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This talk, and all my work, is dedicated to the memory of my father:

Robin Edward Kemp September 9, 1938 – August 4, 2018

who was a brilliant, hard-working, gentle, and humble man, and is

the source of my strength, my intellect, and my success.
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Brown’s Spectral Measure in Tracial von Neumann Algebras
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If (A, τ) is a W ∗-probability space, then any normal operator a ∈ A has a

spectral measure µa = τ ◦Ea. If A is a normal matrix, µA is its ESD. It is

characterized (nicely) by the ∗-distribution of a:

∫

C

zkz̄ℓ µa(dzdz̄) = τ(aka∗ℓ).
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C
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spectral measure µa = τ ◦Ea. If A is a normal matrix, µA is its ESD. It is

characterized (nicely) by the ∗-distribution of a:

∫
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zkz̄ℓ µa(dzdz̄) = τ(aka∗ℓ).

If a is not normal, there is no such measure. But there is a substitute: Brown’s

spectral measure. Let L(a) denote the (log) Kadison–Fuglede determinant:

L(a) =

∫

R

log t µ|a|(dt) = τ

(
∫

R

log t E|a|(dt)

)

= τ(log |a|)

(the last = holds if a−1 ∈ A).
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If (A, τ) is a W ∗-probability space, then any normal operator a ∈ A has a

spectral measure µa = τ ◦Ea. If A is a normal matrix, µA is its ESD. It is

characterized (nicely) by the ∗-distribution of a:

∫

C

zkz̄ℓ µa(dzdz̄) = τ(aka∗ℓ).

If a is not normal, there is no such measure. But there is a substitute: Brown’s

spectral measure. Let L(a) denote the (log) Kadison–Fuglede determinant:

L(a) =

∫

R

log t µ|a|(dt) = τ

(
∫

R

log t E|a|(dt)

)

= τ(log |a|)

(the last = holds if a−1 ∈ A). Then λ 7→ L(a− λ) is subharmonic on C, and

µa =
1

2π
∇2

λL(a− λ)

is a probability measure on C. If A is any matrix, µA is its ESD.
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Consider a circular operator z (mentioned yesterday in Brent

Nelson’s talk):

z =
1√
2
(x+ iy) x, y freely independent semicirculars.

It is not too difficult to compute from the definition that

µz = uniform probability measure on D.
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Consider a circular operator z (mentioned yesterday in Brent

Nelson’s talk):

z =
1√
2
(x+ iy) x, y freely independent semicirculars.

It is not too difficult to compute from the definition that

µz = uniform probability measure on D.

This goes hand in hand with the fact that z is the large-N limit (in

∗-distribution) of the Ginibre ensemble (all i.i.d. Gaussian entries),

whose ESD converges to the uniform probability measure on D

(that’s the Circular Law proved by Ginibre, Girko, Bai, Tao-Vu, . . . )
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Consider a circular operator z (mentioned yesterday in Brent

Nelson’s talk):

z =
1√
2
(x+ iy) x, y freely independent semicirculars.

It is not too difficult to compute from the definition that

µz = uniform probability measure on D.

This goes hand in hand with the fact that z is the large-N limit (in

∗-distribution) of the Ginibre ensemble (all i.i.d. Gaussian entries),

whose ESD converges to the uniform probability measure on D

(that’s the Circular Law proved by Ginibre, Girko, Bai, Tao-Vu, . . . )

However, the connection between limit ESD and Brown measure is

actually very complicated.
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The Brown measure has some nice properties analogous to the

spectral measure, but not all:

• τ(ak) =

∫

C

zk µa(dzdz̄) and τ(a∗k) =

∫

C

z̄k µa(dzdz̄)

but you cannot max and match.
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Let AN be a sequence of matrices with a as limit in ∗-distribution.

Since the Brown measure µAN is the empirical spectral distribution

of AN , it is natural to expect that ESD(AN ) → µa.
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The Brown measure has some nice properties analogous to the

spectral measure, but not all:

• τ(ak) =

∫

C

zk µa(dzdz̄) and τ(a∗k) =

∫

C

z̄k µa(dzdz̄)

but you cannot max and match.

• τ(log |a− λ|) = L(a− λ) =

∫

C

log |z − λ|µa(dzdz̄) for

large λ, and this characterizes µa. In particular, the ∗-distribution

of a determines µa – but with a log discontinuity.

• suppµa ⊆ Spec(a) (can be a strict subset).

Let AN be a sequence of matrices with a as limit in ∗-distribution.

Since the Brown measure µAN is the empirical spectral distribution

of AN , it is natural to expect that ESD(AN ) → µa. The log
discontinuity often makes this exceedingly difficult to prove.
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Let {a, an}n∈N be a uniformly bounded set of operators in some

W ∗-probability spaces, with an → a in ∗-distribution. We would

hope that µan → µa. Without some very fine information about the

spectral measure of |an − λ| near the edge of Spec(an), the best

that can be said in general is the following.



Convergence of the Brown Measure

• Dedication

• Citations

Brown Measure

• Brown Measure

• Circular

• Properties

• Convergence

• Regularize

• Spectrum

•L
p

Inverse

•L
p

Spectrum

• Support

Brownian Motion

Segal–Bargmann

Brown Measure Support

8 / 35

Let {a, an}n∈N be a uniformly bounded set of operators in some

W ∗-probability spaces, with an → a in ∗-distribution. We would

hope that µan → µa. Without some very fine information about the

spectral measure of |an − λ| near the edge of Spec(an), the best

that can be said in general is the following.

Proposition. Suppose that µan → µ weakly for some probability

measure µ on C. Then

∫

C

log |z − λ|µ(dzdz̄) ≤
∫

C

log |z − λ|µa(dzdz̄)

for all λ ∈ C; and equality holds for sufficiently large λ.
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Let {a, an}n∈N be a uniformly bounded set of operators in some

W ∗-probability spaces, with an → a in ∗-distribution. We would

hope that µan → µa. Without some very fine information about the

spectral measure of |an − λ| near the edge of Spec(an), the best

that can be said in general is the following.

Proposition. Suppose that µan → µ weakly for some probability

measure µ on C. Then

∫

C

log |z − λ|µ(dzdz̄) ≤
∫

C

log |z − λ|µa(dzdz̄)

for all λ ∈ C; and equality holds for sufficiently large λ.

Corollary. Let Va be the unbounded connected component of

C \ suppµa. Then suppµ ⊆ C \ Va. (In particular, if suppµa is

simply-connected, then suppµ ⊆ suppµa.)
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The function L(a− λ) =
∫

R
log t µ|a|(dt) is essentially impossible

to compute with. But we can use regularity properties of the spectral

resolution to approach it in a different way. Define

Lǫ(a) =
1

2
τ(log(a∗a+ ǫ)), ǫ > 0.
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∫

R
log t µ|a|(dt) is essentially impossible

to compute with. But we can use regularity properties of the spectral

resolution to approach it in a different way. Define

Lǫ(a) =
1

2
τ(log(a∗a+ ǫ)), ǫ > 0.

The function λ 7→ Lǫ(a− λ) is C∞(C), and is subharmonic.

Define

hǫa(λ) =
1

2π
∇2

λLǫ(a− λ).

Then hǫa is a smooth probability density on C, and

µa(dλ) = lim
ǫ↓0

hǫa(λ) dλ.
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The function L(a− λ) =
∫

R
log t µ|a|(dt) is essentially impossible

to compute with. But we can use regularity properties of the spectral

resolution to approach it in a different way. Define

Lǫ(a) =
1

2
τ(log(a∗a+ ǫ)), ǫ > 0.

The function λ 7→ Lǫ(a− λ) is C∞(C), and is subharmonic.

Define

hǫa(λ) =
1

2π
∇2

λLǫ(a− λ).

Then hǫa is a smooth probability density on C, and

µa(dλ) = lim
ǫ↓0

hǫa(λ) dλ.

It is not difficult to explicitly calculate the density hǫa for fixed ǫ > 0.
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Lemma. Let λ ∈ C, and denote aλ = a− λ. Then

hǫa(λ) =
1

π
ǫτ
(

(a∗λaλ + ǫ)−1(aλa
∗
λ + ǫ)−1

)

.
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Lemma. Let λ ∈ C, and denote aλ = a− λ. Then

hǫa(λ) =
1

π
ǫτ
(

(a∗λaλ + ǫ)−1(aλa
∗
λ + ǫ)−1

)

.

From here it is easy to see why suppµa ⊆ Spec(a). If λ ∈ Res(a)
so that a−1

λ ∈ A, we quickly estimate

∣

∣τ
(

(a∗λaλ + ǫ)−1(aλa
∗
λ + ǫ)−1

)∣

∣

≤
∥
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∗
λ + ǫ)−1

∥
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This is locally uniformly bounded in λ; so taking ǫ ↓ 0, the factor of ǫ
in hǫa(λ) kills the term; we find µa = 0 in a neighborhood of λ.
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Recall that Lp(A, τ) is the closure of A in the norm

‖a‖pp = τ(|a|p) = τ
(

(a∗a)p/2
)

.

(It can be realized as a set of densely-defined unbounded operators,

acting on the same Hilbert space as A). The non-commutative

Lp-norms satisfy the same Hölder inequality as the classical ones.
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Recall that Lp(A, τ) is the closure of A in the norm

‖a‖pp = τ(|a|p) = τ
(

(a∗a)p/2
)

.

(It can be realized as a set of densely-defined unbounded operators,

acting on the same Hilbert space as A). The non-commutative

Lp-norms satisfy the same Hölder inequality as the classical ones.

It is perfectly possible for a ∈ A to be invertible in Lp(A, τ) without

having a bounded inverse. That is: there can exist b ∈ Lp(A, τ) \A
with ab = ba = 1 (viewed as an equation in Lp(A, τ)).
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at any point λ where a− λ is invertible in L4(A, τ).
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.

(It can be realized as a set of densely-defined unbounded operators,

acting on the same Hilbert space as A). The non-commutative

Lp-norms satisfy the same Hölder inequality as the classical ones.

It is perfectly possible for a ∈ A to be invertible in Lp(A, τ) without

having a bounded inverse. That is: there can exist b ∈ Lp(A, τ) \A
with ab = ba = 1 (viewed as an equation in Lp(A, τ)).

The preceding proof (with very little change) shows that hǫa(λ) → 0
at any point λ where a− λ is invertible in L4(A, τ).

Definition. The Lp(A, τ) resolvent Resp,τ (a) is the interior of the

set of λ ∈ C for which a− λ has an inverse in Lp(A, τ). The

Lp(A, τ) spectrum Specp,τ (a) is C \Resp,τ (a).
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From Hölder’s inequality, we have the inclusions

Specp,τ (a) ⊆ Specq,τ (a) ⊆ Spec(a)

for 1 ≤ p ≤ q <∞. Without including the closure in the definition,

these inclusions can be strict; with the closure, my (wild) conjecture

is that Spec1,τ (a) = Spec(a) for all a.
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is that Spec1,τ (a) = Spec(a) for all a.

As noted, suppµa ⊆ Spec4,τ (a). But we can do better. Recall that

π

ǫ
hǫa(λ) = τ

(

(a∗λaλ + ǫ)−1(aλa
∗
λ + ǫ)−1

)

.

If we naı̈vely set ǫ = 0 on the right-hand-side, we get (heuristically)

τ
(

(a∗λaλ)
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∗
λ)

−1)
)

= τ
(

(a∗λ)
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Specp,τ (a) ⊆ Specq,τ (a) ⊆ Spec(a)

for 1 ≤ p ≤ q <∞. Without including the closure in the definition,

these inclusions can be strict; with the closure, my (wild) conjecture

is that Spec1,τ (a) = Spec(a) for all a.

As noted, suppµa ⊆ Spec4,τ (a). But we can do better. Recall that

π

ǫ
hǫa(λ) = τ

(

(a∗λaλ + ǫ)−1(aλa
∗
λ + ǫ)−1

)

.

If we naı̈vely set ǫ = 0 on the right-hand-side, we get (heuristically)

τ
(

(a∗λaλ)
−1(aλa

∗
λ)

−1)
)

= τ
(

(a∗λ)
−1(aλ)

−2(a∗λ)
−1
)

= τ
(

(a−2
λ )∗a−2

λ

)

= ‖a−2
λ ‖22.

Note, this is not equal to ‖a−1
λ ‖44 when aλ is not normal.
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Proposition. Let a ∈ A, and suppose a2 is invertible in L2(A, τ).
Then for all ǫ > 0,

τ
(

(a∗a+ ǫ)−1(aa∗ + ǫ)−1
)

≤ ‖a−2‖22.

(The proof is trickier than you might think.)
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Then for all ǫ > 0,

τ
(

(a∗a+ ǫ)−1(aa∗ + ǫ)−1
)

≤ ‖a−2‖22.

(The proof is trickier than you might think.)

Definition. The L2
2,τ resolvent of a, Res22,τ (a), is the interior of the

set of λ ∈ C for which (a− λ)2 is invertible in L2(A, τ). The L2
2,τ

spectrum of a is Spec22,τ (a) = C \Res22,τ (a).
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)

≤ ‖a−2‖22.

(The proof is trickier than you might think.)

Definition. The L2
2,τ resolvent of a, Res22,τ (a), is the interior of the

set of λ ∈ C for which (a− λ)2 is invertible in L2(A, τ). The L2
2,τ

spectrum of a is Spec22,τ (a) = C \Res22,τ (a).

Theorem. suppµa ⊆ Spec22,τ (a).

Another wild conjecture: this is actually equality. (That depends on

showing that, if a2 is not invertible in L2(A, τ), the above quantity

blows up at rate Ω(1/ǫ). This appears to be what happens in the

case that a is normal, which would imply Spec22,τ (a) = Spec4,τ (a)
= Spec(a) in that case.)
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On any Riemannian manifold M , there’s a Laplace operator ∆M .

And where there’s a Laplacian, there’s a Brownian motion: the

Markov process (Bx
t )t≥0 on M with generator 1

2∆M , started at

Bx
0 = x ∈M .
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Markov process (Bx
t )t≥0 on M with generator 1

2∆M , started at

Bx
0 = x ∈M .

Let Γ be a (matrix) Lie group. Any inner product on Lie(Γ) = TIΓ
gives rise to a unique left-invariant Riemannian metric, and

corresponding Laplacian ∆Γ. On Γ we canonically start the

Brownian motion (Bt)t≥0 at I ∈ Γ.
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On any Riemannian manifold M , there’s a Laplace operator ∆M .

And where there’s a Laplacian, there’s a Brownian motion: the

Markov process (Bx
t )t≥0 on M with generator 1

2∆M , started at

Bx
0 = x ∈M .

Let Γ be a (matrix) Lie group. Any inner product on Lie(Γ) = TIΓ
gives rise to a unique left-invariant Riemannian metric, and

corresponding Laplacian ∆Γ. On Γ we canonically start the

Brownian motion (Bt)t≥0 at I ∈ Γ.

There is a beautiful relationship between the Brownian motion Wt on

the Lie algebra Lie(Γ) and the Brownian motion Bt: the rolling map

dBt = Bt ◦ dWt, i.e. Bt = I +

∫ t

0
Bt ◦ dWt.

Here ◦ denotes the Stratonovich stochastic integral. This can always

be converted into an Itô integral; but the answer depends on the

structure of the group Γ (and the chosen inner product).
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Fix the reverse normalized Hilbert–Schmidt inner product on

MN (C) for all matrix Lie algebras:

〈A,B〉 = NTr(B∗A).

Let Xt = XN
t and Yt = Y N

t be independent Hermitian Brownian

motions of variance t/N .
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Fix the reverse normalized Hilbert–Schmidt inner product on

MN (C) for all matrix Lie algebras:

〈A,B〉 = NTr(B∗A).

Let Xt = XN
t and Yt = Y N

t be independent Hermitian Brownian

motions of variance t/N .

The Brownian motion on Lie(U(N)) is iXt; the Brownian motion

Ut on U(N) satisfies

dUt = iUt dXt − 1
2Ut dt.

The Brownian motion on Lie(GL(N,C)) = MN (C) is

Zt = 2−1/2i(Xt + iYt); the Brownian motion Gt on GL(N,C)
satisfies

dGt = Gt dZt.
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If Xt = XN
t is a Hermitian Brownian motion process, then at each

time t > 0 it is a GUEN with entries of variance t/N . Wigner’s law

then shows that the empirical spectral distribution of XN
t converges

to the semicircle law ςt =
1

2πt

√

(4t− x2)+ dx.

1 1
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time t > 0 it is a GUEN with entries of variance t/N . Wigner’s law

then shows that the empirical spectral distribution of XN
t converges

to the semicircle law ςt =
1

2πt

√

(4t− x2)+ dx. In fact, it converges

as a process.

A process (xt)t≥0 (in a W ∗-probability space with trace τ ) is a free

additive Brownian motion if its increments are freely independent

— xt − xs is free from {xr : r ≤ s} — and xt − xs has the

semicircular distribution ςt−s, for all t > s.

1 1
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additive Brownian motion if its increments are freely independent

— xt − xs is free from {xr : r ≤ s} — and xt − xs has the

semicircular distribution ςt−s, for all t > s. It can be constructed on

the free Fock space over L2(R+): xt = l(1[0,t]) + l∗(1[0,t]).
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If Xt = XN
t is a Hermitian Brownian motion process, then at each

time t > 0 it is a GUEN with entries of variance t/N . Wigner’s law

then shows that the empirical spectral distribution of XN
t converges

to the semicircle law ςt =
1

2πt

√

(4t− x2)+ dx. In fact, it converges

as a process.

A process (xt)t≥0 (in a W ∗-probability space with trace τ ) is a free

additive Brownian motion if its increments are freely independent

— xt − xs is free from {xr : r ≤ s} — and xt − xs has the

semicircular distribution ςt−s, for all t > s. It can be constructed on

the free Fock space over L2(R+): xt = l(1[0,t]) + l∗(1[0,t]).

In 1991, Voiculescu showed that the Hermitian Brownian motion

(XN
t )t≥0 converges to (xt)t≥0 in finite-dimensional

non-commutative distributions:

1

N
Tr(P (Xt1 , . . . , Xtn)) → τ(P (xt1 , . . . , xtn)) ∀P.
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There is now a well-developed theory of free stochastic differential

equations. Initially constructed in the free Fock space setting (by

Kümmerer and Speicher in the early 1990s), it was used by Biane in

1997 to define “free versions” of Ut and Gt.
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Kümmerer and Speicher in the early 1990s), it was used by Biane in

1997 to define “free versions” of Ut and Gt.

Let xt, yt be freely independent free additive Brownian motions, and

zt = 2−1/2i(xt + iyt). The free unitary Brownian motion is the

process started at u0 = 1 defined by

dut = iut dxt − 1
2ut dt.

The free multiplicative Brownian motion is the process started at

g0 = 1 defined by

dgt = gt dzt.
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There is now a well-developed theory of free stochastic differential

equations. Initially constructed in the free Fock space setting (by

Kümmerer and Speicher in the early 1990s), it was used by Biane in

1997 to define “free versions” of Ut and Gt.

Let xt, yt be freely independent free additive Brownian motions, and

zt = 2−1/2i(xt + iyt). The free unitary Brownian motion is the

process started at u0 = 1 defined by

dut = iut dxt − 1
2ut dt.

The free multiplicative Brownian motion is the process started at

g0 = 1 defined by

dgt = gt dzt.

It is natural to expect that these processes should be the large-N
limits of the U(N) and GL(N,C) Brownian motions.
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Theorem. [Biane, 1997] For all non-commutative (Laurent)

polynomials P in n variables and times t1, . . . , tn ≥ 0,

1

N
Tr(P (UN

t1 , . . . , U
N
tn )) → τ(P (ut1 , . . . , utn)) a.s.
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1

N
Tr(P (UN

t1 , . . . , U
N
tn )) → τ(P (ut1 , . . . , utn)) a.s.

Biane also computed the moments of ut, and its spectral measure

νt: it has a density (smooth on the interior of its support), supported

on a compact arc for t < 4, and fully supported on U for t ≥ 4.
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Biane also computed the moments of ut, and its spectral measure

νt: it has a density (smooth on the interior of its support), supported

on a compact arc for t < 4, and fully supported on U for t ≥ 4.
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Biane’s approach to understanding the measure νt was through its

moment-generating function

ψt(z) =

∫

U

uz

1− uz
νt(du) =

∑

n≥1

mn(νt) z
n

(the second = holds for |z| < 1; the integral converges for

1/z /∈ supp νt).
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χt(z) =
ψt(z)

1 + ψt(z)
.

The function χt is injective on D, and has a one-sided inverse ft:
ft(χt(z)) = z for z ∈ D (but χt ◦ ft is only the identity on a certain
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Biane’s approach to understanding the measure νt was through its

moment-generating function

ψt(z) =

∫

U

uz

1− uz
νt(du) =

∑

n≥1

mn(νt) z
n

(the second = holds for |z| < 1; the integral converges for

1/z /∈ supp νt). Then define

χt(z) =
ψt(z)

1 + ψt(z)
.

The function χt is injective on D, and has a one-sided inverse ft:
ft(χt(z)) = z for z ∈ D (but χt ◦ ft is only the identity on a certain

region in C; more on this later).

Using the SDE for ut and some clever complex analysis, Biane

showed that

ft(z) = ze
t

2
1+z

1−z .
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In 1997 Biane conjectured a similar large-N limit should hold for the Brownian

motion on GL(N,C), but the ideas of his UN
t proof (spectral theorem,

representation theory of U(N)) did not translate well to the a.s. non-normal

process GN
t .
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Theorem. [K, 2014 (2016)] For all non-commutative Laurent polynomials P in

2n variables, and times t1, . . . , tn ≥ 0,

1

N
Tr
(

P (GN
t1 , (G

N
t1 )

∗, . . . , GN
tn , (G

N
tn)
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→ τ
(
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∗
t1 , . . . , gtn , g

∗
tn)
)
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)
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The proof required several new ingredients: a detailed understanding of the

Laplacian on GL(N,C), and concentration of measure for trace polynomials.

Putting these together with an iteration scheme from the SDE, together with

requisite covariance estimates, yielded the proof.
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In 1997 Biane conjectured a similar large-N limit should hold for the Brownian

motion on GL(N,C), but the ideas of his UN
t proof (spectral theorem,

representation theory of U(N)) did not translate well to the a.s. non-normal

process GN
t .

Theorem. [K, 2014 (2016)] For all non-commutative Laurent polynomials P in

2n variables, and times t1, . . . , tn ≥ 0,

1

N
Tr
(

P (GN
t1 , (G

N
t1 )

∗, . . . , GN
tn , (G

N
tn)

∗)
)

→ τ
(

P (gt1 , g
∗
t1 , . . . , gtn , g

∗
tn)
)

a.s.

The proof required several new ingredients: a detailed understanding of the

Laplacian on GL(N,C), and concentration of measure for trace polynomials.

Putting these together with an iteration scheme from the SDE, together with

requisite covariance estimates, yielded the proof.

This is convergence of the (multi-time) ∗-distribution, of a non-normal matrix

process. What about the eigenvalues?
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t and ut are normal, their ∗-distributions encode their ESDs, so

the bulk eigenvalue behavior is fully understood.
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Because UN
t and ut are normal, their ∗-distributions encode their ESDs, so

the bulk eigenvalue behavior is fully understood.

The GL(N,C) Brownian motion GN
t eigenvalues are much more challenging.

t = 4
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The Segal–Bargmann (Hall) Transform is a map from functions on

U(N) to holomorphic functions on GL(N,C). It is defined by the

analytic continuation of the action of the heat operator:

B
N
t f =

(

e
t

2
∆U(N)f

)

C

.
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The Segal–Bargmann (Hall) Transform is a map from functions on

U(N) to holomorphic functions on GL(N,C). It is defined by the

analytic continuation of the action of the heat operator:

B
N
t f =

(

e
t

2
∆U(N)f

)

C

.

Writing out what this integral formula means in probabilistic terms,

here is a nice way to express it: let F already be a holomorphic

function on GL(N),C), and let f = F |U(N). Let Ut and Gt be

independent Brownian motions on U(N) and GL(N,C). Then

(Btf)(Gt) = E[F (GtUt)|Gt].
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The Segal–Bargmann (Hall) Transform is a map from functions on

U(N) to holomorphic functions on GL(N,C). It is defined by the

analytic continuation of the action of the heat operator:

B
N
t f =

(

e
t

2
∆U(N)f

)

C

.

Writing out what this integral formula means in probabilistic terms,

here is a nice way to express it: let F already be a holomorphic

function on GL(N),C), and let f = F |U(N). Let Ut and Gt be

independent Brownian motions on U(N) and GL(N,C). Then

(Btf)(Gt) = E[F (GtUt)|Gt].

This extends beyond f that already possess an analytic

continuation; it defines an isometric isomorphism

B
N
t : L2(U(N), Ut) → HL2(GL(N,C), Gt).
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In 1997, Biane introduced a free version of the Unitary SBT, which

can be described in similar terms: acting on, say, polynomials f in a

single variable, Gtf is defined by

(Gtf)(gt) = τ [f(gtut)|gt].

He conjectured that Gt is the large-N limit of BN
t in an appropriate

sense; this was proven by Driver, Hall, and me in 2013. (It was for

this work that we invented trace polynomial concentration.)
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In 1997, Biane introduced a free version of the Unitary SBT, which

can be described in similar terms: acting on, say, polynomials f in a

single variable, Gtf is defined by

(Gtf)(gt) = τ [f(gtut)|gt].

He conjectured that Gt is the large-N limit of BN
t in an appropriate

sense; this was proven by Driver, Hall, and me in 2013. (It was for

this work that we invented trace polynomial concentration.)

Biane proved directly (and it follows from the large-N limit) that Gt

extends to an isometric isomorphism

Gt : L
2(U, νt) → At

where At is a certain reproducing-kernel Hilbert space of

holomorphic functions. The norm on At is given by

‖F‖2At
= τ(|F (gt)|2) = τ(F (gt)

∗F (gt)) = ‖F (gt)‖22.
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The functions F ∈ At are not all entire functions. They are

holomorphic on a bounded region Σt

Σt = C \ χt(C \ supp νt)

where (recall) χt is the (right-)inverse of ft(z) = ze
t

2
1+z

1−z .
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Theorem. (Hall, K, 2018)

suppµgt ⊆ Σt.
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Theorem. (Hall, K, 2018)

suppµgt ⊆ Σt.

Proof. We show that Spec22,τ (gt) = Σt. Equivalently, from the

definition of Σt, we show that Res22,τ (gt) = χt(C \ supp νt).



The Support of The Brown Measure of gt

• Dedication

• Citations

Brown Measure

Brownian Motion

Segal–Bargmann

Brown Measure Support

• Main Theorem

• Proof

• Simulations

• Simulations

• Implicit

• The Brown Measure

• Simulations

• Questions

28 / 35

Theorem. (Hall, K, 2018)

suppµgt ⊆ Σt.

Proof. We show that Spec22,τ (gt) = Σt. Equivalently, from the

definition of Σt, we show that Res22,τ (gt) = χt(C \ supp νt).

Essentially, λ ∈ Res22,τ (gt) iff (gt − λ)2 is invertible in L2(τ), i.e.

∞ > τ
(

|(gt − λ)−2|2
)
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Theorem. (Hall, K, 2018)

suppµgt ⊆ Σt.

Proof. We show that Spec22,τ (gt) = Σt. Equivalently, from the

definition of Σt, we show that Res22,τ (gt) = χt(C \ supp νt).

Essentially, λ ∈ Res22,τ (gt) iff (gt − λ)2 is invertible in L2(τ), i.e.

∞ > τ
(

|(gt − λ)−2|2
)

= ‖(z − λ)−2‖2At
.
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Theorem. (Hall, K, 2018)

suppµgt ⊆ Σt.

Proof. We show that Spec22,τ (gt) = Σt. Equivalently, from the

definition of Σt, we show that Res22,τ (gt) = χt(C \ supp νt).

Essentially, λ ∈ Res22,τ (gt) iff (gt − λ)2 is invertible in L2(τ), i.e.

∞ > τ
(

|(gt − λ)−2|2
)

= ‖(z − λ)−2‖2At
.

Recall that Gt is an isometry from L2(U, νt) onto At. Can we find a

function αλ
t on U with Gt(α

λ
t )(z) = (z − λ)−2?
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Theorem. (Hall, K, 2018)

suppµgt ⊆ Σt.

Proof. We show that Spec22,τ (gt) = Σt. Equivalently, from the

definition of Σt, we show that Res22,τ (gt) = χt(C \ supp νt).

Essentially, λ ∈ Res22,τ (gt) iff (gt − λ)2 is invertible in L2(τ), i.e.

∞ > τ
(

|(gt − λ)−2|2
)

= ‖(z − λ)−2‖2At
.

Recall that Gt is an isometry from L2(U, νt) onto At. Can we find a

function αλ
t on U with Gt(α

λ
t )(z) = (z − λ)−2?

Using PDE techniques, we can compute that

G
−1
t ((z − λ)−1) =

1

λ

ft(λ)

ft(λ)− u
.
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Gt :
1

λ

ft(λ)

ft(λ)− u
7→ 1

z − λ
.

Since 1
(z−λ)2

= d
dλ

1
z−λ , using regularity properties of Gt we have

αλ
t (u) =

d

dλ

(

1

λ

ft(λ)

ft(λ)− u

)

.
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Gt :
1

λ

ft(λ)

ft(λ)− u
7→ 1

z − λ
.

Since 1
(z−λ)2

= d
dλ

1
z−λ , using regularity properties of Gt we have

αλ
t (u) =

d

dλ

(

1

λ

ft(λ)

ft(λ)− u

)

.

The question is: for which λ is αλ
t ∈ L2(U, νt)? I.e.

∫

U

|αλ
t (u)|2 νt(du) <∞.
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Gt :
1

λ

ft(λ)

ft(λ)− u
7→ 1

z − λ
.

Since 1
(z−λ)2

= d
dλ

1
z−λ , using regularity properties of Gt we have

αλ
t (u) =

d

dλ

(

1

λ

ft(λ)

ft(λ)− u

)

.

The question is: for which λ is αλ
t ∈ L2(U, νt)? I.e.

∫

U

|αλ
t (u)|2 νt(du) <∞.

The answer is: precisely when ft(λ) /∈ supp νt. I.e.

Res22,τ (gt) = f−1
t (C \ supp νt) = χt(C \ supp νt).

�
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Here is a simulation of eigenvalues of G
(N)
t for N = 2000, together

with the boundary of Σt, at t = 3 (produced in Mathematica).
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N = 2000, t = 2, 3.9, 4, 4.1.
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Very recently, jointly with Driver and Hall, we have been able to push further

and actually compute the Brown measure.
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Very recently, jointly with Driver and Hall, we have been able to push further

and actually compute the Brown measure. To describe it, we need an auxiliary

implicit function ̺ = ̺(t, θ), determined by

1− ̺ cos θ
√

1− ̺2
log

(

2− ̺2 + 2
√

1− ̺2

̺2

)

= t.

This defines a real analytic function for |θ| < θmax(t) = cos−1(1− t/2) ∧ π,

which is precisely the argument range of Σt:
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Theorem. (Driver, Hall, K, 2018)

suppµgt = Σt.

1



The Brown Measure of gt

• Dedication

• Citations

Brown Measure

Brownian Motion

Segal–Bargmann

Brown Measure Support

• Main Theorem

• Proof

• Simulations

• Simulations

• Implicit

• The Brown Measure

• Simulations

• Questions

33 / 35

Theorem. (Driver, Hall, K, 2018)

suppµgt = Σt. Moreover, µgt has a continuous density on Σt, that

is real analytic and strictly positive on Σt.

1



The Brown Measure of gt

• Dedication

• Citations

Brown Measure

Brownian Motion

Segal–Bargmann

Brown Measure Support

• Main Theorem

• Proof

• Simulations

• Simulations

• Implicit

• The Brown Measure

• Simulations

• Questions

33 / 35

Theorem. (Driver, Hall, K, 2018)

suppµgt = Σt. Moreover, µgt has a continuous density on Σt, that

is real analytic and strictly positive on Σt. The density has the form

dµgt =
1

r2
wt(e

iθ)1Σt
rdrdθ

for the real analytic function wt : U → R+ given by

wt(e
iθ) =

1

4π

(

2

t
+

∂

∂θ

̺(t, θ) sin θ

1− ̺(t, θ) cos θ

)

.
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Theorem. (Driver, Hall, K, 2018)

suppµgt = Σt. Moreover, µgt has a continuous density on Σt, that

is real analytic and strictly positive on Σt. The density has the form

dµgt =
1

r2
wt(e

iθ)1Σt
rdrdθ

for the real analytic function wt : U → R+ given by

wt(e
iθ) =

1

4π

(

2

t
+

∂

∂θ

̺(t, θ) sin θ

1− ̺(t, θ) cos θ

)

.

The techniques needed to prove this theorem are wholly disjoint

from the concepts discussed in this talk so far; they rely primarily on

PDE methods. You’ll have to wait to see those ideas until the next

meeting (Oberwolfach, or Montreal).
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Here are histograms of complex arguments of eigenvalues of GN
t , together

with the argument density of µgt , for N = 2000 and t = 2, 3.8, 4, 5.
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• Explore relations between the Lp(τ)-spectra, in general. They

are probably all equal to the spectrum for gt.
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• Prove that the ESD of GN
t actually converges to µgt . (What we

can now say definitively is that the limit ESD is supported in Σt.)
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t actually converges to µgt . (What we

can now say definitively is that the limit ESD is supported in Σt.)

• There is a two-parameter family of invariant diffusions on

GL(N,C) that includes UN
t and GN

t , all of which have large-N
limits described by free SDEs. How much of all this extends to

the whole family? (Our preprint already covers the support in the

two-parameter setting; the density is yet unknown.)
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I’ll let you know what more I know next time we meet. ©
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