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1 Overview

This talk is going to be more expository, although I’ll mention a few of my own
results at the end if there’s time. I’m hoping that you’ll be able to understand
most of it if you’re not a specialist in non-commutative probability.

For the specialists, I want to mention that everything I’m about to say about
free, Boolean, and monotone independence will generalize to the operator-valued
setting with the same proofs. But to keep the exposition simple, I’ll focus on
the scalar-valued case.

This talk is going to have mainly two parts. In the first half, I’ll give a survey
of different types of independence — classical, free, boolean, monotone, and anti-
monotone. In the second half, I’ll explain the proof of analytic subordination
advertised in the title.

2 Non-commutative Independences

2.1 Non-commutative Probability Spaces

For our purposes, a non-commutative probability space consists of a unital ∗-
algebra A and a state E : A → C. We think of the elements of A as bounded
random variables and E as the expectation.

This framework includes classical probability theory. Indeed, in classical
probability theory, we take A to be L∞(Ω, P ) and E to be the classical expec-
tation. L∞(Ω, P ) is explicitly realized as an algebra of operators on the Hilbert
space H = L2(Ω, P ), since each L∞ function acts on L2(Ω, P ) by multiplication.
The expectation is then given by the vector state E[T ] = 〈ξ, T ξ〉, where ξ is the
function 1 in L2(Ω, P ).

More generally, given a non-commutative probability space (A, E), we can
use the GNS construction to realize A as an algebra of operators on a Hilbert
space H with a distinguished vector ξ such that E[T ] = 〈ξ, T ξ〉. Hence, A can
be completed to a C∗ or W ∗ algebra if desired.
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2.2 Philosophy of Independence

Classical and non-commutative probability theory deal with various notions of
independence. Independence can be viewed as a rule for determining the joint
law of two (or more) random variables based on their individual laws. In classical
probability theory, if two bounded random variables X and Y are independent,
then that uniquely determines E[f(X,Y )] for all polynomials f . Equivalently,
it allows us to compute arbitrary mixed moments of X and Y ; that is, we can
compute the expectation of any string on the alphabet {X,Y }, e.g.

E[XYXXY ] = E[X3]E[Y 2].

More generally, if two algebras A1 and A2 of bounded random variables are
independent, then we can compute the expectation of any string of letters from
A1 and A2 based on E|A1

and E|A2
.

This leads to the following working definition of the concept of independence:
A type of independence is a universal rule for computing mixed moments for two
(or more) given algebras Aj in terms of E|Aj .

2.3 Elements of a Type of Probability Theory

For all the types of independence that we will discuss, we’ll have the following
the tools / results. At the board, I will present this list in a chart, explaining
the abstract version and the classical version simultaneously, then the free, then
the boolean, then the monotone, then the anti-monotone.

1. Definition: a rule for computing joint moments of elements of two alge-
bras.

2. Product construction: given Hilbert spaces with distinguished unit
vectors (H1, ξ1) and (H2, ξ2), we can define a product space (H, ξ) and
∗-homomorphisms ρj : B(Hj) → B(H) such that B(H1) and B(H2) are
independent with respect to 〈ξ, ·ξ〉 and 〈ξ, ρj(T )ξ〉 = 〈ξj , T ξj〉. This leads
to a product construction for algebras.

3. Convolution: The convolution of two laws µ and ν is the law of X + Y ,
where X ∼ µ and Y ∼ ν.

4. Analytic transforms: Analytic functions associated to a law µ which
aid in the computation of convolutions.

5. Central Limit Theorem: If µ has mean zero and variance 1, then the
N -fold convolution of µ, rescaled by N−1/2, converges to some universal
limiting law.

6. Combinatorial theory: There are combinatorial formulas to systemat-
ically compute the expectation of a string with letters from A1 and A2.
These are also related to the analytic transforms and the construction of
product spaces.
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For the sake of time, I’ll only mention the combinatorial aspects in passing
and not actually state the results. I will not give complete proofs, but I will
give some details in the monotone case since it is the least familiar and the most
necessary for the subordination proof I’ll present later.

2.4 Classical Independence

1. Definition: A1 and A2 commute and E[a1a2] = E[a1]E[a2].

2. Product construction: Define H = H1 ⊗ H2 and ξ = ξ1 ⊗ ξ2. The
inclusions B(Hj)→ B(H) are given by tensoring with the identity.

3. Convolution: The classical convolution µ ∗ ν.

4. Analytic transforms: The Fourier transform µ̂ satisfies µ̂ ∗ ν = µ̂ν̂.

5. Central Limit Theorem: Convergence to the standard normal (2π)−1/2e−x
2/2 dx.

6. Combinatorial theory: There are cumulants defined using the parti-
tions of [n].

2.5 Free Independence

For background, see [Voi86] [Voi91], [Spe94].

1. Definition: If a1 . . . an is an alternating string of letters from A1 and A2

and E[aj ] = 0, then E[a1 . . . an] = 0.

2. Product construction: Let Kj be the orthogonal complement of ξj in
Hj . Let

H = Cξ ⊕
⊕
n≥1

⊕
i1 6=i2 6=···6=in

Ki1 ⊗ · · · ⊗ Kin .

For each j 6= i1, ρj(T ) acts on the subspace

Ki1⊗· · ·⊗Kin⊕Kj⊗Ki1⊗· · ·⊗Kin ∼= (C⊕Kj)⊗Ki1⊗· · ·⊗Kin ∼= Hj⊗Ki1⊗· · ·⊗Kin

by applying T to the first tensorand.

3. Convolution: The free convolution µ� ν.

4. Analytic transforms: Define the Cauchy-Stieltjes transform Gµ(z) =∫
(z−x)−1 dµ(x). This is defined on C\supp(µ) and behaves like 1/z near
∞. The R-transform is given by 1/z + Rµ(z) = G−1µ (z) where defined
(including a neighborhood of 0 when µ is compactly supported). We have
Rµ�ν = Rµ +Rν .

5. Central Limit Theorem: Convergence to the standard semicircular
(2π)−1

√
4− x2χ[−2,2](x) dx.

6. Combinatorial theory: There are cumulants defined using the non-
crossing or planar partitions of [n].
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2.6 Boolean Independence

For background, see [SW97].

1. Definition: A1 and A2 don’t necessarily include the unit in the larger
algebra A, but they have internal units. If a1 . . . an is an alternating string
of letters from A1 and A2, then E[a1 . . . an] = E[a1] . . . E[an].

2. Product construction: Let

H = Cξ ⊕K1 ⊕K2.

We define ρj(T ) to act by T on Cξ ⊕ Kj ∼= Hj and to act by zero on
the orthogonal complement. These inclusions are non-unital. Random
variables X and Y are said to be independent if C[X]0 and C[Y ]0 are
independent, where C[x]0 denotes the polynomials with no constant term.

3. Convolution: The Boolean convolution µ ] ν.

4. Analytic transforms: TheB-transform is given byBµ(z) = 1/Gµ(1/z)−
1/z. We have Bµ]ν = Bµ +Bν .

5. Central Limit Theorem: Convergence to the standard Bernoulli (1/2)δ−1+
(1/2)δ1.

6. Combinatorial theory: There are cumulants defined using the interval
partitions of [n].

2.7 Monotone and Anti-monotone Independence

For background, see [Mur97], [Mur00], [Mur01], [Has10a], [Has10b], [HS11].

1. Definition: A1 and A2 don’t include unit in the larger algebra A, but
they have internal units. If a1 . . . an is a string of letters from A1 and
A2, and if aj ∈ A2 but the adjacent terms are in A1, then E[a1 . . . an] =
E[a1 . . . aj−1E[aj ]aj+1 . . . an].

2. Product construction: Let

H = Cξ ⊕K1 ⊕K2 ⊕K2 ⊗K1 = Cξ ⊕
⊕

i1>i2>···>in

Ki1 ⊗ · · · ⊗ Kin .

ρ1(T ) acts by T on Cξ ⊕ K1 and by zero on the orthogonal complement.
Viewing H = H2 ⊗H2, we define ρ2(T ) = T ⊗ id.

3. Convolution: The monotone convolution µB ν.

4. Analytic transforms: The F -transform is given by Fµ(z) = 1/Gµ(z).
We have FµBν = Fµ ◦ Fν .

5. Central Limit Theorem: Convergence to the standard arcsine law
1/π
√

2− x2 · χ(−
√
2,
√
2)(x) dx.
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6. Combinatorial theory: There are cumulants defined using ordered non-
crossing partitions of [n], or using non-crossing partitions and multiplying
by certain coefficients.

Unlike the other types, monotone independence is not commutative (with
respect to the ordering of the algebras). Thus, monotone convolution is not
commutative. For anti-monotone independence, we reverse the order of the
algebras. We write C for the anti-monotone convolution operation.

2.8 Remarks on General Independences

The types of independence described above are the only ones which yield a prod-
uct operation on probability spaces that is functorial and associative. This is a
theorem of Muraki 2003 [Mur03], building on work of Speicher 1997 [Spe97] and
Ben Ghorbal and Schürmann 2002 [BS02]. However, there are other functorial
ways of joining N algebras if you don’t require associativity; see for instance
[Liu18, §3].

3 Some Details about Monotone Independence

We will now give some details about monotone independence in preparation for
the proof we present later.

3.1 The Monotone Product Space

Lemma 1. Let H1 and H2 be Hilbert spaces with unit vectors ξ1 and ξ2. Let
H be the monotone product space and ρj : B(Hj)→ B(H) be the inclusion map
described above. Then ρ1(B(H1)) and ρ2(B(H2)) are monotone independent in
B(H) with respect to ξ.

Proof. Let A1 = ρ1(B(H1)) and A2 = ρ2(B(H2)). We have to show that for a
string of elements from A1 and A2, if aj ∈ A2 and the terms next to it are in
A1, then we can replace aj by E[aj ] without changing the expectation of the
string. In fact, it suffices to show that aj−1ajaj+1 = aj−1E[aj ]aj+1.

Thus, it suffices to prove that ρ1(x)ρ2(y)ρ1(z) = ρ1(x)E[y]ρ1(z). By replac-
ing y with y − E[y], we can assume without loss of generality that E[y] = 0.
Recall that the image of ρ1(z) is contained in Cξ ⊕ K1. Since E[y] = 0, we
know that ρ2(y) maps Cξ into K2 and maps K1 into K2 ⊗ K1. But ρ1(x) kills
K2 ⊕K2 ⊗K1. Therefore, ρ1(x)ρ2(y)ρ1(z) = 0.

3.2 Monotone Convolution and Composition

Lemma 2. We have FµBν = Fµ ◦ Fν for compactly supported measures µ and
ν.
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Proof. Let X ∼ µ and Y ∼ ν be monotone independent. Let’s denote

G̃µ(z) = Gµ(z−1) = E[(z−1 −X)−1] = E[(1− zX)−1z].

Note that if inv is the involution z 7→ z−1, then

G̃µ = inv ◦Fµ ◦ inv,

so it suffices to show that G̃µBν = G̃µ ◦ G̃ν , and by analytic continuation, it
suffices to prove this in a neighborhood of 0. Note that

G̃µBν(z) = E[(1− zX − zY )−1z]

= E[(1− (1− zY )−1zX)−1(1− zY )−1z]

= E

[ ∞∑
k=0

[(1− zY )−1zX]k(1− zY )−1z

]
.

Now (1−zY )−1 is 1 plus something in the closure of C[Y ]0 and it is sandwiched
between two occurences of X ∈ C[X]0. By monotone independence, we can
replace (1 − zY )−1 − 1 by its expectation. Of course, 1 is already equal to its
expectation. So overall we can replace each occurence of (1 − zY )−1z by its
expectation which is G̃ν(z). Therefore,

G̃µBν(z) = E

[ ∞∑
k=0

[G̃ν(z)X]kG̃ν(z)

]
= G̃µ ◦ G̃ν(z).

4 Subordination

The following theorem relates free and monotone convolution.

Theorem 3. Let µ and ν be compactly supported measures. Then there exists
a compactly supported measure ν′ such that µ� ν = µB ν′.

Corollary 4. Fµ�ν = Fµ ◦Fν′ and hence Gµ�ν = Gµ ◦Fν′ , where Fν′ : H→ H
analytic.

This was first proved in Voiculescu’s first free entropy paper [Voi93] by
complex-analytic methods under some regularity assumptions on the Cauchy
transforms. Voiculescu later gave another proof based on the properties of re-
solvents with respect to the non-commutative differentiation. Biane [Bia98]
gave a proof by constructing the subordination function combinatorially in a
neighborhood of ∞ and using properties of conditional expectation to show it
extends to the whole upper half-plane. Belinschi, Mai, Speicher 2013 gave an
analytic proof for the operator-valued case using the Earle-Hamilton theorem
[BMS13].

This approach is due to Lenczewski 2007 [Len07, §7], and was extended to
the multivariable case by Nica [Nic09, Remark 4.11] and the operator-valued
case by Liu [Liu18, Proposition 7.2]. The measure ν′ is denoted . . . and is called
the subordination or s-free convolution of µ and ν.
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Proof of Theorem. The idea of the proof is to express the free product Hilbert
space as a monotone product Hilbert space. Let’s realize the laws µ and ν by
operators X1 on (H1, ξ1) and X2 on (H2, ξ2). Let H1 = Cξ⊕K1, H2 = Cξ⊕K2.
Let H be the free product Hilbert space

H = Cξ ⊕
⊕
n≥1

⊕
j1 6=···6=jn

Kj1 ⊗ · · · ⊗ Kjn .

Define

K̃2 =
⊕
n≥1

⊕
j1 6=···6=jn
jn=2

Kj1 ⊗ · · · ⊗ Kjn

= K2 ⊕ (K1 ⊗K2)⊕ (K2 ⊗K1 ⊗K2)⊕ . . .

and H̃2 = Cξ ⊕ K̃2. Then we have

H = Cξ ⊕K1 ⊕ K̃2 ⊕ (K̃2 ⊗K1),

which is the monotone product of (H1, ξ) and (H̃2, ξ).
Now let ρ1 : B(H1) → B(H) and ρ2 : B(H2) → B(H) be the free product

inclusions. Let ρ̃1 : B(H1) → B(H) and ρ̃2 : B(H̃2) → B(H) be the monotone
product inclusions. Note that µ� ν is the law of ρ1(X1) + ρ2(X2). We want to
construct a Z such that

ρ1(X1) + ρ2(X2) = ρ̃1(X1) + ρ̃2(Z).

This will complete the proof with ν′ being the law of Z. To construct Z, we
consider the behavior of ρ1(X1) and ρ2(X2) separately.

First, consider ρ1(X1). We view H1 = Cξ ⊕ K1 as a subspace of H. This
space is ρ1(X1)-invariant and hence

ρ1(X1) = PH1
ρ1(X1)PH1

+ (1− PH1
)ρ1(X1)(1− PH1

).

The first term
PH1ρ1(X1)PH1 = ρ̃1(X1).

The second term (1 − PH1
)ρ1(X1)(1 − PH1

) maps K̃2 into itself, and the way
it acts on K̃2 ⊗K1 is the same as the way it acts on K̃2 since ρ1(X1) only acts
on the leftmost factors of each tensor product. Let X ′1 be this operator on K̃2

and extend it by zero to an operator on H̃2. Then (1−PH1
)ρ1(X1)(1−PH1

) =
ρ̃2(X ′1).

Second, consider ρ2(X2). We claim that this is ρ̃2 of something else. Note
that Cξ ⊕ K̃2 is invariant under ρ2(X2). Indeed, applying ρ2(X2) can only add
or delete a factor K2 at the beginning of a string, so it can never relate the
strings that end with 2 with the strings that end with 1. Let X ′2 be ρ2(X2)
restricted to H̃2. Then ρ2(X2) = ρ̃2(X ′2). Therefore, overall,

ρ1(X1) + ρ2(X2) = ρ̃1(X1) + ρ̃2(X ′1) + ρ̃2(X ′2) = ρ̃1(X1) + ρ̃2(X ′1 +X ′2)

as desired.
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This proof had numerous advantages. It doesn’t require any analytic work.
It is basically a computation with Hilbert spaces, and it goes through verbatim
to the operator-valued setting. It shows automatically that the subordination
function is an F -transform and one can deduce from the proof a combinatorial
formula for the moments of ν′. One can also use the monotone independence
to show that

E[(z −X + Y )−1|X] = (Fν′(z)−X)−1

(compare Biane’s treatment). As a point of propaganda, this shows that mono-
tone (and s-free) independence is “useful” for free probability, and it makes
sense to study non-commutative probability as a whole rather than only free
probability.

There is an analogous result, also noticed by Lenczewski concerning anti-
monotone and boolean independence. This can be proved by the same method
(although in this case the analytic proof is also easy).

Theorem 5. For compactly supported measures µ and ν, there exists ν′ such
that µC ν = µ ] ν′.

5 Advertisements

In the remaining time, I want to give a quick advertisement for my current
work on these topics. On my UCLA department website, I have a long set of
notes about operator-valued non-commutative probability (free, Boolean, and
monotone) that includes these results. This includes an explanation of fully
matricial or non-commutative functions (the operator-valued version of complex
analysis). There is also a unified explanation of convolution semigroups for
the three types of operator-valued independence (which were studied earlier in
various papers).

The punch line is that for a convolution semigroup µt, the cumulants are
given by the moments of tσ for some “operator-valued measure” σ. The F -
transforms evolve according to the equation

∂tFt(z) =


−DzFt(z) ·Gσ(Ft(z)), free case

−Gσ(z), boolean case

−DzFt(z) ·Gσ(z), (anti-)monotone case

−Gσ(Ft(z)), (anti-)monotone case.

The correspondence between µt and Gσ defines the Bercovici-Pata bijection for
these case.

Now such semigroups correspond to processes with independent and sta-
tionary increments (e.g. Brownian motion). More generally, for a process with
independent and non-stationary increments, we have a similar differential equa-
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tion except that σ is replaced by a time-dependent σt.

∂tFt(z) =


−DzFt(z) ·Gσt

(Ft(z)), free case

−Gσt
(z), boolean case

−DzFt(z) ·Gσt
(z), monotone case

−Gσt
(Ft(z)), anti-monotone case.

In the operator-valued case, due to issues with differentiation in Banach spaces,
the generalized law σt depends on t in some distributional sense rather than
being a function t 7→ σt. Here we assume that the support of µt is bounded
and that the variance of µt is Lipschitz in t. But in the end, we get a Bercovici-
Pata-like bijection for processes with independent increments.

These results are not in my notes, but the monotone case is in the paper
[Jek17], where I generalize the observation of Schleißinger [Sch17] that subordi-
nation chains of functions on the upper half-plane (Loewner chains) correspond
precisely to such processes with monotone independent increments.
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