtues of the above formulation. The main
question is to study all superselection sectors of A and their compositions.

Let A be an irreducible conformal net on a Hilbert space H and let G be a
group. Let V : G → U(H) be a faithful unitary representation of G on H.
If V : G → U(H) is not faithful, we can take G ′ := G/kerV and consider

G ′ instead.

Feng Xu (UCR) Relative Entropy in CFT 30 / 102



Graded nets and subnets

Proper Action

We say that G acts properly on A if the following conditions are satisfied:
(1) For each fixed interval I and each s ∈ G ,

αs(a) := V (s)aV (s∗) ∈ A(I ),∀a ∈ A(I );
(2) For each s ∈ G , V (s)Ω = Ω,∀s ∈ G . We will denote by Aut(A) all
automorphisms of A which are implemented by proper actions.

Define AG (I ) := B(I )P0 on H0, where H0 is the space of G invariant
vectors and P0 is the projection onto H0. The unitary representation U of
G on H restricts to a unitary representation (still denoted by U) of G on

H0. Then :
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Graded nets and subnets

Proper Action

We say that G acts properly on A if the following conditions are satisfied:
(1) For each fixed interval I and each s ∈ G ,

αs(a) := V (s)aV (s∗) ∈ A(I ),∀a ∈ A(I );
(2) For each s ∈ G , V (s)Ω = Ω,∀s ∈ G . We will denote by Aut(A) all
automorphisms of A which are implemented by proper actions.

Define AG (I ) := B(I )P0 on H0, where H0 is the space of G invariant
vectors and P0 is the projection onto H0. The unitary representation U of
G on H restricts to a unitary representation (still denoted by U) of G on

H0. Then :

Proposition

The map I ∈ I → AG (I ) on H0 together with the unitary representation
(still denoted by U) of G on H0 is an irreducible conformal net. We say

that AG is obtained by orbifold construction from A.
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Graded nets and subnets

Complete rationality

By an interval of the circle we mean an open connected proper subset of
the circle. If I is such an interval then I ′ will denote the interior of the

complement of I in the circle. We will denote by I the set of such
intervals. Let I1, I2 ∈ I. We say that I1, I2 are disjoint if Ī1 ∩ Ī2 = ∅, where
Ī is the closure of I in S1.. Denote by I2 the set of unions of disjoint 2

elements in I. Let A be an irreducible conformal net. For
E = I1 ∪ I2 ∈ I2, let I3 ∪ I4 be the interior of the complement of I1 ∪ I2 in
S1 where I3, I4 are disjoint intervals. Let

A(E ) := A(I1) ∨A(I3), Â(E ) := (A(I2) ∨ A(I4))
′.

Note that A(E ) ⊂ Â(E ). Recall that a net A is split if A(I1) ∨A(I2) is
naturally isomorphic to the tensor product of von Neumann algebras
A(I1) ⊗A(I2) for any disjoint intervals I1, I2 ∈ I. A is strongly additive if

A(I1) ∨A(I2) = A(I ) where I1 ∪ I2 is obtained by removing an interior
point from I .
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Graded nets and subnets
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Graded nets and subnets

Definition

A is said to be completely rational, or µ-rational, if A is split, strongly
additive, and the index [Â(E ) : A(E )] is finite for some E ∈ I2 . The

value of the index [Â(E ) : A(E )]is denoted by µA and is called the µ-index
of A. A is holomorphic if µA = 1. log µA is also known as Topological
Entanglement Entropy by Kitaev and Preskill.
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Graded nets and subnets

Definition

A is said to be completely rational, or µ-rational, if A is split, strongly
additive, and the index [Â(E ) : A(E )] is finite for some E ∈ I2 . The

value of the index [Â(E ) : A(E )]is denoted by µA and is called the µ-index
of A. A is holomorphic if µA = 1. log µA is also known as Topological
Entanglement Entropy by Kitaev and Preskill.

Theorem

Let A be an irreducible conformal net and let G be a finite group acting
properly on A. Suppose that A is completely rational. Then:
(1): AG is completely rational and µAG = |G |2µA;

(2): There are only a finite number of irreducible covariant representations
of AG and they give rise to a unitary modular category.
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Graded nets and subnets

An applications to twisted representations

First by KLM µA =
∑

i d
2
i while the sum is over all irreducible reps i of A,

and d2
i is the Jones index or square of quantum dimension. The formula is

similar to |G | =
∑

i
(dim i)2 which is classical Frobenius formula. From the

theorem about orbifold we get that µAG = µA|G |2 =
∑

i d
2
i , where the

sum is now over irreducible reps of AG , but if we restrict the sum to be
over the set of non-twisted representations of G , we get that such sum is
bounded by µA|G |, and since µA|G |2 > µA|G | if G is nontrivial, we have

proved that twisted representation always exists.
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Graded nets and subnets

Let A be a graded Möbius net. By a Möbius subnet we shall mean a map

I ∈ I → B(I ) ⊂ A(I )

that associates to each interval I ∈ I a von Neumann subalgebra B(I ) of
A(I ), which is isotonic

B(I1) ⊂ A(I2), I1 ⊂ I2,

and Möbius covariant with respect to the representation U, namely

U(g)B(I )U(g)∗ = B(gI )

for all g ∈ Möb and I ∈ I, and we also require that AdΓ preserves B as a
set.
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Graded nets and subnets

The case when B ⊂ A has finite index will be most interesting. For an

example we have
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Graded nets and subnets

The case when B ⊂ A has finite index will be most interesting. For an

example we have

Lemma 5

If B ⊂ A is a Möbius subnet such that µA is finite and [A : B] <∞. Then
µB = µA[A : B]2.
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Mutual information in the case of free fermions

outline

1 Motivation and Main Results

2 Entropy and relative entropy

3 Graded nets and subnets

4 Mutual information in the case of free fermions

5 Formal properties of entropy for free fermion nets

6 Structure of singularities in the finite index case

7 Failure of duality is related to nontrivial global
What is wrong with formal manipulations

8 Computation of limit of relative entropy and its rela
Basic idea from Kosaki’s formula
The proof

9 More Examples

Feng Xu (UCR) Relative Entropy in CFT 41 / 102



Mutual information in the case of free fermions

Mutual information in the case of free fermions

Let H denote the Hilbert space L2(S1; Cr) of square-summable C
r -valued

functions on the circle. The group LUr of smooth maps S1 → Ur , with Ur

the unitary group on C
r , acts on H multiplication operators.

Let us decompose H = H+ ⊕ H−, where

H+ = {functions whose negative Fourier coeffients vanish} .

We denote by p the Hardy projection from H onto H+.
Denote by U

res
(H) the group consisting of unitary operator A on H such

that the commutator [p,A] is a Hilbert-Schmidt operator. Denote by
Diff+(S1) the group of orientation preserving diffeomorphism of the circle.

It follows that LUr and Diff+(S1) are subgroups of U
res

(H). The basic
representation of LUr is the representation on Fermionic Fock space
Fp = Λ(pH) ⊗ Λ((1 − p)H)∗.
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Mutual information in the case of free fermions

Such a representation gives rise to a graded net as follows. Denote by
Ar(I ) the von Neumann algebra generated by c(ξ)′s, with ξ ∈ L2(I ,Cr ).
Here c(ξ) = a(ξ) + a(ξ)∗ and a(ξ) is the creation operator. Let

Z : Fp → Fp be the Klein transformation given by multiplication by 1 on
even forms and by i on odd forms. Ar is a graded Möbius covariant net,
and Ar will be called the net of r free fermions. Ar is strongly additive

and µAr
= 1.
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Mutual information in the case of free fermions

Fix Ii ∈ PI, i = 1, 2, and I1, I2 disjoint, that is Ī1 ∩ Ī2 = ∅, and I = I1 ∪ I2.

The mutual information we will compute is S(ω, ω1 ⊗2 ω2). Here ω1⊗2

denotes the restriction of the vacuum state to Ar(I1) ⊗2 Ar (I2) which is a
graded tensor product. ω on Ar(I ) is quasi-free state as studied by Araki.

To describe this state, it is convenient to use Cayley transform
V (x) = (x − i)/(x + i), which carries the (one point compactification of
the) real line onto the circle and the upper half plane onto the unit disk. It

induces a unitary map

Uf (x) = π− 1
2 (x + i)−1f (V (x))

of L2(S1,Cr ) onto L2(R,Cr). The operator U carries the Hardy space on
the circle onto the Hardy space on the real line . We will use the Cayley

transform to identify intervals on the circle with one point removed to
intervals on the real line.
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Mutual information in the case of free fermions

Under the unitary transformation above, the Hardy projection on
L2(S1,Cr ) is transformed to the Hardy projection on L2(R,Cr) given by µ

Pf (x) =
1

2
f (x) +

∫

i

2π

1

(x − y)
f (y)dy ,

where the singular integral is (proportional to) the Hilbert transform.
We write the kernel of the above integral transformation as C :

C (x , y) =
1

2
δ(x − y) −

i

2π

1

(x − y)
. (6)

The quasi free state ω is determined by

ω
(

a(f )∗a(g)
)

= 〈g ,Pf 〉.

Slightly abusing our notations, we will identify P with its kernel C and
simply write

ω
(

a(f )∗a(g)
)

= 〈g ,Cf 〉.

C will be called covariance operator.Feng Xu (UCR) Relative Entropy in CFT 45 / 102



Mutual information in the case of free fermions

Computation of mutual information in finite dimensional

case

Choose finite dimensional subspaces Hi of L2(Ii ,Cr ), i = 1, 2, and denote

by CAR(Hi ) ⊂ A(Ii) the corresponding finite dimensional factors of
dimensions 22 dim Hi generated by a(f ), f ∈ Hi . Let ρ12, ρ1, ρ2 be the
density matrices of the restriction of ω to CAR(H1) ⊗2 CAR(H2),

CAR(H1), CAR(H2) respectively, and ρ1 ⊗2 ρ2 of the restriction of
ω1 ⊗2 ω2 to CAR(H1) ⊗2 CAR(H2). When working carefully with graded
tensor product, we have the analog of (3) in this graded local context:

S(ρ12, ρ1 ⊗2 ρ2) = S(ρ1) + S(ρ2) − S(ρ12) .

This is the formula for mutual information in type I factor case.
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Mutual information in the case of free fermions

Now we turn to the computation of von Neumann entropy S(ρ1). Let p1

be the projection onto the finite dimensional subspace H1 of L2(I1,Cr ). ρ1

on CAR(H1) is quasi free state given by covariance operator Cp1
= p1Cp1.

According to Araki

S(ρ1) = Tr
(

(1 − Cp1
) log(1 − Cp1

) + Cp1
log Cp1

)

Let Pi be projections from L2(I ,Cr ) onto L2(Ii ,C
r ), and

Ci = PiCPi , i = 1, 2.

Let

σC = P1

(

C log C+(1−C ) log(1−C )
)

P1−
(

C1 log C1+(P1−C1) log(P1−C1)
)

+

P2

(

C log C +(1−C ) log(1−C )
)

P2−
(

C2 log C2 +(P2−C2) log(P2−C2)
)

and σCp
be the same as in the definition of σC with C replaced by

Cp = pCp, if p is a projection commuting with P1.
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Mutual information in the case of free fermions

Denote by p the projection from L2(I ,Cr ) onto H1 ⊕ H2. We have proved

the following

S(ρ12, ρ1 ⊗2 ρ2) = Tr(σCp
) .

It is clear that σCp
converges strongly to σC as P converges to identity. To

compute our mutual information, we like to show that this convergence is
actually in trace. Unfortunately this is much harder. Instead we explore

additional subtle properties of such operators.

Feng Xu (UCR) Relative Entropy in CFT 48 / 102



Mutual information in the case of free fermions

Inequality from operator convexity
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Mutual information in the case of free fermions

Inequality from operator convexity

Theorem 6

(1) For all operator convex functions f on R, and all orthogonal
projections p, we have pf (pAp)p ≤ pf (A)p for every selfadjoint operator

A; (2) f (t) = t log(t) is operator convex.

Feng Xu (UCR) Relative Entropy in CFT 49 / 102



Mutual information in the case of free fermions

(1) of the above Theorem is known as Sherman-Davis Inequality. It in
instructive to review the idea of the proof of (1) which is also used later:
Consider the selfadjoint unitary operator Up = 2p − I ; by operator

convexity we have

f
(1

2
A +

1

2
UpAUp

)

≤
1

2
f (A) +

1

2
f (UpAUp) .

Now notice that

1

2
A +

1

2
UpAUp = Ap + A1−p, f (UpAUp) = Upf (A)Up ,

where Ap = pAp, and the inequality follows.
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Mutual information in the case of free fermions

S(ω, ω1 ⊗2 ω2) = limp→1 Tr(σCp
) ≥ Tr(σC ) where p → 1 strongly. The

first identity follows from Martingale property of relative entropy. To prove
the inequality, we use the fact that x log x is operator convex, and so

P1C log CP1 ≥ C1 log C1, and similarly with C replaced by 1 − C . It
follows that σ ≥ 0, σp ≥ 0. Since σp goes to σ strongly as p → 1 strongly,
the inequality follows.
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Mutual information in the case of free fermions

We shall prove later that the inequality in the above Lemma is actually an

equality. It would follow if one can show that σCp
goes to σC in tracial

norm. This is not so easy, and we note that
P1

(

C log C + (1 − C ) log(1 − C )
)

P1 is not trace class. To overcome this

difficulty and to compute the mutual information we prove the reverse
inequality by applying Lieb’s joint convexity and regularized kernel as in
the next two sections.
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Mutual information in the case of free fermions

Reversed inequality from Lieb’s joint convexity

We begin with the following Lieb’s Concavity Theorem:
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Mutual information in the case of free fermions

Reversed inequality from Lieb’s joint convexity

We begin with the following Lieb’s Concavity Theorem:

Theorem 7

(1) For all m × n matrices K, and all 0 ≤ t ≤ 1, the real valued map given
by (A,B) → Tr(K ∗A1−tKB) is concave where A,B are non-negative

m × m and n × n matrices respectively;
(2) If A ≥ 0,B ≥ 0 and K is trace class, then

(A,B) → Tr(K ∗A1−tKB), 0 ≤ t ≤ 1,

is jointly concave;
(3) If A ≥ ǫI ,B ≥ ǫI , ǫ > 0 and K is trace class, then

(A,B) → Tr(K ∗A log AK − K ∗AK log B)

is jointly convex;
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Mutual information in the case of free fermions

To prove (3), we note that

Tr(K ∗A log AK − K ∗AK log B) = lim
t→0

Tr(K ∗A1−tKB) − Tr(K ∗AK )

t − 1

and (3) follows from (2).
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Mutual information in the case of free fermions
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Mutual information in the case of free fermions

Theorem 8

Let A ≥ ǫ, ǫ > 0,B := P1AP1 + P2AP2, where P1 is a projection,

P1 + P2 = 1, and p is a finite rank projection commuting with P1. Assume
that A − B is trace class. Then

Tr
(

A(log A − log B)
)

≥ Tr
(

Ap(log Ap − log Bp)
)

.
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Mutual information in the case of free fermions

The idea of the proof is to apply Lieb’s joint convexity to A,B and unitary
Up = 2P − I , with f (A,B ,K ) = Tr(K ∗A log AK − K ∗AK log B), K is a

finite rank projection, and then let K goes to identity strongly. The
assumption that A,B are strictly positive and A − B is trace class plays
key role in the proof.
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Mutual information in the case of free fermions

Regularized Kernel for one free fermion case

Unfortunately we can not apply the above theorem directly since the
covariance operator C is not strictly positive. We will suitably regularize

C . To do explicit computation we also need explicit formula for the kernel
of the resolvent of C . This is related to Riemann-Hilbert problem.
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Mutual information in the case of free fermions

If I = (a1, b1) ∪ (a2, b2) ∪ ... ∪ (an, bn) in increasing order, define

G (I ) :=
1

6

(

∑

i ,j

log |bi − aj | −
∑

i<j

log |ai − aj | −
∑

i<j

log |bi − bj |

)

.
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Mutual information in the case of free fermions

If I = (a1, b1) ∪ (a2, b2) ∪ ... ∪ (an, bn) in increasing order, define

G (I ) :=
1

6

(

∑

i ,j

log |bi − aj | −
∑

i<j

log |ai − aj | −
∑

i<j

log |bi − bj |

)

.

Theorem 10

Let I = (a1, b1) ∪ (a2, b2) ∪ ... ∪ (an, bn) ∈ PI and I1 ∪ I2 = I , Ī1 ∩ Ī2 = ∅.
Then

SAr
(ω, ω1 ⊗2 ω2) = r

(

G (I1) + G (I2) − G (I1 ∪ I2)
)

.
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Structure of singularities in the finite index case

Theorem 12

Assume that a subnet B ⊂ Ar has finite index, then:
(1): GB((a, b)) = r

6
log |b − a| and verifies equation (3) of Th. 11, and

FB(A,B) = −
r

6
| log ηAB | ,

where A,B are two overlapping intervals with cross ratio 0 < ηAB < 1;
(2) Let B = (a1, a2ǫ), C = (a2, b2), |a2ǫ − a2| = ǫ > 0. Then:

FB(B ,C ) =
r

6

(

log |a2−a1|+log |b2−a2|−log |b2−a1|−log(ǫ)
)

−
1

2
log µB+o(ǫ)

as ǫ goes to 0.
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Structure of singularities in the finite index case

(1) in the above theorem agrees with postulates of Casini and Huerta in
their discussion of c theorem using relative entropies.
It is interesting to note that the constant term in (2) of above Th. seems

to be related to the topological entropy discussed for example by Kitaev
and Preskill. al even with the right factor: in our case we have additional
factor 1/2 since we are discussing chiral half of CFT.
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Failure of duality is related to nontrivial global dimension or
topological entanglement entropy

Failure of duality is related to nontrivial global
dimension or topological entanglement entropy

By our theorem for the free fermion net Ar , and two intervals A = (a1, b1),
B = (a2, b2), where b1 < a2, we have

FA(A,B) =
−r

6
log η ,

where η = (b1−a2)(b2−a1)

(b1−a1)(b2−a2)
is the cross ratio, 0 < η < 1. For simplicity we

denote by FAr
(η) = FA(A,B).

One checks that FAr
(A,B) = FAr

(Ac ,B c), which is in fact equivalent to

FAr
(η) − FAr

(1 − η) =
−r

6
log

(

η

1 − η

)

.

Similarly for B ⊂ Ar with finite index, by Th. 12 FB(A,B) = FB(Ac ,B c) is

equivalent to

FB(η) − FB(1 − η) =
−r

6
log

(

η

1 − η

)

.
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Failure of duality is related to nontrivial global dimension or
topological entanglement entropy

We note that FAr
(A,B) = FAr

(Ac ,B c) for the free fermion net Ar .
However here we show that FB(A,B) 6= FB(Ac ,B c) with B ⊂ Ar has finite
index [Ar : B] = λ−1 > 1. By Lemma 5 µB = [Ar : B]2.

We note that, S(ω, ω · E ) = F1(η) = FA(η) − FB(η) is a decreasing
function of η, and 0 ≤ F1(η) ≤ FA(η). So we have

lim
η→1

F1(η) = 0 .

On the other hand, by Th. 13

lim
η→0

F1(η) = log[Ar : B] =
1

2
log µB .

It follows that FB(A,B) 6= FB(Ac ,B c) due to the fact that µB > 1.
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topological entanglement entropy What is wrong with formal manipulations
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Failure of duality is related to nontrivial global dimension or
topological entanglement entropy What is wrong with formal manipulations

Formally one has F (A,B) = S(A) + S(B)− S(A ∩ B)− S(A ∪ B), and for
pure states we have S(A) = S(Ac), and it follows that

F (A,B) = F (Ac ,B c), but the results of the previous section shows that
this is not true (In fact we tried very hard to prove it is true). The reason
is because that our algebras are not type I , and the formula

F (A,B) = S(A) + S(B) − S(A ∩ B) − S(A ∪ B), is only true in the sense
that F (A,B) = limn(S(An) + S(Bn)− S(An ∩Bn)− S(An ∪Bn)), where An

is an increasing sequence of type I factors approximating our net localized

on A. Even though S(An) = S(A′
n) for pure states, we only have Ac

n ⊂ A′
n,

and we can’t conclude that S(An) = S(Ac
n), and there is no continuity that

can help because both S(An) and S(Ac
n) go to infinity as n goes to ∞.

Feng Xu (UCR) Relative Entropy in CFT 85 / 102


