Brown's Spectral Measure, and the Free Multiplicative Brownian Motion

West Coast Operator Algebras Seminar Seattle University

> Todd Kemp UC San Diego

October 7, 2018

Dedication

- Dedication
- Citations
- **Brown Measure**
- Brownian Motion
- Segal–Bargmann
- **Brown Measure Support**

This talk, and all my work, is dedicated to the memory of my father:

Robin Edward Kemp September 9, 1938 – August 4, 2018

who was a brilliant, hard-working, gentle, and humble man, and is the source of my strength, my intellect, and my success.

Giving Credit where Credit is Due

- Biane, P.: Free Brownian motion, free stochastic calculus and random matrices. Fields Inst. Commun. vol. 12, Amer. Math. Soc., Providence, RI, 1-19 (1997)
- Biane, P.: Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems. J. Funct. Anal. 144, 1, 232-286 (1997)
- Driver; Hall; K: The large-N limit of the Segal–Bargmann transform on \mathbb{U}_N . J. Funct. Anal. 265, 2585-2644 (2013)
- K: The Large-N Limits of Brownian Motions on \mathbb{GL}_N . Int. Math. Res. Not. IMRN, no. 13, 4012-4057 (2016)
- Collins, Dahlqvist, K: *The Spectral Edge of Unitary Brownian Motion*. Probab. Theory Related Fields 170, no. 102, 49-93 (2018)
- Hall, K: *Brown Measure and the Free Multiplicative Brownian Motion.* arXiv:1810.00153

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet L^p$ Inverse
- $\bullet L^p$ Spectrum
- Support

Brownian Motion

Segal–Bargmann

Brown Measure Support

Brown's Spectral Measure

If (\mathcal{A}, τ) is a W^* -probability space, then any normal operator $a \in \mathcal{A}$ has a spectral measure $\mu_a = \tau \circ E^a$. If A is a normal matrix, μ_A is its ESD. It is characterized (nicely) by the *-distribution of a:

$$\int_{\mathbb{C}} z^k \bar{z}^\ell \, \mu_a(dz d\bar{z}) = \tau(a^k a^{*\ell}).$$

If (\mathcal{A}, τ) is a W^* -probability space, then any normal operator $a \in \mathcal{A}$ has a spectral measure $\mu_a = \tau \circ E^a$. If A is a normal matrix, μ_A is its ESD. It is characterized (nicely) by the *-distribution of a:

$$\int_{\mathbb{C}} z^k \bar{z}^\ell \,\mu_a(dz d\bar{z}) = \tau(a^k a^{*\ell}).$$

If a is not normal, there is no such measure. But there is a substitute: Brown's spectral measure. Let L(a) denote the (log) Kadison–Fuglede determinant:

$$L(a) = \int_{\mathbb{R}} \log t \, \mu_{|a|}(dt) = \tau \left(\int_{\mathbb{R}} \log t \, E^{|a|}(dt) \right)$$

If (\mathcal{A}, τ) is a W^* -probability space, then any normal operator $a \in \mathcal{A}$ has a spectral measure $\mu_a = \tau \circ E^a$. If A is a normal matrix, μ_A is its ESD. It is characterized (nicely) by the *-distribution of a:

$$\int_{\mathbb{C}} z^k \bar{z}^\ell \,\mu_a(dz d\bar{z}) = \tau(a^k a^{*\ell}).$$

If a is not normal, there is no such measure. But there is a substitute: Brown's spectral measure. Let L(a) denote the (log) Kadison–Fuglede determinant:

$$L(a) = \int_{\mathbb{R}} \log t \, \mu_{|a|}(dt) = \tau \left(\int_{\mathbb{R}} \log t \, E^{|a|}(dt) \right) = \tau(\log |a|)$$

(the last = holds if $a^{-1} \in \mathcal{A}$).

If (\mathcal{A}, τ) is a W^* -probability space, then any normal operator $a \in \mathcal{A}$ has a spectral measure $\mu_a = \tau \circ E^a$. If A is a normal matrix, μ_A is its ESD. It is characterized (nicely) by the *-distribution of a:

$$\int_{\mathbb{C}} z^k \bar{z}^\ell \,\mu_a(dz d\bar{z}) = \tau(a^k a^{*\ell}).$$

If a is not normal, there is no such measure. But there is a substitute: Brown's spectral measure. Let L(a) denote the (log) Kadison–Fuglede determinant:

$$L(a) = \int_{\mathbb{R}} \log t \, \mu_{|a|}(dt) = \tau \left(\int_{\mathbb{R}} \log t \, E^{|a|}(dt) \right) = \tau(\log |a|)$$

(the last = holds if $a^{-1} \in \mathcal{A}$). Then $\lambda \mapsto L(a - \lambda)$ is subharmonic on \mathbb{C} , and

$$\mu_a = \frac{1}{2\pi} \nabla_\lambda^2 L(a - \lambda)$$

is a probability measure on \mathbb{C} . If A is *any* matrix, μ_A is its ESD.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- L^p Inverse
- L^p Spectrum
- Support
- **Brownian Motion**
- Segal-Bargmann
- **Brown Measure Support**

Consider a circular operator z (mentioned yesterday in Brent Nelson's talk):

 $z = \frac{1}{\sqrt{2}}(x + iy)$ x, y freely independent semicirculars.

It is not too difficult to compute from the definition that

 $\mu_z =$ uniform probability measure on \mathbb{D} .

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Consider a circular operator z (mentioned yesterday in Brent Nelson's talk):

 $z = \frac{1}{\sqrt{2}}(x + iy)$ x, y freely independent semicirculars.

It is not too difficult to compute from the definition that

 $\mu_z =$ uniform probability measure on $\overline{\mathbb{D}}$.

This goes hand in hand with the fact that z is the large-N limit (in *-distribution) of the Ginibre ensemble (all i.i.d. Gaussian entries), whose ESD converges to the uniform probability measure on $\overline{\mathbb{D}}$ (that's the Circular Law proved by Ginibre, Girko, Bai, Tao-Vu, ...)

Dedication

Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Consider a circular operator z (mentioned yesterday in Brent Nelson's talk):

 $z = \frac{1}{\sqrt{2}}(x + iy)$ x, y freely independent semicirculars.

It is not too difficult to compute from the definition that

 $\mu_z =$ uniform probability measure on $\overline{\mathbb{D}}$.

This goes hand in hand with the fact that z is the large-N limit (in *-distribution) of the Ginibre ensemble (all i.i.d. Gaussian entries), whose ESD converges to the uniform probability measure on $\overline{\mathbb{D}}$ (that's the Circular Law proved by Ginibre, Girko, Bai, Tao-Vu, ...)

However, the connection between limit ESD and Brown measure is actually very complicated.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

The Brown measure has some nice properties analogous to the spectral measure, but not all:

$$\tau(a^k) = \int_{\mathbb{C}} z^k \,\mu_a(dz d\bar{z}) \quad \text{and} \quad \tau(a^{*k}) = \int_{\mathbb{C}} \bar{z}^k \,\mu_a(dz d\bar{z})$$

but you cannot max and match.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau(a^k) = \int_{\mathbb{C}} z^k \mu_a(dz d\bar{z})$ and $\tau(a^{*k}) = \int_{\mathbb{C}} \bar{z}^k \mu_a(dz d\bar{z})$ but you cannot max and match.
- $\tau(\log|a-\lambda|) = L(a-\lambda) = \int_{\mathbb{C}} \log|z-\lambda| \mu_a(dzd\overline{z})$ for

large λ , and this characterizes μ_a .

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau(a^k) = \int_{\mathbb{C}} z^k \mu_a(dz d\overline{z})$ and $\tau(a^{*k}) = \int_{\mathbb{C}} \overline{z}^k \mu_a(dz d\overline{z})$ but you cannot max and match.
- $\tau(\log|a-\lambda|) = L(a-\lambda) = \int_{\mathbb{C}} \log|z-\lambda| \mu_a(dzd\bar{z})$ for
 - large λ , and this characterizes μ_a . In particular, the *-distribution of *a* determines μ_a but with a log discontinuity.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau(a^k) = \int_{\mathbb{C}} z^k \mu_a(dz d\overline{z})$ and $\tau(a^{*k}) = \int_{\mathbb{C}} \overline{z}^k \mu_a(dz d\overline{z})$ but you cannot max and match.
- $\tau(\log|a-\lambda|) = L(a-\lambda) = \int_{\mathbb{C}} \log|z-\lambda| \mu_a(dzd\bar{z})$ for
 - large λ , and this characterizes μ_a . In particular, the *-distribution of *a* determines μ_a but with a log discontinuity.
 - $\operatorname{supp} \mu_a \subseteq \operatorname{Spec}(a)$ (can be a strict subset).

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau(a^k) = \int_{\mathbb{C}} z^k \mu_a(dz d\overline{z})$ and $\tau(a^{*k}) = \int_{\mathbb{C}} \overline{z}^k \mu_a(dz d\overline{z})$ but you cannot max and match.
- $\tau(\log|a-\lambda|) = L(a-\lambda) = \int_{\mathbb{C}} \log|z-\lambda| \mu_a(dzd\bar{z})$ for
 - large λ , and this characterizes μ_a . In particular, the *-distribution of a determines μ_a but with a log discontinuity.
- $\operatorname{supp} \mu_a \subseteq \operatorname{Spec}(a)$ (can be a strict subset).

Let A^N be a sequence of matrices with a as limit in *-distribution. Since the Brown measure μ_{A^N} is the empirical spectral distribution of A^N , it is natural to expect that $\text{ESD}(A^N) \to \mu_a$.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

The Brown measure has some nice properties analogous to the spectral measure, but not all:

- $\tau(a^k) = \int_{\mathbb{C}} z^k \mu_a(dz d\overline{z})$ and $\tau(a^{*k}) = \int_{\mathbb{C}} \overline{z}^k \mu_a(dz d\overline{z})$ but you cannot max and match.
- $\tau(\log|a-\lambda|) = L(a-\lambda) = \int_{\mathbb{C}} \log|z-\lambda| \mu_a(dzd\bar{z})$ for
 - large λ , and this characterizes μ_a . In particular, the *-distribution of a determines μ_a but with a log discontinuity.
- $\operatorname{supp} \mu_a \subseteq \operatorname{Spec}(a)$ (can be a strict subset).

Let A^N be a sequence of matrices with a as limit in *-distribution. Since the Brown measure μ_{A^N} is the empirical spectral distribution of A^N , it is natural to expect that $\text{ESD}(A^N) \to \mu_a$. The \log discontinuity often makes this exceedingly difficult to prove.

Convergence of the Brown Measure

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet L^p$ Inverse
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Let $\{a, a_n\}_{n \in \mathbb{N}}$ be a uniformly bounded set of operators in some W^* -probability spaces, with $a_n \to a$ in *-distribution. We would hope that $\mu_{a_n} \to \mu_a$. Without some very fine information about the spectral measure of $|a_n - \lambda|$ near the edge of $\operatorname{Spec}(a_n)$, the best that can be said in general is the following.

Convergence of the Brown Measure

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Let $\{a, a_n\}_{n \in \mathbb{N}}$ be a uniformly bounded set of operators in some W^* -probability spaces, with $a_n \to a$ in *-distribution. We would hope that $\mu_{a_n} \to \mu_a$. Without some very fine information about the spectral measure of $|a_n - \lambda|$ near the edge of $\operatorname{Spec}(a_n)$, the best that can be said in general is the following.

Proposition. Suppose that $\mu_{a_n} \to \mu$ weakly for some probability measure μ on \mathbb{C} . Then

$$\int_{\mathbb{C}} \log |z - \lambda| \, \mu(dz d\bar{z}) \leq \int_{\mathbb{C}} \log |z - \lambda| \, \mu_a(dz d\bar{z})$$

for all $\lambda \in \mathbb{C}$; and equality holds for sufficiently large λ .

Convergence of the Brown Measure

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Let $\{a, a_n\}_{n \in \mathbb{N}}$ be a uniformly bounded set of operators in some W^* -probability spaces, with $a_n \to a$ in *-distribution. We would hope that $\mu_{a_n} \to \mu_a$. Without some very fine information about the spectral measure of $|a_n - \lambda|$ near the edge of $\operatorname{Spec}(a_n)$, the best that can be said in general is the following.

Proposition. Suppose that $\mu_{a_n} \to \mu$ weakly for some probability measure μ on \mathbb{C} . Then

$$\int_{\mathbb{C}} \log |z - \lambda| \, \mu(dz d\bar{z}) \leq \int_{\mathbb{C}} \log |z - \lambda| \, \mu_a(dz d\bar{z})$$

for all $\lambda \in \mathbb{C}$; and equality holds for sufficiently large λ .

Corollary. Let V_a be the unbounded connected component of $\mathbb{C} \setminus \text{supp } \mu_a$. Then supp $\mu \subseteq \mathbb{C} \setminus V_a$. (In particular, if supp μ_a is simply-connected, then supp $\mu \subseteq \text{supp } \mu_a$.)

Brown Measure via Regularization

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- L^p Inverse
- $\bullet L^p$ Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

The function $L(a - \lambda) = \int_{\mathbb{R}} \log t \, \mu_{|a|}(dt)$ is essentially impossible to compute with. But we can use regularity properties of the spectral resolution to approach it in a different way. Define

$$L^{\epsilon}(a) = \frac{1}{2}\tau(\log(a^*a + \epsilon)), \qquad \epsilon > 0.$$

Brown Measure via Regularization

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- L^p Inverse
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

The function $L(a - \lambda) = \int_{\mathbb{R}} \log t \, \mu_{|a|}(dt)$ is essentially impossible to compute with. But we can use regularity properties of the spectral resolution to approach it in a different way. Define

$$L^{\epsilon}(a) = \frac{1}{2}\tau(\log(a^*a + \epsilon)), \qquad \epsilon > 0.$$

The function $\lambda \mapsto L^{\epsilon}(a-\lambda)$ is $C^{\infty}(\mathbb{C})$, and is subharmonic. Define

$$u_a^{\epsilon}(\lambda) = \frac{1}{2\pi} \nabla_{\lambda}^2 L_{\epsilon}(a-\lambda).$$

Then h_a^ϵ is a smooth probability density on $\mathbb C$, and

$$\mu_a(d\lambda) = \lim_{\epsilon \downarrow 0} h_a^{\epsilon}(\lambda) \, d\lambda.$$

Brown Measure via Regularization

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- L^p Inverse
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

The function $L(a - \lambda) = \int_{\mathbb{R}} \log t \, \mu_{|a|}(dt)$ is essentially impossible to compute with. But we can use regularity properties of the spectral resolution to approach it in a different way. Define

$$L^{\epsilon}(a) = \frac{1}{2}\tau(\log(a^*a + \epsilon)), \qquad \epsilon > 0.$$

The function $\lambda \mapsto L^{\epsilon}(a-\lambda)$ is $C^{\infty}(\mathbb{C})$, and is subharmonic. Define

$$u_a^{\epsilon}(\lambda) = \frac{1}{2\pi} \nabla_{\lambda}^2 L_{\epsilon}(a-\lambda).$$

Then h_a^ϵ is a smooth probability density on $\mathbb C$, and

$$\mu_a(d\lambda) = \lim_{\epsilon \downarrow 0} h_a^{\epsilon}(\lambda) \, d\lambda.$$

It is not difficult to explicitly calculate the density h_a^{ϵ} for fixed $\epsilon > 0$.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- $\bullet \ L^p \ {\rm Spectrum}$
- Support

Brownian Motion

Segal–Bargmann

Brown Measure Support

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda} = a - \lambda$. Then

$$h_a^{\epsilon}(\lambda) = \frac{1}{\pi} \epsilon \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right).$$

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet L^p$ Inverse
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda} = a - \lambda$. Then

$$a_a^{\epsilon}(\lambda) = \frac{1}{\pi} \epsilon \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right).$$

$$\left| \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right) \right| \\\leq \left\| (a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right\|$$

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet L^p$ Inverse
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda} = a - \lambda$. Then

$$a_a^{\epsilon}(\lambda) = \frac{1}{\pi} \epsilon \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right).$$

$$\begin{aligned} &\left|\tau\left((a_{\lambda}^{*}a_{\lambda}+\epsilon)^{-1}(a_{\lambda}a_{\lambda}^{*}+\epsilon)^{-1}\right)\right|\\ &\leq \left\|(a_{\lambda}^{*}a_{\lambda}+\epsilon)^{-1}(a_{\lambda}a_{\lambda}^{*}+\epsilon)^{-1}\right\|\\ &\leq \left\|(a_{\lambda}^{*}a_{\lambda}+\epsilon)^{-1}\right\|\left\|(a_{\lambda}a_{\lambda}^{*}+\epsilon)^{-1}\right\|\end{aligned}$$

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet L^p$ Inverse
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda} = a - \lambda$. Then

$$h_a^{\epsilon}(\lambda) = \frac{1}{\pi} \epsilon \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right).$$

$$\begin{aligned} &\left| \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right) \right| \\ &\leq \left\| (a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right\| \\ &\leq \left\| (a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} \right\| \left\| (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right\| \\ &\leq \left\| (a_{\lambda}^* a_{\lambda})^{-1} \right\| \left\| (a_{\lambda} a_{\lambda}^*)^{-1} \right\| \end{aligned}$$

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- L^p Inverse
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda} = a - \lambda$. Then

$$a_a^{\epsilon}(\lambda) = \frac{1}{\pi} \epsilon \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right).$$

$$\begin{aligned} &\left| \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right) \right| \\ &\leq \left\| (a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right\| \\ &\leq \left\| (a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} \right\| \left\| (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right\| \\ &\leq \left\| (a_{\lambda}^* a_{\lambda})^{-1} \right\| \left\| (a_{\lambda} a_{\lambda}^*)^{-1} \right\| \\ &\leq \left\| (a - \lambda)^{-1} \right\|^4. \end{aligned}$$

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet L^p$ Inverse
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Lemma. Let $\lambda \in \mathbb{C}$, and denote $a_{\lambda} = a - \lambda$. Then

$$a_a^{\epsilon}(\lambda) = \frac{1}{\pi} \epsilon \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right).$$

From here it is easy to see why supp $\mu_a \subseteq \operatorname{Spec}(a)$. If $\lambda \in \operatorname{Res}(a)$ so that $a_{\lambda}^{-1} \in \mathcal{A}$, we quickly estimate

$$\begin{aligned} & \left| \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right) \right| \\ \leq & \left\| (a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right\| \\ \leq & \left\| (a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} \right\| \left\| (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right\| \\ \leq & \left\| (a_{\lambda}^* a_{\lambda})^{-1} \right\| \left\| (a_{\lambda} a_{\lambda}^*)^{-1} \right\| \\ \leq & \left\| (a - \lambda)^{-1} \right\|^4. \end{aligned}$$

This is locally uniformly bounded in λ ; so taking $\epsilon \downarrow 0$, the factor of ϵ in $h_a^{\epsilon}(\lambda)$ kills the term; we find $\mu_a = 0$ in a neighborhood of λ .

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- L^p Inverse
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Recall that $L^p(\mathcal{A},\tau)$ is the closure of \mathcal{A} in the norm

$$|a||_p^p = \tau(|a|^p) = \tau\Big((a^*a)^{p/2}\Big)\,.$$

(It can be realized as a set of densely-defined unbounded operators, acting on the same Hilbert space as \mathcal{A}). The non-commutative L^p -norms satisfy the same Hölder inequality as the classical ones.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Recall that $L^p(\mathcal{A},\tau)$ is the closure of \mathcal{A} in the norm

$$|a||_p^p = \tau(|a|^p) = \tau\Big((a^*a)^{p/2}\Big)\,.$$

(It can be realized as a set of densely-defined unbounded operators, acting on the same Hilbert space as \mathcal{A}). The non-commutative L^p -norms satisfy the same Hölder inequality as the classical ones.

It is perfectly possible for $a \in \mathcal{A}$ to be *invertible in* $L^p(\mathcal{A}, \tau)$ without having a bounded inverse. That is: there can exist $b \in L^p(\mathcal{A}, \tau) \setminus \mathcal{A}$ with ab = ba = 1 (viewed as an equation in $L^p(\mathcal{A}, \tau)$).

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Recall that $L^p(\mathcal{A},\tau)$ is the closure of \mathcal{A} in the norm

$$|a||_{p}^{p} = \tau(|a|^{p}) = \tau\left((a^{*}a)^{p/2}\right).$$

(It can be realized as a set of densely-defined unbounded operators, acting on the same Hilbert space as \mathcal{A}). The non-commutative L^p -norms satisfy the same Hölder inequality as the classical ones.

It is perfectly possible for $a \in \mathcal{A}$ to be *invertible in* $L^p(\mathcal{A}, \tau)$ without having a bounded inverse. That is: there can exist $b \in L^p(\mathcal{A}, \tau) \setminus \mathcal{A}$ with ab = ba = 1 (viewed as an equation in $L^p(\mathcal{A}, \tau)$).

The preceding proof (with very little change) shows that $h_a^{\epsilon}(\lambda) \to 0$ at any point λ where $a - \lambda$ is invertible in $L^4(\mathcal{A}, \tau)$.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Recall that $L^p(\mathcal{A}, \tau)$ is the closure of \mathcal{A} in the norm

$$|a||_{p}^{p} = \tau(|a|^{p}) = \tau\left((a^{*}a)^{p/2}\right).$$

(It can be realized as a set of densely-defined unbounded operators, acting on the same Hilbert space as \mathcal{A}). The non-commutative L^p -norms satisfy the same Hölder inequality as the classical ones.

It is perfectly possible for $a \in \mathcal{A}$ to be *invertible in* $L^p(\mathcal{A}, \tau)$ without having a bounded inverse. That is: there can exist $b \in L^p(\mathcal{A}, \tau) \setminus \mathcal{A}$ with ab = ba = 1 (viewed as an equation in $L^p(\mathcal{A}, \tau)$).

The preceding proof (with very little change) shows that $h_a^{\epsilon}(\lambda) \to 0$ at any point λ where $a - \lambda$ is invertible in $L^4(\mathcal{A}, \tau)$.

Definition. The $L^p(\mathcal{A}, \tau)$ resolvent $\operatorname{Res}_{p,\tau}(a)$ is the interior of the set of $\lambda \in \mathbb{C}$ for which $a - \lambda$ has an inverse in $L^p(\mathcal{A}, \tau)$. The $L^p(\mathcal{A}, \tau)$ spectrum $\operatorname{Spec}_{p,\tau}(a)$ is $\mathbb{C} \setminus \operatorname{Res}_{p,\tau}(a)$.

The $L^p(\mathcal{A},\tau)$ Spectrum

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

From Hölder's inequality, we have the inclusions

 $\operatorname{Spec}_{p,\tau}(a) \subseteq \operatorname{Spec}_{q,\tau}(a) \subseteq \operatorname{Spec}(a)$

for $1 \le p \le q < \infty$. Without including the closure in the definition, these inclusions can be strict; with the closure, my (wild) conjecture is that $\operatorname{Spec}_{1,\tau}(a) = \operatorname{Spec}(a)$ for all a.

The $L^p(\mathcal{A},\tau)$ Spectrum

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

From Hölder's inequality, we have the inclusions

 $\operatorname{Spec}_{p,\tau}(a) \subseteq \operatorname{Spec}_{q,\tau}(a) \subseteq \operatorname{Spec}(a)$

for $1 \le p \le q < \infty$. Without including the closure in the definition, these inclusions can be strict; with the closure, my (wild) conjecture is that $\operatorname{Spec}_{1,\tau}(a) = \operatorname{Spec}(a)$ for all a.

As noted, $\operatorname{supp}\mu_a \subseteq \operatorname{Spec}_{4,\tau}(a)$.
The $L^p(\mathcal{A},\tau)$ Spectrum

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

From Hölder's inequality, we have the inclusions

 $\operatorname{Spec}_{p,\tau}(a) \subseteq \operatorname{Spec}_{q,\tau}(a) \subseteq \operatorname{Spec}(a)$

for $1 \le p \le q < \infty$. Without including the closure in the definition, these inclusions can be strict; with the closure, my (wild) conjecture is that $\operatorname{Spec}_{1,\tau}(a) = \operatorname{Spec}(a)$ for all a.

As noted, $\mathrm{supp}\mu_a\subseteq\mathrm{Spec}_{4,\tau}(a)$. But we can do better. Recall that

$$\frac{\pi}{\epsilon}h_a^\epsilon(\lambda) = \tau\left((a_\lambda^*a_\lambda + \epsilon)^{-1}(a_\lambda a_\lambda^* + \epsilon)^{-1}\right).$$

If we naïvely set $\epsilon = 0$ on the right-hand-side, we get (heuristically)

$$\tau\left((a_{\lambda}^*a_{\lambda})^{-1}(a_{\lambda}a_{\lambda}^*)^{-1})\right) = \tau\left((a_{\lambda}^*)^{-1}(a_{\lambda})^{-2}(a_{\lambda}^*)^{-1}\right)$$

The $L^p(\mathcal{A}, \tau)$ Spectrum

Dedication

Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

From Hölder's inequality, we have the inclusions

 $\operatorname{Spec}_{p,\tau}(a) \subseteq \operatorname{Spec}_{q,\tau}(a) \subseteq \operatorname{Spec}(a)$

for $1 \le p \le q < \infty$. Without including the closure in the definition, these inclusions can be strict; with the closure, my (wild) conjecture is that $\operatorname{Spec}_{1,\tau}(a) = \operatorname{Spec}(a)$ for all a.

As noted, $\operatorname{supp}\mu_a \subseteq \operatorname{Spec}_{4,\tau}(a)$. But we can do better. Recall that

$$\frac{\pi}{\epsilon}h_a^\epsilon(\lambda) = \tau\left((a_\lambda^*a_\lambda + \epsilon)^{-1}(a_\lambda a_\lambda^* + \epsilon)^{-1}\right).$$

If we naïvely set $\epsilon = 0$ on the right-hand-side, we get (heuristically)

$$\tau \left((a_{\lambda}^* a_{\lambda})^{-1} (a_{\lambda} a_{\lambda}^*)^{-1}) \right) = \tau \left((a_{\lambda}^*)^{-1} (a_{\lambda})^{-2} (a_{\lambda}^*)^{-1} \right)$$
$$= \tau \left((a_{\lambda}^{-2})^* a_{\lambda}^{-2} \right) = \|a_{\lambda}^{-2}\|_2^2.$$

The $L^p(\mathcal{A}, \tau)$ Spectrum

• Dedication

Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

From Hölder's inequality, we have the inclusions

 $\operatorname{Spec}_{p,\tau}(a) \subseteq \operatorname{Spec}_{q,\tau}(a) \subseteq \operatorname{Spec}(a)$

for $1 \le p \le q < \infty$. Without including the closure in the definition, these inclusions can be strict; with the closure, my (wild) conjecture is that $\operatorname{Spec}_{1,\tau}(a) = \operatorname{Spec}(a)$ for all a.

As noted, $\operatorname{supp}\mu_a \subseteq \operatorname{Spec}_{4,\tau}(a)$. But we can do better. Recall that

$$\frac{\pi}{\epsilon} h_a^{\epsilon}(\lambda) = \tau \left((a_{\lambda}^* a_{\lambda} + \epsilon)^{-1} (a_{\lambda} a_{\lambda}^* + \epsilon)^{-1} \right).$$

If we naïvely set $\epsilon = 0$ on the right-hand-side, we get (heuristically)

$$\tau \left((a_{\lambda}^* a_{\lambda})^{-1} (a_{\lambda} a_{\lambda}^*)^{-1} \right) = \tau \left((a_{\lambda}^*)^{-1} (a_{\lambda})^{-2} (a_{\lambda}^*)^{-1} \right)$$
$$= \tau \left((a_{\lambda}^{-2})^* a_{\lambda}^{-2} \right) = \|a_{\lambda}^{-2}\|_2^2$$

Note, this is *not* equal to $||a_{\lambda}^{-1}||_{4}^{4}$ when a_{λ} is not normal.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Proposition. Let $a \in \mathcal{A}$, and suppose a^2 is invertible in $L^2(\mathcal{A}, \tau)$. Then for all $\epsilon > 0$,

$$\tau((a^*a + \epsilon)^{-1}(aa^* + \epsilon)^{-1}) \le ||a^{-2}||_2^2$$

(The proof is trickier than you might think.)

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

```
Brown Measure Support
```

Proposition. Let $a \in \mathcal{A}$, and suppose a^2 is invertible in $L^2(\mathcal{A}, \tau)$. Then for all $\epsilon > 0$,

$$\tau((a^*a + \epsilon)^{-1}(aa^* + \epsilon)^{-1}) \le ||a^{-2}||_2^2$$

(The proof is trickier than you might think.)

Definition. The $L^2_{2,\tau}$ resolvent of a, $\operatorname{Res}^2_{2,\tau}(a)$, is the interior of the set of $\lambda \in \mathbb{C}$ for which $(a - \lambda)^2$ is invertible in $L^2(\mathcal{A}, \tau)$. The $L^2_{2,\tau}$ spectrum of a is $\operatorname{Spec}^2_{2,\tau}(a) = \mathbb{C} \setminus \operatorname{Res}^2_{2,\tau}(a)$.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Proposition. Let $a \in A$, and suppose a^2 is invertible in $L^2(A, \tau)$. Then for all $\epsilon > 0$,

$$\tau((a^*a + \epsilon)^{-1}(aa^* + \epsilon)^{-1}) \le ||a^{-2}||_2^2.$$

(The proof is trickier than you might think.)

Definition. The $L^2_{2,\tau}$ resolvent of a, $\operatorname{Res}^2_{2,\tau}(a)$, is the interior of the set of $\lambda \in \mathbb{C}$ for which $(a - \lambda)^2$ is invertible in $L^2(\mathcal{A}, \tau)$. The $L^2_{2,\tau}$ spectrum of a is $\operatorname{Spec}^2_{2,\tau}(a) = \mathbb{C} \setminus \operatorname{Res}^2_{2,\tau}(a)$.

Theorem. supp $\mu_a \subseteq \operatorname{Spec}_{2,\tau}^2(a)$.

- Dedication
- Citations

Brown Measure

- Brown Measure
- Circular
- Properties
- Convergence
- Regularize
- Spectrum
- $\bullet \ L^p \ {\rm Inverse}$
- L^p Spectrum
- Support

Brownian Motion

Segal-Bargmann

Brown Measure Support

Proposition. Let $a \in A$, and suppose a^2 is invertible in $L^2(A, \tau)$. Then for all $\epsilon > 0$,

$$\tau((a^*a + \epsilon)^{-1}(aa^* + \epsilon)^{-1}) \le ||a^{-2}||_2^2$$

(The proof is trickier than you might think.)

Definition. The $L^2_{2,\tau}$ resolvent of a, $\operatorname{Res}^2_{2,\tau}(a)$, is the interior of the set of $\lambda \in \mathbb{C}$ for which $(a - \lambda)^2$ is invertible in $L^2(\mathcal{A}, \tau)$. The $L^2_{2,\tau}$ spectrum of a is $\operatorname{Spec}^2_{2,\tau}(a) = \mathbb{C} \setminus \operatorname{Res}^2_{2,\tau}(a)$.

Theorem. supp $\mu_a \subseteq \operatorname{Spec}_{2,\tau}^2(a)$.

Another wild conjecture: this is actually equality. (That depends on showing that, if a^2 is *not* invertible in $L^2(\mathcal{A}, \tau)$, the above quantity blows up at rate $\Omega(1/\epsilon)$. This appears to be what happens in the case that a is normal, which would imply $\operatorname{Spec}_{2,\tau}^2(a) = \operatorname{Spec}_{4,\tau}(a) = \operatorname{Spec}(a)$ in that case.)

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal–Bargmann

Brown Measure Support

Brownian Motion on U(N), $GL(N, \mathbb{C})$, and the Large-N Limit

Brownian Motion on Lie Groups

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- \bullet U & GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal–Bargmann

Brown Measure Support

On any Riemannian manifold M, there's a Laplace operator Δ_M . And where there's a Laplacian, there's a Brownian motion: the Markov process $(B_t^x)_{t\geq 0}$ on M with generator $\frac{1}{2}\Delta_M$, started at $B_0^x = x \in M$.

Brownian Motion on Lie Groups

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

On any Riemannian manifold M, there's a Laplace operator Δ_M . And where there's a Laplacian, there's a Brownian motion: the Markov process $(B_t^x)_{t\geq 0}$ on M with generator $\frac{1}{2}\Delta_M$, started at $B_0^x = x \in M$.

Let Γ be a (matrix) Lie group. Any inner product on $\operatorname{Lie}(\Gamma) = T_I \Gamma$ gives rise to a unique left-invariant Riemannian metric, and corresponding Laplacian Δ_{Γ} . On Γ we canonically start the Brownian motion $(B_t)_{t>0}$ at $I \in \Gamma$.

Brownian Motion on Lie Groups

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal–Bargmann

Brown Measure Support

On any Riemannian manifold M, there's a Laplace operator Δ_M . And where there's a Laplacian, there's a Brownian motion: the Markov process $(B_t^x)_{t\geq 0}$ on M with generator $\frac{1}{2}\Delta_M$, started at $B_0^x = x \in M$.

Let Γ be a (matrix) Lie group. Any inner product on $\operatorname{Lie}(\Gamma) = T_I \Gamma$ gives rise to a unique left-invariant Riemannian metric, and corresponding Laplacian Δ_{Γ} . On Γ we canonically start the Brownian motion $(B_t)_{t>0}$ at $I \in \Gamma$.

There is a beautiful relationship between the Brownian motion W_t on the Lie algebra $\text{Lie}(\Gamma)$ and the Brownian motion B_t : the *rolling map*

$$dB_t = B_t \circ dW_t$$
, i.e. $B_t = I + \int_0^t B_t \circ dW_t$.

Here \circ denotes the Stratonovich stochastic integral. This can always be converted into an Itô integral; but the answer depends on the structure of the group Γ (and the chosen inner product).

Brownian Motion on U(N) and $GL(N, \mathbb{C})$

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- \bullet U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

Fix the *reverse normalized* Hilbert–Schmidt inner product on $\mathbb{M}_N(\mathbb{C})$ for all matrix Lie algebras:

$$\langle A, B \rangle = N \operatorname{Tr}(B^* A).$$

Let $X_t = X_t^N$ and $Y_t = Y_t^N$ be independent Hermitian Brownian motions of variance t/N.

Brownian Motion on U(N) and $GL(N, \mathbb{C})$

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

Fix the *reverse normalized* Hilbert–Schmidt inner product on $\mathbb{M}_N(\mathbb{C})$ for all matrix Lie algebras:

$$\langle A, B \rangle = N \operatorname{Tr}(B^* A).$$

Let $X_t = X_t^N$ and $Y_t = Y_t^N$ be independent Hermitian Brownian motions of variance t/N.

The Brownian motion on Lie(U(N)) is iX_t ; the Brownian motion U_t on U(N) satisfies

$$dU_t = iU_t \, dX_t - \frac{1}{2}U_t \, dt.$$

Brownian Motion on U(N) and $GL(N, \mathbb{C})$

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Segal-Bargmann

Brown Measure Support

Fix the *reverse normalized* Hilbert–Schmidt inner product on $\mathbb{M}_N(\mathbb{C})$ for all matrix Lie algebras:

$$\langle A, B \rangle = N \operatorname{Tr}(B^* A).$$

Let $X_t = X_t^N$ and $Y_t = Y_t^N$ be independent Hermitian Brownian motions of variance t/N.

The Brownian motion on Lie(U(N)) is iX_t ; the Brownian motion U_t on U(N) satisfies

$$dU_t = iU_t \, dX_t - \frac{1}{2}U_t \, dt.$$

The Brownian motion on $\text{Lie}(\text{GL}(N,\mathbb{C})) = \mathbb{M}_N(\mathbb{C})$ is $Z_t = 2^{-1/2}i(X_t + iY_t)$; the Brownian motion G_t on $\text{GL}(N,\mathbb{C})$ satisfies

$$dG_t = G_t \, dZ_t.$$

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- \bullet U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

If $X_t = X_t^N$ is a Hermitian Brownian motion process, then at each time t > 0 it is a GUE_N with entries of variance t/N. Wigner's law then shows that the empirical spectral distribution of X_t^N converges to the semicircle law $\varsigma_t = \frac{1}{2\pi t}\sqrt{(4t-x^2)_+} dx$.

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

If $X_t = X_t^N$ is a Hermitian Brownian motion process, then at each time t > 0 it is a GUE_N with entries of variance t/N. Wigner's law then shows that the empirical spectral distribution of X_t^N converges to the semicircle law $\varsigma_t = \frac{1}{2\pi t}\sqrt{(4t - x^2)_+} dx$. In fact, it converges *as a process*.

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- \bullet U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- GL Spectrum

Segal-Bargmann

Brown Measure Support

If $X_t = X_t^N$ is a Hermitian Brownian motion process, then at each time t > 0 it is a GUE_N with entries of variance t/N. Wigner's law then shows that the empirical spectral distribution of X_t^N converges to the semicircle law $\varsigma_t = \frac{1}{2\pi t}\sqrt{(4t - x^2)_+} dx$. In fact, it converges *as a process*.

A process $(x_t)_{t\geq 0}$ (in a W^* -probability space with trace τ) is a **free** additive Brownian motion if its increments are freely independent $-x_t - x_s$ is free from $\{x_r : r \leq s\}$ — and $x_t - x_s$ has the semicircular distribution ς_{t-s} , for all t > s.

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

If $X_t = X_t^N$ is a Hermitian Brownian motion process, then at each time t > 0 it is a GUE_N with entries of variance t/N. Wigner's law then shows that the empirical spectral distribution of X_t^N converges to the semicircle law $\varsigma_t = \frac{1}{2\pi t}\sqrt{(4t - x^2)_+} dx$. In fact, it converges *as a process*.

A process $(x_t)_{t\geq 0}$ (in a W^* -probability space with trace τ) is a **free** additive Brownian motion if its increments are freely independent $-x_t - x_s$ is free from $\{x_r : r \leq s\}$ — and $x_t - x_s$ has the semicircular distribution ς_{t-s} , for all t > s. It can be constructed on the free Fock space over $L^2(\mathbb{R}_+)$: $x_t = l(\mathbb{1}_{[0,t]}) + l^*(\mathbb{1}_{[0,t]})$.

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

If $X_t = X_t^N$ is a Hermitian Brownian motion process, then at each time t > 0 it is a GUE_N with entries of variance t/N. Wigner's law then shows that the empirical spectral distribution of X_t^N converges to the semicircle law $\varsigma_t = \frac{1}{2\pi t}\sqrt{(4t - x^2)_+} dx$. In fact, it converges *as a process*.

A process $(x_t)_{t\geq 0}$ (in a W^* -probability space with trace τ) is a **free** additive Brownian motion if its increments are freely independent $-x_t - x_s$ is free from $\{x_r : r \leq s\}$ — and $x_t - x_s$ has the semicircular distribution ς_{t-s} , for all t > s. It can be constructed on the free Fock space over $L^2(\mathbb{R}_+)$: $x_t = l(\mathbb{1}_{[0,t]}) + l^*(\mathbb{1}_{[0,t]})$.

In 1991, Voiculescu showed that the Hermitian Brownian motion $(X_t^N)_{t\geq 0}$ converges to $(x_t)_{t\geq 0}$ in finite-dimensional non-commutative distributions:

$$\frac{1}{N}\operatorname{Tr}(P(X_{t_1},\ldots,X_{t_n})) \to \tau(P(x_{t_1},\ldots,x_{t_n})) \quad \forall P.$$

Free Unitary and Free Multiplicative Brownian Motion

Dedication

Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- \bullet U & GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

There is now a well-developed theory of free stochastic differential equations. Initially constructed in the free Fock space setting (by Kümmerer and Speicher in the early 1990s), it was used by Biane in 1997 to define "free versions" of U_t and G_t .

Free Unitary and Free Multiplicative Brownian Motion

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

There is now a well-developed theory of free stochastic differential equations. Initially constructed in the free Fock space setting (by Kümmerer and Speicher in the early 1990s), it was used by Biane in 1997 to define "free versions" of U_t and G_t .

Let x_t, y_t be freely independent free additive Brownian motions, and $z_t = 2^{-1/2}i(x_t + iy_t)$. The free unitary Brownian motion is the process started at $u_0 = 1$ defined by

$$du_t = iu_t \, dx_t - \frac{1}{2}u_t \, dt.$$

The free multiplicative Brownian motion is the process started at $g_0 = 1$ defined by

$$dg_t = g_t \, dz_t.$$

Free Unitary and Free Multiplicative Brownian Motion

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

There is now a well-developed theory of free stochastic differential equations. Initially constructed in the free Fock space setting (by Kümmerer and Speicher in the early 1990s), it was used by Biane in 1997 to define "free versions" of U_t and G_t .

Let x_t, y_t be freely independent free additive Brownian motions, and $z_t = 2^{-1/2}i(x_t + iy_t)$. The free unitary Brownian motion is the process started at $u_0 = 1$ defined by

$$du_t = iu_t \, dx_t - \frac{1}{2}u_t \, dt.$$

The free multiplicative Brownian motion is the process started at $g_0 = 1$ defined by

$$dg_t = g_t \, dz_t.$$

It is natural to expect that these processes should be the large-N limits of the U(N) and $GL(N, \mathbb{C})$ Brownian motions.

Free Unitary Brownian Motion

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

Theorem. [Biane, 1997] For all non-commutative (Laurent) polynomials P in n variables and times $t_1, \ldots, t_n \ge 0$,

$$\frac{1}{N}\operatorname{Tr}(P(U_{t_1}^N,\ldots,U_{t_n}^N)) \to \tau(P(u_{t_1},\ldots,u_{t_n})) \text{ a.s.}$$

Free Unitary Brownian Motion

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- \bullet U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal–Bargmann

Brown Measure Support

Theorem. [Biane, 1997] For all non-commutative (Laurent) polynomials P in n variables and times $t_1, \ldots, t_n \ge 0$,

$$\frac{1}{N}\operatorname{Tr}(P(U_{t_1}^N,\ldots,U_{t_n}^N)) \to \tau(P(u_{t_1},\ldots,u_{t_n})) \text{ a.s.}$$

Biane also computed the moments of u_t , and its spectral measure ν_t : it has a density (smooth on the interior of its support), supported on a compact arc for t < 4, and fully supported on \mathbb{U} for $t \ge 4$.

Free Unitary Brownian Motion

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

Theorem. [Biane, 1997] For all non-commutative (Laurent) polynomials P in n variables and times $t_1, \ldots, t_n \ge 0$,

$$\frac{1}{N}\operatorname{Tr}(P(U_{t_1}^N,\ldots,U_{t_n}^N)) \to \tau(P(u_{t_1},\ldots,u_{t_n})) \text{ a.s.}$$

Biane also computed the moments of u_t , and its spectral measure ν_t : it has a density (smooth on the interior of its support), supported on a compact arc for t < 4, and fully supported on \mathbb{U} for $t \ge 4$.

Analytic Transforms Related to u_t

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free \times BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

Biane's approach to understanding the measure ν_t was through its moment-generating function

$$\psi_t(z) = \int_{\mathbb{U}} \frac{uz}{1 - uz} \,\nu_t(du) = \sum_{n \ge 1} m_n(\nu_t) \, z^n$$

(the second = holds for |z| < 1; the integral converges for $1/z \notin \operatorname{supp} \nu_t$).

Analytic Transforms Related to u_t

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

Biane's approach to understanding the measure ν_t was through its moment-generating function

$$\psi_t(z) = \int_{\mathbb{U}} \frac{uz}{1 - uz} \,\nu_t(du) = \sum_{n \ge 1} m_n(\nu_t) \, z^n$$

(the second = holds for |z|<1; the integral converges for $1/z \notin \operatorname{supp} \nu_t$). Then define

$$\chi_t(z) = \frac{\psi_t(z)}{1 + \psi_t(z)}.$$

The function χ_t is injective on \mathbb{D} , and has a one-sided inverse f_t : $f_t(\chi_t(z)) = z$ for $z \in \mathbb{D}$ (but $\chi_t \circ f_t$ is only the identity on a certain region in \mathbb{C} ; more on this later).

Analytic Transforms Related to u_t

- Dedication
- Citations

Brown Measure

Brownian Motion

- BM on Lie Groups
- U & GL
- Free+BM
- Free × BM
- Free Unitary BM
- Transforms
- Free Mult. BM
- $\bullet \ GL$ Spectrum

Segal-Bargmann

Brown Measure Support

Biane's approach to understanding the measure ν_t was through its moment-generating function

$$\psi_t(z) = \int_{\mathbb{U}} \frac{uz}{1 - uz} \,\nu_t(du) = \sum_{n \ge 1} m_n(\nu_t) \, z^n$$

(the second = holds for |z|<1; the integral converges for $1/z \notin \operatorname{supp} \nu_t$). Then define

$$\chi_t(z) = \frac{\psi_t(z)}{1 + \psi_t(z)}.$$

The function χ_t is injective on \mathbb{D} , and has a one-sided inverse f_t : $f_t(\chi_t(z)) = z$ for $z \in \mathbb{D}$ (but $\chi_t \circ f_t$ is only the identity on a certain region in \mathbb{C} ; more on this later).

Using the SDE for u_t and some clever complex analysis, Biane showed that

$$f_t(z) = z e^{\frac{t}{2}\frac{1+z}{1-z}}.$$

In 1997 Biane conjectured a similar large-N limit should hold for the Brownian motion on $\operatorname{GL}(N, \mathbb{C})$, but the ideas of his U_t^N proof (spectral theorem, representation theory of $\operatorname{U}(N)$) did not translate well to the a.s. non-normal process G_t^N .

In 1997 Biane conjectured a similar large-N limit should hold for the Brownian motion on $\operatorname{GL}(N, \mathbb{C})$, but the ideas of his U_t^N proof (spectral theorem, representation theory of $\operatorname{U}(N)$) did not translate well to the a.s. non-normal process G_t^N .

Theorem. [K, 2014 (2016)] For all non-commutative Laurent polynomials P in 2n variables, and times $t_1, \ldots, t_n \ge 0$,

 $\frac{1}{N} \operatorname{Tr} \left(P(G_{t_1}^N, (G_{t_1}^N)^*, \dots, G_{t_n}^N, (G_{t_n}^N)^*) \right) \to \tau \left(P(g_{t_1}, g_{t_1}^*, \dots, g_{t_n}, g_{t_n}^*) \right) \text{ a.s.}$

In 1997 Biane conjectured a similar large-N limit should hold for the Brownian motion on $\operatorname{GL}(N, \mathbb{C})$, but the ideas of his U_t^N proof (spectral theorem, representation theory of $\operatorname{U}(N)$) did not translate well to the a.s. non-normal process G_t^N .

Theorem. [K, 2014 (2016)] For all non-commutative Laurent polynomials P in 2n variables, and times $t_1, \ldots, t_n \ge 0$,

$$\frac{1}{N} \operatorname{Tr} \left(P(G_{t_1}^N, (G_{t_1}^N)^*, \dots, G_{t_n}^N, (G_{t_n}^N)^*) \right) \to \tau \left(P(g_{t_1}, g_{t_1}^*, \dots, g_{t_n}, g_{t_n}^*) \right) \text{ a.s.}$$

The proof required several new ingredients: a detailed understanding of the Laplacian on $GL(N, \mathbb{C})$, and concentration of measure for trace polynomials. Putting these together with an iteration scheme from the SDE, together with requisite covariance estimates, yielded the proof.

In 1997 Biane conjectured a similar large-N limit should hold for the Brownian motion on $\operatorname{GL}(N, \mathbb{C})$, but the ideas of his U_t^N proof (spectral theorem, representation theory of $\operatorname{U}(N)$) did not translate well to the a.s. non-normal process G_t^N .

Theorem. [K, 2014 (2016)] For all non-commutative Laurent polynomials P in 2n variables, and times $t_1, \ldots, t_n \ge 0$,

$$\frac{1}{N} \operatorname{Tr} \left(P(G_{t_1}^N, (G_{t_1}^N)^*, \dots, G_{t_n}^N, (G_{t_n}^N)^*) \right) \to \tau \left(P(g_{t_1}, g_{t_1}^*, \dots, g_{t_n}, g_{t_n}^*) \right) \text{ a.s.}$$

The proof required several new ingredients: a detailed understanding of the Laplacian on $GL(N, \mathbb{C})$, and concentration of measure for trace polynomials. Putting these together with an iteration scheme from the SDE, together with requisite covariance estimates, yielded the proof.

This is convergence of the (multi-time) *-distribution, of a *non-normal* matrix process. What about the eigenvalues?

The Eigenvalues of Brownian Motion $\operatorname{GL}(N,\mathbb{C})$

Because U_t^N and u_t are normal, their *-distributions encode their ESDs, so the bulk eigenvalue behavior is fully understood.

The Eigenvalues of Brownian Motion $GL(N, \mathbb{C})$

Because U_t^N and u_t are normal, their *-distributions encode their ESDs, so the bulk eigenvalue behavior is fully understood.

The $GL(N, \mathbb{C})$ Brownian motion G_t^N eigenvalues are much more challenging.

The Eigenvalues of Brownian Motion $GL(N, \mathbb{C})$

Because U_t^N and u_t are normal, their *-distributions encode their ESDs, so the bulk eigenvalue behavior is fully understood.

The $GL(N, \mathbb{C})$ Brownian motion G_t^N eigenvalues are much more challenging.

The Eigenvalues of Brownian Motion $GL(N, \mathbb{C})$

Because U_t^N and u_t are normal, their *-distributions encode their ESDs, so the bulk eigenvalue behavior is fully understood.

The $GL(N, \mathbb{C})$ Brownian motion G_t^N eigenvalues are much more challenging.

The Eigenvalues of Brownian Motion $GL(N, \mathbb{C})$

Because U_t^N and u_t are normal, their *-distributions encode their ESDs, so the bulk eigenvalue behavior is fully understood.

The $GL(N, \mathbb{C})$ Brownian motion G_t^N eigenvalues are much more challenging.

- Dedication
- Citations

Brown Measure

Brownian Motion

Segal–Bargmann

- SBT
- Free SBT
- $\bullet \Sigma_t$

Brown Measure Support

The Segal–Bargmann Transform

The Unitary Segal–Bargmann Transform

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

- SBT
- Free SBT
- Σ_t

Brown Measure Support

The **Segal–Bargmann (Hall) Transform** is a map from functions on U(N) to holomorphic functions on $GL(N, \mathbb{C})$. It is defined by the analytic continuation of the action of the heat operator:

$$\mathbf{B}_t^N f = \left(e^{\frac{t}{2}\Delta_{\mathrm{U}(N)}} f \right)_{\mathbb{C}}.$$

The Unitary Segal–Bargmann Transform

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

• SBT

- Free SBT
- Σ_t

Brown Measure Support

The **Segal–Bargmann (Hall) Transform** is a map from functions on U(N) to holomorphic functions on $GL(N, \mathbb{C})$. It is defined by the analytic continuation of the action of the heat operator:

$$\mathbf{B}_t^N f = \left(e^{\frac{t}{2}\Delta_{\mathrm{U}(N)}} f \right)_{\mathbb{C}}.$$

Writing out what this integral formula means in probabilistic terms, here is a nice way to express it: let F already be a holomorphic function on $\operatorname{GL}(N), \mathbb{C}$, and let $f = F|_{U(N)}$. Let U_t and G_t be independent Brownian motions on U(N) and $\operatorname{GL}(N, \mathbb{C})$. Then

 $(\mathbf{B}_t f)(G_t) = \mathbb{E}[F(G_t U_t)|G_t].$

The Unitary Segal–Bargmann Transform

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

• SBT

- Free SBT
- Σ_t

Brown Measure Support

The **Segal–Bargmann (Hall) Transform** is a map from functions on U(N) to holomorphic functions on $GL(N, \mathbb{C})$. It is defined by the analytic continuation of the action of the heat operator:

$$\mathbf{B}_t^N f = \left(e^{\frac{t}{2}\Delta_{\mathrm{U}(N)}} f \right)_{\mathbb{C}}.$$

Writing out what this integral formula means in probabilistic terms, here is a nice way to express it: let F already be a holomorphic function on $\operatorname{GL}(N), \mathbb{C})$, and let $f = F|_{U(N)}$. Let U_t and G_t be independent Brownian motions on U(N) and $\operatorname{GL}(N, \mathbb{C})$. Then

 $(\mathbf{B}_t f)(G_t) = \mathbb{E}[F(G_t U_t)|G_t].$

This extends beyond f that already possess an analytic continuation; it defines an *isometric isomorphism*

 $\mathbf{B}_t^N \colon L^2(\mathbf{U}(N), U_t) \to \mathcal{H}L^2(\mathbf{GL}(N, \mathbb{C}), G_t).$

The Free Unitary Segal–Bargmann Transform

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

- SBT
- Free SBT
- Σ_t

Brown Measure Support

In 1997, Biane introduced a free version of the Unitary SBT, which can be described in similar terms: acting on, say, polynomials f in a single variable, $\mathscr{G}_t f$ is defined by

$$(\mathscr{G}_t f)(g_t) = \tau[f(g_t u_t)|g_t].$$

He conjectured that \mathscr{G}_t is the large-N limit of \mathbf{B}_t^N in an appropriate sense; this was proven by Driver, Hall, and me in 2013. (It was for this work that we invented trace polynomial concentration.)

The Free Unitary Segal–Bargmann Transform

Dedication

Citations

Brown Measure

Brownian Motion

Segal–Bargmann

- SBT
- Free SBT
- Σ_t

Brown Measure Support

In 1997, Biane introduced a free version of the Unitary SBT, which can be described in similar terms: acting on, say, polynomials f in a single variable, $\mathscr{G}_t f$ is defined by

$$(\mathscr{G}_t f)(g_t) = \tau[f(g_t u_t)|g_t].$$

He conjectured that \mathscr{G}_t is the large-N limit of \mathbf{B}_t^N in an appropriate sense; this was proven by Driver, Hall, and me in 2013. (It was for this work that we invented trace polynomial concentration.) Biane proved directly (and it follows from the large-N limit) that \mathscr{G}_t extends to an isometric isomorphism

$$\mathscr{G}_t \colon L^2(\mathbb{U},\nu_t) \to \mathscr{A}_t$$

where \mathscr{A}_t is a certain reproducing-kernel Hilbert space of holomorphic functions. The norm on \mathscr{A}_t is given by

 $||F||_{\mathscr{A}_t}^2 = \tau(|F(g_t)|^2) = \tau(F(g_t)^*F(g_t)) = ||F(g_t)||_2^2.$

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

• SBT

- Free SBT
- Σ_t

Brown Measure Support

The functions $F \in \mathscr{A}_t$ are not all entire functions. They are holomorphic on a bounded region Σ_t

$$\Sigma_t = \mathbb{C} \setminus \overline{\chi_t(\mathbb{C} \setminus \operatorname{supp}
u_t)}$$

where (recall) χ_t is the (right-)inverse of $f_t(z) = ze^{\frac{t}{2}\frac{1+z}{1-z}}$.

- Dedication
- Citations

Brown Measure

Brownian Motion

Segal-Bargmann

- SBT
- Free SBT
- Σ_t

Brown Measure Support

- Dedication
- Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

The Brown Measure of Free Multiplicative Brownian Motion

- Dedication
- Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

Theorem. (Hall, K, 2018)

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

Theorem. (Hall, K, 2018)

$$\operatorname{supp}\mu_{g_t} \subseteq \overline{\Sigma}_t.$$

Proof. We show that $\operatorname{Spec}_{2,\tau}^2(g_t) = \overline{\Sigma}_t$. Equivalently, from the definition of Σ_t , we show that $\operatorname{Res}_{2,\tau}^2(g_t) = \chi_t(\mathbb{C} \setminus \operatorname{supp} \nu_t)$.

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

Theorem. (Hall, K, 2018)

 $\mathrm{supp}\mu_{g_t}\subseteq \overline{\Sigma}_t.$

Proof. We show that $\operatorname{Spec}_{2,\tau}^2(g_t) = \overline{\Sigma}_t$. Equivalently, from the definition of Σ_t , we show that $\operatorname{Res}_{2,\tau}^2(g_t) = \chi_t(\mathbb{C} \setminus \operatorname{supp} \nu_t)$. Essentially, $\lambda \in \operatorname{Res}_{2,\tau}^2(g_t)$ iff $(g_t - \lambda)^2$ is invertible in $L^2(\tau)$, i.e.

$$\infty > \tau \left(|(g_t - \lambda)^{-2}|^2 \right)$$

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

Theorem. (Hall, K, 2018)

 $\mathrm{supp}\mu_{g_t}\subseteq \overline{\Sigma}_t.$

Proof. We show that $\operatorname{Spec}_{2,\tau}^2(g_t) = \overline{\Sigma}_t$. Equivalently, from the definition of Σ_t , we show that $\operatorname{Res}_{2,\tau}^2(g_t) = \chi_t(\mathbb{C} \setminus \operatorname{supp} \nu_t)$.

Essentially, $\lambda \in \operatorname{Res}_{2,\tau}^2(g_t)$ iff $(g_t - \lambda)^2$ is invertible in $L^2(\tau)$, i.e.

$$\infty > \tau \left(|(g_t - \lambda)^{-2}|^2 \right) = ||(z - \lambda)^{-2}||_{\mathscr{A}_t}^2$$

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

Theorem. (Hall, K, 2018)

 $\mathrm{supp}\mu_{g_t}\subseteq \overline{\Sigma}_t.$

Proof. We show that $\operatorname{Spec}_{2,\tau}^2(g_t) = \overline{\Sigma}_t$. Equivalently, from the definition of Σ_t , we show that $\operatorname{Res}_{2,\tau}^2(g_t) = \chi_t(\mathbb{C} \setminus \operatorname{supp} \nu_t)$.

Essentially, $\lambda \in \operatorname{Res}_{2,\tau}^2(g_t)$ iff $(g_t - \lambda)^2$ is invertible in $L^2(\tau)$, i.e.

$$\infty > \tau \left(|(g_t - \lambda)^{-2}|^2 \right) = ||(z - \lambda)^{-2}||_{\mathscr{A}_t}^2$$

Recall that \mathscr{G}_t is an isometry from $L^2(\mathbb{U}, \nu_t)$ onto \mathscr{A}_t . Can we find a function α_t^{λ} on \mathbb{U} with $\mathscr{G}_t(\alpha_t^{\lambda})(z) = (z - \lambda)^{-2}$?

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

Theorem. (Hall, K, 2018)

 $\mathrm{supp}\mu_{g_t} \subseteq \overline{\Sigma}_t.$

Proof. We show that $\operatorname{Spec}_{2,\tau}^2(g_t) = \overline{\Sigma}_t$. Equivalently, from the definition of Σ_t , we show that $\operatorname{Res}_{2,\tau}^2(g_t) = \chi_t(\mathbb{C} \setminus \operatorname{supp} \nu_t)$.

Essentially, $\lambda \in \operatorname{Res}_{2,\tau}^2(g_t)$ iff $(g_t - \lambda)^2$ is invertible in $L^2(\tau)$, i.e.

$$\infty > \tau \left(|(g_t - \lambda)^{-2}|^2 \right) = ||(z - \lambda)^{-2}||_{\mathscr{A}_t}^2$$

Recall that \mathscr{G}_t is an isometry from $L^2(\mathbb{U}, \nu_t)$ onto \mathscr{A}_t . Can we find a function α_t^{λ} on \mathbb{U} with $\mathscr{G}_t(\alpha_t^{\lambda})(z) = (z - \lambda)^{-2}$?

Using PDE techniques, we can compute that

$$\mathscr{G}_t^{-1}((z-\lambda)^{-1}) = \frac{1}{\lambda} \frac{f_t(\lambda)}{f_t(\lambda) - u}.$$

- Dedication
- Citations
- **Brown Measure**
- **Brownian Motion**

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

$$\mathscr{G}_t \colon \frac{1}{\lambda} \frac{f_t(\lambda)}{f_t(\lambda) - u} \mapsto \frac{1}{z - \lambda}$$

Since $\frac{1}{(z-\lambda)^2} = \frac{d}{d\lambda} \frac{1}{z-\lambda}$, using regularity properties of \mathscr{G}_t we have

$$\alpha_t^{\lambda}(u) = \frac{d}{d\lambda} \left(\frac{1}{\lambda} \frac{f_t(\lambda)}{f_t(\lambda) - u} \right).$$

- Dedication
- Citations
- **Brown Measure**
- **Brownian Motion**
- Segal-Bargmann
- **Brown Measure Support**
- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

$$\mathscr{G}_t \colon \frac{1}{\lambda} \frac{f_t(\lambda)}{f_t(\lambda) - u} \mapsto \frac{1}{z - \lambda}$$

Since $\frac{1}{(z-\lambda)^2} = \frac{d}{d\lambda} \frac{1}{z-\lambda}$, using regularity properties of \mathscr{G}_t we have

$$\alpha_t^{\lambda}(u) = \frac{d}{d\lambda} \left(\frac{1}{\lambda} \frac{f_t(\lambda)}{f_t(\lambda) - u} \right).$$

The question is: for which λ is $\alpha_t^{\lambda} \in L^2(\mathbb{U}, \nu_t)$? I.e.

$$\int_{\mathbb{U}} |\alpha_t^{\lambda}(u)|^2 \,\nu_t(du) < \infty.$$

- Dedication
- Citations
- **Brown Measure**
- **Brownian Motion**
- Segal-Bargmann
- **Brown Measure Support**
- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

$$\mathscr{G}_t \colon \frac{1}{\lambda} \frac{f_t(\lambda)}{f_t(\lambda) - u} \mapsto \frac{1}{z - \lambda}$$

Since $\frac{1}{(z-\lambda)^2} = \frac{d}{d\lambda} \frac{1}{z-\lambda}$, using regularity properties of \mathscr{G}_t we have

$$\alpha_t^{\lambda}(u) = \frac{d}{d\lambda} \left(\frac{1}{\lambda} \frac{f_t(\lambda)}{f_t(\lambda) - u} \right).$$

The question is: for which λ is $\alpha_t^{\lambda} \in L^2(\mathbb{U}, \nu_t)$? I.e.

$$\int_{\mathbb{U}} |\alpha_t^{\lambda}(u)|^2 \,\nu_t(du) < \infty.$$

The answer is: precisely when $f_t(\lambda) \notin \text{supp } \nu_t$. I.e.

 $\operatorname{Res}_{2,\tau}^2(g_t) = f_t^{-1}(\mathbb{C} \setminus \operatorname{supp} \nu_t) = \chi_t(\mathbb{C} \setminus \operatorname{supp} \nu_t).$

The Empirical Spectrum and Σ_t

Here is a simulation of eigenvalues of $G_t^{(N)}$ for N = 2000, together with the boundary of Σ_t , at t = 3 (produced in Mathematica).

Computing the Brown Measure

Very recently, jointly with Driver and Hall, we have been able to push further and actually compute the Brown measure.

Computing the Brown Measure

Very recently, jointly with Driver and Hall, we have been able to push further and actually compute the Brown measure. To describe it, we need an auxiliary implicit function $\rho = \rho(t, \theta)$, determined by

$$\frac{1-\varrho\cos\theta}{\sqrt{1-\varrho^2}}\log\left(\frac{2-\varrho^2+2\sqrt{1-\varrho^2}}{\varrho^2}\right) = t.$$

This defines a real analytic function for $|\theta| < \theta_{\max}(t) = \cos^{-1}(1 - t/2) \wedge \pi$, which is precisely the argument range of Σ_t :

- Dedication
- Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

Theorem. (Driver, Hall, K, 2018) supp $\mu_{g_t} = \overline{\Sigma}_t$.

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

Theorem. (Driver, Hall, K, 2018) supp $\mu_{g_t} = \overline{\Sigma}_t$. Moreover, μ_{g_t} has a continuous density on $\overline{\Sigma}_t$, that is real analytic and strictly positive on Σ_t .

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

Theorem. (Driver, Hall, K, 2018) supp $\mu_{g_t} = \overline{\Sigma}_t$. Moreover, μ_{g_t} has a continuous density on $\overline{\Sigma}_t$, that is real analytic and strictly positive on Σ_t . The density has the form

$$d\mu_{g_t} = \frac{1}{r^2} w_t(e^{i\theta}) \mathbb{1}_{\overline{\Sigma}_t} r dr d\theta$$

for the real analytic function $w_t \colon \mathbb{U} \to \mathbb{R}_+$ given by

$$w_t(e^{i\theta}) = \frac{1}{4\pi} \left(\frac{2}{t} + \frac{\partial}{\partial \theta} \frac{\varrho(t,\theta)\sin\theta}{1 - \varrho(t,\theta)\cos\theta} \right).$$

Dedication

Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

Theorem. (Driver, Hall, K, 2018) supp $\mu_{g_t} = \overline{\Sigma}_t$. Moreover, μ_{g_t} has a continuous density on $\overline{\Sigma}_t$, that is real analytic and strictly positive on Σ_t . The density has the form

$$d\mu_{g_t} = \frac{1}{r^2} w_t(e^{i\theta}) \mathbb{1}_{\overline{\Sigma}_t} r dr d\theta$$

for the real analytic function $w_t \colon \mathbb{U} \to \mathbb{R}_+$ given by

$$w_t(e^{i\theta}) = \frac{1}{4\pi} \left(\frac{2}{t} + \frac{\partial}{\partial\theta} \frac{\varrho(t,\theta)\sin\theta}{1 - \varrho(t,\theta)\cos\theta} \right)$$

The techniques needed to prove this theorem are wholly disjoint from the concepts discussed in this talk so far; they rely primarily on PDE methods. You'll have to wait to see those ideas until the next meeting (Oberwolfach, or Montreal).

Histogram of Eigenvalue Arguments

Here are histograms of complex arguments of eigenvalues of G_t^N , together with the argument density of μ_{g_t} , for N = 2000 and t = 2, 3.8, 4, 5.

Remaining Questions

- Dedication
- Citations

Brown Measure

Brownian Motion

Segal-Bargmann

Brown Measure Support

- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

• Explore relations between the $L^p(\tau)$ -spectra, in general. They are probably all equal to the spectrum for g_t .

Remaining Questions

- Dedication
- Citations
- **Brown Measure**
- **Brownian Motion**
- Segal-Bargmann
- **Brown Measure Support**
- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

- Explore relations between the $L^p(\tau)$ -spectra, in general. They are probably all equal to the spectrum for g_t .
 - Prove that the ESD of G_t^N actually converges to μ_{g_t} . (What we can now say definitively is that the limit ESD is supported in $\overline{\Sigma}_t$.)

Remaining Questions

- Dedication
- Citations
- **Brown Measure**
- **Brownian Motion**
- Segal-Bargmann
- Brown Measure Support
- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

- Explore relations between the $L^p(\tau)$ -spectra, in general. They are probably all equal to the spectrum for g_t .
 - Prove that the ESD of G_t^N actually converges to μ_{g_t} . (What we can now say definitively is that the limit ESD is supported in $\overline{\Sigma}_t$.)
- There is a two-parameter family of invariant diffusions on $GL(N, \mathbb{C})$ that includes U_t^N and G_t^N , all of which have large-N limits described by free SDEs. How much of all this extends to the whole family? (Our preprint already covers the support in the two-parameter setting; the density is yet unknown.)
Remaining Questions

- Dedication
- Citations
- **Brown Measure**
- **Brownian Motion**
- Segal-Bargmann
- Brown Measure Support
- Main Theorem
- Proof
- Simulations
- Simulations
- Implicit
- The Brown Measure
- Simulations
- Questions

- Explore relations between the $L^p(\tau)$ -spectra, in general. They are probably all equal to the spectrum for g_t .
 - Prove that the ESD of G_t^N actually converges to μ_{g_t} . (What we can now say definitively is that the limit ESD is supported in $\overline{\Sigma}_t$.)
- There is a two-parameter family of invariant diffusions on $GL(N, \mathbb{C})$ that includes U_t^N and G_t^N , all of which have large-N limits described by free SDEs. How much of all this extends to the whole family? (Our preprint already covers the support in the two-parameter setting; the density is yet unknown.)

I'll let you know what more I know next time we meet.