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(Recent) History and Motivation

(2015) For higher-rank graphs Λ, Farsi–G–Kang–Packer introduced
Λ-semibranching function systems & the associated repns.

One goal: Construct wavelets associated to C ∗(Λ),
generalizing work of Marcolli–Paolucci for Cuntz–Krieger
algebras.

(2015) Bezuglyi–Jorgensen studied monic representations for
Cuntz-Krieger algebras (generalizing Dutkay–Jorgensen’s work
for Cuntz algebras).
They found that every representation arising from a “monic
system” (ie, SBFS +ε) was monic, but left open the question
of whether all monic representations arise in this way.

(2017/18) Farsi–G–Jorgensen–Kang–Packer characterize all monic
representations of C ∗(Λ) in terms of Λ-SBFS.
In particular, since Cuntz–Krieger algebras are higher-rank
graph algebras, this answers the question posed by
Bezuglyi–Jorgensen.
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Outline

Higher-rank graphs and their C ∗-algebras

“Measure-theoretic” representations: Λ-semibranching
function systems

Λ-projective systems

Monic representations; main Theorem.
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Higher-rank graphs

A k-graph consists of:

An edge-colored directed graph, with k colors of edges;
together with

A factorization rule: for any two colors (red, blue), any
red-blue path from v to w is equivalent to a unique blue-red
path.

w

v

∼

Introduced by Kumjian & Pask in 2000 to give examples of
combinatorial, computable C ∗-algebras, more general than C ∗(E ).

Paths in E  k-dimensional rectangles in Λ.
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Example and notation

vf1
f2 e

Factorization rule: f1e = ef2, f2e = ef1.

For n = (n1, . . . , nk) ∈ Nk we write

Λn = {λ ∈ Λ : λ has ni edges of color i}.

The factorization rule means this is well defined.

Note that Λ0 is the vertices of Λ.
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Higher-rank graph C ∗-algebras

Given a higher-rank graph Λ, C ∗(Λ) is the universal C ∗-algebra
generated by a family of projections {pv : v ∈ Λ0} and partial
isometries {sλ : λ ∈ Λ} satisfying the Cuntz–Krieger relations:

(CK1) pvpw = δv ,wpv

(CK2) sλsµ = sλµ

(CK3) s∗λsλ = ps(λ)

(CK4) For any v ∈ Obj Λ and any n ∈ Nk ,

pv =
∑
λ∈vΛn

sλs
∗
λ.
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Examples of higher-rank graph C ∗-algebras

If Λ is a 1-graph then C ∗(Λ) is a Cuntz–Krieger algebra.

For our non-trivial example, we have C ∗(Λ) ∼= O2 oα Z.
All the partial isometries are in fact isometries, and se is a
unitary; we have

sf1s
∗
f1 + sf2s

∗
f2 = 1.

Moreover, sesf1 = sf2se , so the action of Z on
O2 = C ∗(sf1 , sf2) is given by

α(sfi ) = sfi+1
.
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Λ-semibranching function systems

Intuitively, a Λ-SBFS is a “representation” of C ∗(Λ) using subsets
of a measure space (X , µ):

the range and source projections s∗λsλ, sλs
∗
λ are replaced by

subsets Ds(λ),Rλ of X .

Measurable maps

τλ : Ds(λ) → Rλ, τn : Rλ → Ds(λ)

take the place of sλ, s
∗
λ respectively. (Here λ ∈ Λn.)

Various rules (analogous to (CK1)-(CK4) ) governing how
these maps and sets interact.

Positive a.e. Radon–Nikodym derivatives

Φλ :=
d(µ ◦ τλ)

dµ
.
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Examples of Λ-SBFS

For our nontrivial example Λ, we can define two Λ-SBFS’s on
Lebesgue measure spaces: one on X = [0, 1] and one on
Y = [0, 1]2.

The first one is given by

τXf1 (x) =
1− x

2
τXf2 (x) =

2− x

2
τXe (x) = x − 1.

Here Rf1 = [0, 1/2] and Rf2 = [1/2, 1] and Re = [0, 1].

The second Λ-SBFS is

τYf1 (x , y) = (x , x+y−xy) τYf2 (x , y) = (x , xy) τYe (x , y) = (1−x , 1−y).

In this setting, Rf1 is the upper left triangle and Rf2 is the lower
right triangle.

This latter example is the only one I know of that has a
non-constant Radon-Nikodym derivative.
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Representations from Λ-SBFS

For the rest of the talk, assume Λ is finite (ie, |Λn| <∞ ∀ n ∈ Nk).

Theorem (Farsi-G-Kang-Packer, 2015)

Any Λ-semibranching function system on (X , µ) gives rise to a
representation π of C ∗(Λ) on L2(X , µ). The representation is
faithful iff Λ is aperiodic.

If d(λ) = n,
π(sλ)χRν = (Φλ ◦ τn)−1/2χRλν

.

Λ-projective systems allow for a more general scaling function.
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Λ-projective representations

Assume we have a Λ-SBFS on (X , µ).

Theorem (Farsi-G-Jorgensen-Kang-Packer 2017)

Suppose a family {fλ : λ ∈ Λ} ⊆ L2(X , µ) of functions, with fλ
supported on Rλ, satisfies

fλ · (fν ◦ τd(λ)) = fλν and |fλ|2 =
(

Φλ ◦ τd(λ)
)−1
|Rλ
.

Then the operators {Tλ}λ∈Λ give a representation of C ∗(Λ) on
L2(X , µ):

Tλ(f ) = fλ · (f ◦ τd(λ)).

Observe (Homework):

We could take fλ :=
(
Φλ ◦ τd(λ)

)−1/2
.

This gives the Λ-SBFS representation: Tλ = π(sλ).
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Monic systems and Λ-projective systems

Proposition (FGJKP)

Let {fλ}λ∈Λ be a family of functions such that

|fλ|2 =
(
Φλ ◦ τd(λ)

)−1 |Rλ
.

The family is a Λ-projective system iff the operators
Tλ(f ) = fλ · (f ◦ τd(λ)) give a representation of C ∗(Λ).

For Cuntz and Cuntz–Krieger algebras, a monic system (studied by
Jorgensen et al) is almost a Λ-projective system; they don’t assume
fλ · (fν ◦ τd(λ)) = fλν .
Monic systems always give a representation of the Cuntz(–Krieger)
algebra.

Corollary

For Cuntz and Cuntz–Krieger algebras, Λ-projective systems and
monic systems are the same thing.
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Infinite paths in higher-rank graphs

In order to define monic representations we need to discuss Λ∞,
the space of infinite paths in Λ.

An infinite path in a k-graph is an infinite sequence of composable
edges (range but no source) where each of the k colors occurs
infinitely often.

The sets Z (λ), for λ ∈ Λ, form a compact open basis for the
topology on Λ∞:

Z (λ) = {x ∈ Λ∞ : x = λy for some y ∈ Λ∞}.
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Infinite paths and Λ-SBFS

When Λ is finite and strongly connected, we have a canonical
measure M on Λ∞, due to an Huef, Laca, Raeburn, and Sims.

Theorem (Farsi-G-Kang-Packer, 2015)

Any finite, strongly connected k-graph admits a Λ-SBFS on the
measure space (Λ∞,M):

Dv = Z (v), Rλ = Z (λ), τλ(x) = λx .

Φλ =
M(Z (λ))

M(Z (s(λ))
χZ(s(λ)).
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Monic representations

C (Λ∞) is a subalgebra of C ∗(Λ): χZ(λ) ↔ sλs
∗
λ.

So, any
representation φ of C ∗(Λ) induces a representation of C (Λ∞).

Definition

A representation φ of C ∗(Λ) is monic if φ|C(Λ∞) admits a cyclic
vector.
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The main Theorem

Theorem (Farsi-G-Jorgensen-Kang-Packer, 2017)

Let Λ be a finite k-graph with no sources. A representation φ of
C ∗(Λ) is monic iff φ is unitarily equivalent to a Λ-projective
representation on (Λ∞, µ) where µ is a Borel measure on Λ∞.

Corollary

Any Λ-SBFS on Λ∞ gives a monic representation. Perhaps more
than one.
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Checking monicity

Theorem (Farsi-G-Jorgensen-Kang-Packer)

Let Λ be a finite k-graph with no sources. Suppose we have a
Λ-SBFS on (X , µ). The associated Λ-semibranching representation
π : C ∗(Λ)→ B(L2(X , µ)) is monic iff

{S ⊆ X : µ(S∆Rλ) = 0 for some λ ∈ Λ}

generates the σ-algebra of X .

This makes it easy to check when a Λ-SBFS on (X , µ) is
equivalent to one on Λ∞.
It also answers the question of Bezuglyi and Jorgensen:
For Cuntz–Krieger algebras, the monic systems which give rise to
monic representations are precisely the ones associated to SBFS
where the range sets Ri generate the σ-algebra.

Elizabeth Gillaspy University of Montana Monic representations for higher-rank graphs



Checking monicity

Theorem (Farsi-G-Jorgensen-Kang-Packer)

Let Λ be a finite k-graph with no sources. Suppose we have a
Λ-SBFS on (X , µ). The associated Λ-semibranching representation
π : C ∗(Λ)→ B(L2(X , µ)) is monic iff

{S ⊆ X : µ(S∆Rλ) = 0 for some λ ∈ Λ}

generates the σ-algebra of X .

This makes it easy to check when a Λ-SBFS on (X , µ) is
equivalent to one on Λ∞.

It also answers the question of Bezuglyi and Jorgensen:
For Cuntz–Krieger algebras, the monic systems which give rise to
monic representations are precisely the ones associated to SBFS
where the range sets Ri generate the σ-algebra.

Elizabeth Gillaspy University of Montana Monic representations for higher-rank graphs



Checking monicity

Theorem (Farsi-G-Jorgensen-Kang-Packer)

Let Λ be a finite k-graph with no sources. Suppose we have a
Λ-SBFS on (X , µ). The associated Λ-semibranching representation
π : C ∗(Λ)→ B(L2(X , µ)) is monic iff

{S ⊆ X : µ(S∆Rλ) = 0 for some λ ∈ Λ}

generates the σ-algebra of X .

This makes it easy to check when a Λ-SBFS on (X , µ) is
equivalent to one on Λ∞.
It also answers the question of Bezuglyi and Jorgensen:

For Cuntz–Krieger algebras, the monic systems which give rise to
monic representations are precisely the ones associated to SBFS
where the range sets Ri generate the σ-algebra.

Elizabeth Gillaspy University of Montana Monic representations for higher-rank graphs



Checking monicity

Theorem (Farsi-G-Jorgensen-Kang-Packer)

Let Λ be a finite k-graph with no sources. Suppose we have a
Λ-SBFS on (X , µ). The associated Λ-semibranching representation
π : C ∗(Λ)→ B(L2(X , µ)) is monic iff

{S ⊆ X : µ(S∆Rλ) = 0 for some λ ∈ Λ}

generates the σ-algebra of X .

This makes it easy to check when a Λ-SBFS on (X , µ) is
equivalent to one on Λ∞.
It also answers the question of Bezuglyi and Jorgensen:
For Cuntz–Krieger algebras, the monic systems which give rise to
monic representations are precisely the ones associated to SBFS
where the range sets Ri generate the σ-algebra.

Elizabeth Gillaspy University of Montana Monic representations for higher-rank graphs



The end

Thanks for your attention!
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