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Classical extreme value theory (Motivation)

Extreme value theory is an antique (1930’s) area of statistics, with
several applications.

In general terms EVT studies “extreme” occurrences in an
stochastic process.

Example: Given a sequence of i.i.d. X1,X2, . . . , consider
Mn =

∨n
i=1 Xi . Is there a sequence of normalization constants

an, bn such that
Mn − bn

an

has a limiting distribution?
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Max-convolution

We must know how to compute the distribution of the supremum
of a set of independent random variables.

(Max-convolution) Let X ,Y be independent. Since
P(X ∨ Y ≤ t) = P(X ≤ t,Y ≤ t)

FX∨Y (t) = FX (t)FY (t).

(Local) To know the value of FX∨Y at t, it is enough to know
FX and FY at t.

Hence, the semigroup ([0, 1], ·) encodes the information of
the max-convolution in the classical case.
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Solution to the problem

Solution (1940’s): There are three non-trivial limiting
distributions, called after Fréchet, Weibull and Gumbel.

Fréchet’s distribution is the only positively supported
distribution; its distribution function, of parameter α, is
defined as follows

Φα(x) =

{
0 x < 0,

exp(−x−α) x ≥ 0.

The domains of attraction for each limiting distribution were
nicely characterized.



Motivation and Framework Boolean independence Results Further research

Solution to the problem

Solution (1940’s): There are three non-trivial limiting
distributions, called after Fréchet, Weibull and Gumbel.
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Non-commutative analogue

Within probability theory there are extreme quantities that are
of interest in the non-commutative context. E.g. The
maximum eigenvalue of a random matrix.

For us, random variables are operators over Hilbert spaces and
once we fix a state, their distribution is determined.

Given two non-commutative random variables, how do we
construct their supremum? (With respect to which order do
we take it?)
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Non-commutative analogue

(R. Kadison, 1951) The usual order ≤ on B(H)s.a. does not
guarantee the existence of a supremum for an arbitrary
(bounded) set of operators.

(S. Sherman, 1951) If the s.a. operators in a C*-algebra form
a lattice, then the C*-algebra is abelian.

(P. Olson, 1971) The self adjoint operators of a von Neumann
algebra form a conditionally complete lattice with respect to
the spectral order.



Motivation and Framework Boolean independence Results Further research

Non-commutative analogue

(R. Kadison, 1951) The usual order ≤ on B(H)s.a. does not
guarantee the existence of a supremum for an arbitrary
(bounded) set of operators.

(S. Sherman, 1951) If the s.a. operators in a C*-algebra form
a lattice, then the C*-algebra is abelian.

(P. Olson, 1971) The self adjoint operators of a von Neumann
algebra form a conditionally complete lattice with respect to
the spectral order.



Motivation and Framework Boolean independence Results Further research

Non-commutative analogue

(R. Kadison, 1951) The usual order ≤ on B(H)s.a. does not
guarantee the existence of a supremum for an arbitrary
(bounded) set of operators.

(S. Sherman, 1951) If the s.a. operators in a C*-algebra form
a lattice, then the C*-algebra is abelian.

(P. Olson, 1971) The self adjoint operators of a von Neumann
algebra form a conditionally complete lattice with respect to
the spectral order.



Motivation and Framework Boolean independence Results Further research

Spectral order

Take X ,Y a s.a. (perhaps unbounded) operators.

We consider the projection-valued processes

t 7→ E (X ; (−∞, t]) and t 7→ E (Y ; (−∞, t]).

We say that X � Y if

E (X ; (−∞, t]) ≥ E (Y ; (−∞, t]) ∀t ∈ R.

So we have that

E (X ∨ Y ; (−∞, t]) = E (X ; (−∞, t]) ∧ E (Y ; (−∞, t)).
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Free extremes

G. Ben Arous, D.V. Voiculescu. Free Extreme Values, Ann.
Probab, Vol. 34, No. 5, 2006:

Definition

If F (t) and G (t) then their free max-convolution is given by

H(t) = max(0,F (t) + G (t)− 1).
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Free extremes

Theorem (G. Ben Arous, D. V. Voiculescu, 2006)

Any free max-stable law is of the same type of one of the
following:

Exponential: F (x) = (1− e−x)+

The Pareto distribution: F (x) = (1− x−α)+ for some α > 0.

The Beta law F (x) = 1− |x |α for −1 ≤ x ≤ 0 and some
α > 0.
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Boolean independence

Boolean independence was explicitly introduced by R. Speicher
and R. Woroudi in 1991.

Rule for computing mixed moments : Let (Ai )i∈I be
subalgebras of a ∗-probability space (A, φ). This subalgebras
are Boolean independent if

φ(X1 · · ·Xn) = φ(X1) · · ·φ(Xn),

whenever Xk ∈ Ai(k) and i(k) 6= i(k + 1) for k = 1, . . . , n− 1.

The above condition enforces to consider non-unital algebras.
For if 1 ∈ A we would have

φ(X 2) = φ(X1X ) = φ(X )2φ(1).
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φ(X1 · · ·Xn) = φ(X1) · · ·φ(Xn),

whenever Xk ∈ Ai(k) and i(k) 6= i(k + 1) for k = 1, . . . , n− 1.

We must also consider non-tracial states. For if φ is tracial
we would have

φ(X 2)φ(Y ) = φ(X 2Y ) = φ(XYX ) = φ(X )2φ(Y ).
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The Boolean product

Usually, when consider operator algebras, φ will be given by a
vector state, that is

φ(X ) = 〈X ξ, ξ〉.

(Bercovici 2006) Let H1,H2 and

H := H1 ⊗H2

be Hilbert spaces.

For i = 1, 2 take Ai := (B(Hi ), ξi ) and let ξ = ξ1 ⊗ ξ2 ∈ H.
If pi is the rank-1 projection in Hi on 〈ξi 〉, we consider the
inclusions

(B(H1), ξ1) ↪→ (B(H), ξ)←↩ (B(H2, ξ2))

given by x 7→ x ⊗ p2, or x 7→ p1 ⊗ x , depending on which Ai

is x in.
The images of this inclusions are Boolean independent.
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Boolean convolution

If X ∼ µ and Y ∼ ν, with X and Y Boolean independent, we
denote the distribution of X + Y by µ ] ν.

In the Boolean world, the role of the R-transform is
substituted by the self-energy transform

µ 7→ Kµ(z) = z − 1

Gµ(z)
,

where Gµ(z) is the Cauchy transform of µ.

If µ and ν are compactly supported then

Kµ]ν(z) = Kµ(z) + Kν(z).
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Method

Let X and Y be random variables independent in some sense
(tensor, free, Boolean, monotone).

We want to describe FX∨Y (t) in terms of FX (t) and FY (t).

FX (t) = φ[E (X ; (−∞, t])] and similarly for FY (t) and
FX∨Y (t).

So we care about
φ[E (X ∨ Y ; (−∞, t])] = φ[E (X ; (−∞; t]) ∧ E (Y ; (−∞; t])].

Idea: Rewrite in terms of addition. E.g. if P and Q are
projections we have

P ∧ Q = E (P + Q; {2})
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Method (Take-away message)

From indentities such as P ∧ Q = E (P + Q; {2}).

Any additive convolution on M(R) induces a max-
convolution.

The machinery for the additive convolution can be transfered
to the extreme value context.

What’s left to do? (A lot!)

One has to understand what is going on at the level of
operators.

Once the max-convolution is defined, one has to get a strong
grasp on it to find the max-stable laws, domains of attraction,
etc.
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Technical considerations in the Boolean case

In the inclusion determined by the Boolean product

B(H1) 3 X 7−→ X̃ ∈ B(H̊1 ⊕ ξ ⊕ H̊2) = B(H)

the kernel of X gets enlarged,

so if V : H1 → H is the isometric
inclusion we have that X̃ = VXV ∗ and

If t < 0 then

E (X̃ , (−∞, t]) = VE (X ; (−∞, t])V ∗.

While if t ≥ 0 then

E (X̃ ; (−∞, t]) = VE (X ; (−∞, t])V ∗ + PH̊2
.

We restrict our study to random variables with distributions
supported in R≥0.
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Technical considerations in the Boolean case

Recall the objective: Given a sequence of i.i.d. X1,X2, . . . ,
consider Mn =

∨n
i=1 Xi . Is there a sequence of normalization

constants an, bn such that

Mn − bn
an

has a limiting distribution?

Boolean probability is a non-unital theory. So no shifts will be
considered, i.e. bn = 0 for all n.
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Boolean max-convolution

The Boolean max-convolution also turns out to be “local” for
distribution functions.

Definition

If F1,F2 are distribution functions on [0,∞) then their Boolean
max-convolution is defined by

(F1 ∨∪ F2)(t) = F1(t) ∧∪ F2(t)

where ∧∪: (p, q) 7→ 1
p−1+q−1−1

.
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Boolean max-convolution

Definition

Let ∆+ be the set of distribution functions supported on R≥0. A
distribution function F ∈ ∆+ is a Boolean max-stable distribution
function if for some G ∈ ∆+ there are constants an > 0, n ∈ N so
that

(G ∨∪ · · · ∨∪ G︸ ︷︷ ︸
n

)(ant)→ F (t),

for all t ≥ 0.
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Results (Our transform)

Lemma

The semigroups ([0, 1],∧∪) and ([0, 1], ·) are isomorphic. The map
χ : [0, 1]→ [0, 1] given by

χ(x) = exp(1− x−1)

is an isomorphism which is also an order preserving
homeomorphism. The inverse isomorphism, which is also
order-preserving is given by

χ−1(y) = (1− log(y))−1.
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Results (Transfer from classical probability)

Observation

The map

X (F ) =

{
χ(F (x)) if x ≥ 0,

0 otherwise.

preserves ∆+, and is an isomorphism between (∆+,∨∪) and (∆+, ·).

Recall that, from the max-stable distributions in classical
probability, Fréchet’s distribution is the only positively supported
distribution; its distribution function, of parameter α, is defined as
follows

Φα(x) =

{
0 x < 0,

exp(−x−α) x ≥ 0.
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Results (Max-stable laws)

Theorem (JGV, Voiculescu, 2017)

F ∈ ∆+ is a Boolean max-stable law if and only if

F (t) = 1− λ

tα + λ

where λ > 0 and α > 0. This distributions are called Dagum
distributions (or log-logistic distributions) and have been widely
studied in the literature of classical probability.

Since in the Boolean CLT the limiting distributions turn out to be
of the form 1

2 (δ−1 + δ1), it is somehow surprising that in this case
the stable laws have heavy tails.
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Results (Domains of attraction)

Theorem (Gnedenko, 1943)

F ∈ Dom(Φα) if and only if 1− F ∈ RV−α. In this case

F n(anx)→ Φα(x),

with
an = (1/(1− F ))←(n).

Where RVa denotes the set of regularly varying functions of index
a, i.e., the set of measurable functions f : R→ R such that, for
every x > 0 it holds that

xa = lim
t→∞

f (tx)

f (t)
.
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Results (Domains of attraction)

Theorem (JGV, Voiculescu 2017)

G ∈ ∆+ is in the Boolean domain of attraction of the Dagum
distribution function F (t) = 1− 1

1+tα if and only 1− F is regularly
varying of index −α.
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Within the Boolean World

(Finite dimensional approximation) F. Benaych-Georges, T.
Cabanal-Duvillard, A matrix interpolation between classical
and free max operations. I. The univariate case, J. Theoretical
Probab., Vol. 23, No. 2, 2010.

(Order statistics) G. Ben Arous, V. Kargin. Free point
processes and free extreme values, Probab. and Rel. Fields,
Vol. 147, No. 1-2, 2010.

(Insight into the stable-laws) J. Grela, M. A. Nowak. On
relations between extreme value statistics, extreme random
matrices and Peak-Over-Threshold method, arXiv:
1711.03459, 2017.
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Other frameworks

What happens if we consider monotone independence?

(Polynomial framework) A. W. Marcus. Polynomial
convolutions and (finite) free probability,
web.math.princeton.edu/∼amarcus/papers/ff main.pdf, 2018.

(Finite-free probability) If pn(x) and qn(x) are polynomials of
degree n. If A and B are real symmetric n × n matrices with
pn(x) = χA(x) and qn(x) = χB(x) then

pn(x) �n qn(x) = EU [xI − A− UBU∗].

Can we make sense of extreme value theory in this context?
The main obstruction is that this theory is currently only at
the level of convolutions of polynomials (and measures), but
has no variables.
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Other frameworks

(Tropical context) A. Rosenmann, F. Lehner, A. Peperko.
Polynomial convolutions in max-plus algebra,
arXiv:1802.07373, 2018.

Define Rmax = R ∪ {−∞} and consider (Rmax,⊕,�), where
a⊕ b = max{a, b} and a⊕ b = a + b. This is a semi-ring.

Max-polynomials are of the form

p(x) =
d⊕

k=0

ak � xk , ak ∈ R.

An analogous convolution can be defined between these
polynomials. In this case, the induced convolution in
distributions coincides with the free max-convolution.
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Thank you!
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J. Garza Vargas, D. V. Voiculescu. Boolean extremes and Dagum
distributions, arXiv:1711.06227, 2017.
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