Monic representations for higher-rank graphs

Elizabeth Gillaspy University of Montana

joint with C. Farsi, P. Jorgensen, S. Kang, J. Packer

West Coast Operator Algebras Seminar Seattle University, 7 October 2018

(2015) For higher-rank graphs Λ, Farsi–G–Kang–Packer introduced Λ-semibranching function systems & the associated repns.

(2015) For higher-rank graphs Λ, Farsi–G–Kang–Packer introduced Λ-semibranching function systems & the associated repns. One goal: Construct wavelets associated to C*(Λ), generalizing work of Marcolli–Paolucci for Cuntz–Krieger algebras.

- (2015) For higher-rank graphs Λ, Farsi–G–Kang–Packer introduced Λ-semibranching function systems & the associated repns. One goal: Construct wavelets associated to C*(Λ), generalizing work of Marcolli–Paolucci for Cuntz–Krieger algebras.
- (2015) Bezuglyi–Jorgensen studied monic representations for Cuntz-Krieger algebras (generalizing Dutkay–Jorgensen's work for Cuntz algebras).

- (2015) For higher-rank graphs Λ, Farsi–G–Kang–Packer introduced Λ-semibranching function systems & the associated repns. One goal: Construct wavelets associated to C*(Λ), generalizing work of Marcolli–Paolucci for Cuntz–Krieger algebras.
- (2015) Bezuglyi–Jorgensen studied monic representations for Cuntz-Krieger algebras (generalizing Dutkay–Jorgensen's work for Cuntz algebras).
 They found that every representation arising from a "monic

system" (ie, SBFS $+\epsilon$) was monic, but left open the question of whether all monic representations arise in this way.

- (2015) For higher-rank graphs Λ, Farsi–G–Kang–Packer introduced Λ-semibranching function systems & the associated repns. One goal: Construct wavelets associated to C*(Λ), generalizing work of Marcolli–Paolucci for Cuntz–Krieger algebras.
- (2015) Bezuglyi–Jorgensen studied monic representations for Cuntz-Krieger algebras (generalizing Dutkay–Jorgensen's work for Cuntz algebras).

They found that every representation arising from a "monic system" (ie, SBFS $+\epsilon$) was monic, but left open the question of whether all monic representations arise in this way.

(2017/18) Farsi–G–Jorgensen–Kang–Packer characterize all monic representations of $C^*(\Lambda)$ in terms of Λ -SBFS.

- (2015) For higher-rank graphs Λ, Farsi–G–Kang–Packer introduced Λ-semibranching function systems & the associated repns. One goal: Construct wavelets associated to C*(Λ), generalizing work of Marcolli–Paolucci for Cuntz–Krieger algebras.
- (2015) Bezuglyi–Jorgensen studied monic representations for Cuntz-Krieger algebras (generalizing Dutkay–Jorgensen's work for Cuntz algebras).

They found that every representation arising from a "monic system" (ie, SBFS $+\epsilon$) was monic, but left open the question of whether all monic representations arise in this way.

(2017/18) Farsi-G-Jorgensen-Kang-Packer characterize all monic representations of C*(Λ) in terms of Λ-SBFS.
 In particular, since Cuntz-Krieger algebras are higher-rank graph algebras, this answers the question posed by Bezuglyi-Jorgensen.

• Higher-rank graphs and their C^* -algebras

- Higher-rank graphs and their C^* -algebras
- "Measure-theoretic" representations: Λ-semibranching function systems

- Higher-rank graphs and their C^* -algebras
- "Measure-theoretic" representations: Λ-semibranching function systems
- Λ-projective systems

- Higher-rank graphs and their C^* -algebras
- "Measure-theoretic" representations: Λ-semibranching function systems
- Λ-projective systems
- Monic representations; main Theorem.

Higher-rank graphs

- A *k*-graph consists of:
 - An edge-colored directed graph, with *k* colors of edges; together with

A k-graph consists of:

- An edge-colored directed graph, with *k* colors of edges; together with
- A <u>factorization rule</u>: for any two colors (red, blue), any red-blue path from v to w is equivalent to a unique blue-red path.

A *k*-graph consists of:

- An edge-colored directed graph, with *k* colors of edges; together with
- A <u>factorization rule</u>: for any two colors (red, blue), any red-blue path from v to w is equivalent to a unique blue-red path.

Introduced by Kumjian & Pask in 2000 to give examples of combinatorial, computable C^* -algebras, more general than $C^*(E)$.

Paths in $E \rightsquigarrow k$ -dimensional rectangles in Λ .

Factorization rule: $f_1e = ef_2$, $f_2e = ef_1$.

Factorization rule: $f_1e = ef_2$, $f_2e = ef_1$. For $n = (n_1, \dots, n_k) \in \mathbb{N}^k$ we write

 $\Lambda^n = \{\lambda \in \Lambda : \lambda \text{ has } n_i \text{ edges of color } i\}.$

Factorization rule: $f_1e = ef_2$, $f_2e = ef_1$. For $n = (n_1, \dots, n_k) \in \mathbb{N}^k$ we write

 $\Lambda^n = \{\lambda \in \Lambda : \lambda \text{ has } n_i \text{ edges of color } i\}.$

The factorization rule means this is well defined.

Factorization rule:
$$f_1e = ef_2$$
, $f_2e = ef_1$.
For $n = (n_1, \dots, n_k) \in \mathbb{N}^k$ we write

 $\Lambda^n = \{\lambda \in \Lambda : \lambda \text{ has } n_i \text{ edges of color } i\}.$

The factorization rule means this is well defined. Note that Λ^0 is the vertices of Λ .

$$(\mathsf{CK1}) \ p_v p_w = \delta_{v,w} p_v$$

$$\begin{array}{l} (\mathsf{CK1}) \quad p_{\mathsf{v}} p_{\mathsf{w}} = \delta_{\mathsf{v},\mathsf{w}} p_{\mathsf{v}} \\ (\mathsf{CK2}) \quad s_{\lambda} s_{\mu} = s_{\lambda\mu} \end{array}$$

$$\begin{array}{ll} (\mathsf{CK1}) & p_{v}p_{w} = \delta_{v,w}p_{v} \\ (\mathsf{CK2}) & s_{\lambda}s_{\mu} = s_{\lambda\mu} \\ (\mathsf{CK3}) & s_{\lambda}^{*}s_{\lambda} = p_{s(\lambda)} \\ (\mathsf{CK4}) & \text{For any } v \in \mathsf{Obj}\,\Lambda \text{ and any } n \in \mathbb{N}^{k}, \end{array}$$

$$p_{
u} = \sum_{\lambda \in
u \wedge n} s_{\lambda} s_{\lambda}^{*}.$$

• If Λ is a 1-graph then $C^*(\Lambda)$ is a Cuntz–Krieger algebra.

- If Λ is a 1-graph then $C^*(\Lambda)$ is a Cuntz–Krieger algebra.
- For our non-trivial example, we have $C^*(\Lambda) \cong \mathcal{O}_2 \rtimes_{\alpha} \mathbb{Z}$.

- If Λ is a 1-graph then $C^*(\Lambda)$ is a Cuntz–Krieger algebra.
- For our non-trivial example, we have C*(Λ) ≃ O₂ ⋊_α Z.
 All the partial isometries are in fact isometries, and s_e is a unitary;

- If Λ is a 1-graph then $C^*(\Lambda)$ is a Cuntz–Krieger algebra.
- For our non-trivial example, we have C*(Λ) ≅ O₂ ⋊_α Z.
 All the partial isometries are in fact isometries, and s_e is a unitary; we have

$$s_{f_1}s_{f_1}^* + s_{f_2}s_{f_2}^* = 1.$$

- If Λ is a 1-graph then $C^*(\Lambda)$ is a Cuntz–Krieger algebra.
- For our non-trivial example, we have C*(Λ) ≅ O₂ ⋊_α Z.
 All the partial isometries are in fact isometries, and s_e is a unitary; we have

$$s_{f_1}s_{f_1}^* + s_{f_2}s_{f_2}^* = 1.$$

Moreover, $s_e s_{f_1} = s_{f_2} s_e$, so the action of \mathbb{Z} on $\mathcal{O}_2 = C^*(s_{f_1}, s_{f_2})$ is given by

$$\alpha(\mathbf{s}_{f_i}) = \mathbf{s}_{f_{i+1}}.$$

Λ -semibranching function systems

Intuitively, a <u>A-SBFS</u> is a "representation" of $C^*(\Lambda)$ using subsets of a measure space (X, μ) :

Λ -semibranching function systems

Intuitively, a <u>A-SBFS</u> is a "representation" of $C^*(\Lambda)$ using subsets of a measure space (X, μ) :

the range and source projections s^{*}_λs_λ, s_λs^{*}_λ are replaced by subsets D_{s(λ)}, R_λ of X.

Λ -semibranching function systems

Intuitively, a <u> Λ -SBFS</u> is a "representation" of $C^*(\Lambda)$ using subsets of a measure space (X, μ) :

- the range and source projections s^{*}_λs_λ, s_λs^{*}_λ are replaced by subsets D_{s(λ)}, R_λ of X.
- Measurable maps

$$au_{\lambda}: D_{s(\lambda)} \to R_{\lambda}, \qquad au^n: R_{\lambda} \to D_{s(\lambda)}$$

take the place of $s_{\lambda}, s_{\lambda}^*$ respectively. (Here $\lambda \in \Lambda^n$.)

Λ-semibranching function systems

Intuitively, a <u> Λ -SBFS</u> is a "representation" of $C^*(\Lambda)$ using subsets of a measure space (X, μ) :

- the range and source projections s^{*}_λs_λ, s_λs^{*}_λ are replaced by subsets D_{s(λ)}, R_λ of X.
- Measurable maps

$$\tau_{\lambda}: D_{s(\lambda)} \to R_{\lambda}, \qquad \tau^n: R_{\lambda} \to D_{s(\lambda)}$$

take the place of $s_{\lambda}, s_{\lambda}^*$ respectively. (Here $\lambda \in \Lambda^n$.)

• Various rules (analogous to (CK1)-(CK4)) governing how these maps and sets interact.

Λ-semibranching function systems

Intuitively, a <u> Λ -SBFS</u> is a "representation" of $C^*(\Lambda)$ using subsets of a measure space (X, μ) :

- the range and source projections s^{*}_λs_λ, s_λs^{*}_λ are replaced by subsets D_{s(λ)}, R_λ of X.
- Measurable maps

$$\tau_{\lambda}: D_{s(\lambda)} \to R_{\lambda}, \qquad \tau^n: R_{\lambda} \to D_{s(\lambda)}$$

take the place of $s_{\lambda}, s_{\lambda}^*$ respectively. (Here $\lambda \in \Lambda^n$.)

- Various rules (analogous to (CK1)-(CK4)) governing how these maps and sets interact.
- Positive a.e. Radon-Nikodym derivatives

$$\Phi_\lambda := rac{d(\mu \circ au_\lambda)}{d\mu}.$$

For our nontrivial example Λ , we can define two Λ -SBFS's on Lebesgue measure spaces: one on X = [0, 1] and one on $Y = [0, 1]^2$.

For our nontrivial example Λ , we can define two Λ -SBFS's on Lebesgue measure spaces: one on X = [0, 1] and one on $Y = [0, 1]^2$.

The first one is given by

$$au_{f_1}^X(x) = rac{1-x}{2} \qquad au_{f_2}^X(x) = rac{2-x}{2} \qquad au_e^X(x) = x-1.$$

For our nontrivial example Λ , we can define two Λ -SBFS's on Lebesgue measure spaces: one on X = [0, 1] and one on $Y = [0, 1]^2$.

The first one is given by

$$au_{f_1}^X(x) = rac{1-x}{2} \qquad au_{f_2}^X(x) = rac{2-x}{2} \qquad au_e^X(x) = x-1.$$

Here $R_{f_1} = [0, 1/2]$ and $R_{f_2} = [1/2, 1]$ and $R_e = [0, 1]$.

For our nontrivial example Λ , we can define two Λ -SBFS's on Lebesgue measure spaces: one on X = [0, 1] and one on $Y = [0, 1]^2$.

The first one is given by

$$au_{f_1}^X(x) = rac{1-x}{2} \qquad au_{f_2}^X(x) = rac{2-x}{2} \qquad au_e^X(x) = x-1.$$

Here $R_{f_1} = [0, 1/2]$ and $R_{f_2} = [1/2, 1]$ and $R_e = [0, 1]$.

The second **A-SBFS** is

 $au_{f_1}^{Y}(x,y) = (x,x+y-xy) \quad au_{f_2}^{Y}(x,y) = (x,xy) \quad au_e^{Y}(x,y) = (1-x,1-y).$

For our nontrivial example Λ , we can define two Λ -SBFS's on Lebesgue measure spaces: one on X = [0, 1] and one on $Y = [0, 1]^2$.

The first one is given by

$$au_{f_1}^X(x) = rac{1-x}{2} \qquad au_{f_2}^X(x) = rac{2-x}{2} \qquad au_e^X(x) = x-1.$$

Here $R_{f_1} = [0, 1/2]$ and $R_{f_2} = [1/2, 1]$ and $R_e = [0, 1]$.

The second **A-SBFS** is

$$au_{f_1}^Y(x,y) = (x,x+y-xy) \quad au_{f_2}^Y(x,y) = (x,xy) \quad au_e^Y(x,y) = (1-x,1-y).$$

In this setting, R_{f_1} is the upper left triangle and R_{f_2} is the lower right triangle.

For our nontrivial example Λ , we can define two Λ -SBFS's on Lebesgue measure spaces: one on X = [0, 1] and one on $Y = [0, 1]^2$.

The first one is given by

$$au_{f_1}^X(x) = rac{1-x}{2} \qquad au_{f_2}^X(x) = rac{2-x}{2} \qquad au_e^X(x) = x-1.$$

Here $R_{f_1} = [0, 1/2]$ and $R_{f_2} = [1/2, 1]$ and $R_e = [0, 1]$.

The second **A-SBFS** is

$$au_{f_1}^{Y}(x,y) = (x, x+y-xy) \quad au_{f_2}^{Y}(x,y) = (x,xy) \quad au_e^{Y}(x,y) = (1-x,1-y).$$

In this setting, R_{f_1} is the upper left triangle and R_{f_2} is the lower right triangle.

This latter example is the only one I know of that has a non-constant Radon-Nikodym derivative.

Theorem (Farsi-G-Kang-Packer, 2015)

Any Λ -semibranching function system on (X, μ) gives rise to a representation π of $C^*(\Lambda)$ on $L^2(X, \mu)$. The representation is faithful iff Λ is aperiodic.

Theorem (Farsi-G-Kang-Packer, 2015)

Any Λ -semibranching function system on (X, μ) gives rise to a representation π of $C^*(\Lambda)$ on $L^2(X, \mu)$. The representation is faithful iff Λ is aperiodic.

If
$$d(\lambda) = n$$
, $\pi(s_\lambda)\chi_{R_
u} = (\Phi_\lambda \circ au^n)^{-1/2}\chi_{R_{\lambda
u}}$

Theorem (Farsi-G-Kang-Packer, 2015)

Any Λ -semibranching function system on (X, μ) gives rise to a representation π of $C^*(\Lambda)$ on $L^2(X, \mu)$. The representation is faithful iff Λ is aperiodic.

If $d(\lambda) = n$, $\pi(s_{\lambda})\chi_{R_{\nu}} = (\Phi_{\lambda} \circ \tau^n)^{-1/2}\chi_{R_{\lambda\nu}}.$

 Λ -projective systems allow for a more general scaling function.

Assume we have a Λ -SBFS on (X, μ) .

Theorem (Farsi-G-Jorgensen-Kang-Packer 2017)

Suppose a family $\{f_{\lambda} : \lambda \in \Lambda\} \subseteq L^2(X, \mu)$ of functions, with f_{λ} supported on R_{λ} , satisfies

$$f_{\lambda} \cdot (f_{
u} \circ au^{d(\lambda)}) = f_{\lambda
u} \quad \textit{ and } \quad |f_{\lambda}|^2 = \left(\Phi_{\lambda} \circ au^{d(\lambda)}
ight)^{-1} |_{\mathcal{R}_{\lambda}}.$$

Then the operators $\{T_{\lambda}\}_{\lambda \in \Lambda}$ give a representation of $C^{*}(\Lambda)$ on $L^{2}(X, \mu)$:

$$T_{\lambda}(f) = f_{\lambda} \cdot (f \circ \tau^{d(\lambda)}).$$

Assume we have a Λ -SBFS on (X, μ) .

Theorem (Farsi-G-Jorgensen-Kang-Packer 2017)

Suppose a family $\{f_{\lambda} : \lambda \in \Lambda\} \subseteq L^2(X, \mu)$ of functions, with f_{λ} supported on R_{λ} , satisfies

$$f_{\lambda} \cdot (f_{
u} \circ au^{d(\lambda)}) = f_{\lambda
u}$$
 and $|f_{\lambda}|^2 = \left(\Phi_{\lambda} \circ au^{d(\lambda)}
ight)^{-1} |_{R_{\lambda}}.$

Then the operators $\{T_{\lambda}\}_{\lambda \in \Lambda}$ give a representation of $C^{*}(\Lambda)$ on $L^{2}(X, \mu)$:

$$T_{\lambda}(f) = f_{\lambda} \cdot (f \circ \tau^{d(\lambda)}).$$

Observe (Homework):

• We could take
$$f_{\lambda}:=\left(\Phi_{\lambda}\circ au^{d(\lambda)}
ight)^{-1/2}$$

Assume we have a Λ -SBFS on (X, μ) .

Theorem (Farsi-G-Jorgensen-Kang-Packer 2017)

Suppose a family $\{f_{\lambda} : \lambda \in \Lambda\} \subseteq L^2(X, \mu)$ of functions, with f_{λ} supported on R_{λ} , satisfies

$$f_{\lambda} \cdot (f_{
u} \circ au^{d(\lambda)}) = f_{\lambda
u}$$
 and $|f_{\lambda}|^2 = \left(\Phi_{\lambda} \circ au^{d(\lambda)}
ight)^{-1}|_{R_{\lambda}}.$

Then the operators $\{T_{\lambda}\}_{\lambda \in \Lambda}$ give a representation of $C^{*}(\Lambda)$ on $L^{2}(X, \mu)$:

$$T_{\lambda}(f) = f_{\lambda} \cdot (f \circ \tau^{d(\lambda)}).$$

Observe (Homework):

• We could take $f_{\lambda} := (\Phi_{\lambda} \circ \tau^{d(\lambda)})^{-1/2}$. This gives the Λ -SBFS representation: $T_{\lambda} = \pi(s_{\lambda})$.

Let
$$\{f_{\lambda}\}_{\lambda \in \Lambda}$$
 be a family of functions such that
 $|f_{\lambda}|^2 = (\Phi_{\lambda} \circ \tau^{d(\lambda)})^{-1}|_{R_{\lambda}}.$
The family is a Λ -projective system iff the operators
 $T_{\lambda}(f) = f_{\lambda} \cdot (f \circ \tau^{d(\lambda)})$ give a representation of $C^*(\Lambda)$

Let
$$\{f_{\lambda}\}_{\lambda \in \Lambda}$$
 be a family of functions such that
 $|f_{\lambda}|^2 = (\Phi_{\lambda} \circ \tau^{d(\lambda)})^{-1}|_{R_{\lambda}}.$
The family is a Λ -projective system iff the operators
 $T_{\lambda}(f) = f_{\lambda} \cdot (f \circ \tau^{d(\lambda)})$ give a representation of $C^*(\Lambda)$

For Cuntz and Cuntz–Krieger algebras, a monic system (studied by Jorgensen et al) is almost a Λ -projective system;

Let
$$\{f_{\lambda}\}_{\lambda \in \Lambda}$$
 be a family of functions such that
 $|f_{\lambda}|^2 = (\Phi_{\lambda} \circ \tau^{d(\lambda)})^{-1}|_{R_{\lambda}}.$
The family is a Λ -projective system iff the operators
 $T_{\lambda}(f) = f_{\lambda} \cdot (f \circ \tau^{d(\lambda)})$ give a representation of $C^*(\Lambda)$

For Cuntz and Cuntz–Krieger algebras, a monic system (studied by Jorgensen et al) is almost a Λ -projective system; they don't assume $f_{\lambda} \cdot (f_{\nu} \circ \tau^{d(\lambda)}) = f_{\lambda\nu}$.

Let
$$\{f_{\lambda}\}_{\lambda \in \Lambda}$$
 be a family of functions such that
 $|f_{\lambda}|^2 = (\Phi_{\lambda} \circ \tau^{d(\lambda)})^{-1}|_{R_{\lambda}}.$
The family is a Λ -projective system iff the operators
 $T_{\lambda}(f) = f_{\lambda} \cdot (f \circ \tau^{d(\lambda)})$ give a representation of $C^*(\Lambda)$

For Cuntz and Cuntz–Krieger algebras, a monic system (studied by Jorgensen et al) is almost a Λ -projective system; they don't assume $f_{\lambda} \cdot (f_{\nu} \circ \tau^{d(\lambda)}) = f_{\lambda\nu}$.

Monic systems always give a representation of the Cuntz(-Krieger) algebra.

Let
$$\{f_{\lambda}\}_{\lambda \in \Lambda}$$
 be a family of functions such that
 $|f_{\lambda}|^2 = (\Phi_{\lambda} \circ \tau^{d(\lambda)})^{-1}|_{R_{\lambda}}.$
The family is a Λ -projective system iff the operators
 $T_{\lambda}(f) = f_{\lambda} \cdot (f \circ \tau^{d(\lambda)})$ give a representation of $C^*(\Lambda)$

For Cuntz and Cuntz–Krieger algebras, a monic system (studied by Jorgensen et al) is almost a Λ -projective system; they don't assume $f_{\lambda} \cdot (f_{\nu} \circ \tau^{d(\lambda)}) = f_{\lambda\nu}$.

Monic systems always give a representation of the Cuntz(-Krieger) algebra.

Corollary

For Cuntz and Cuntz–Krieger algebras, Λ -projective systems and monic systems are the same thing.

In order to define monic representations we need to discuss $\Lambda^\infty,$ the space of infinite paths in $\Lambda.$

In order to define monic representations we need to discuss Λ^{∞} , the space of infinite paths in Λ .

An <u>infinite path</u> in a k-graph is an infinite sequence of composable edges (range but no source) where each of the k colors occurs infinitely often.

In order to define monic representations we need to discuss Λ^{∞} , the space of infinite paths in Λ .

An <u>infinite path</u> in a k-graph is an infinite sequence of composable edges (range but no source) where each of the k colors occurs infinitely often.

The sets $Z(\lambda)$, for $\lambda \in \Lambda$, form a compact open basis for the topology on Λ^{∞} :

$$Z(\lambda) = \{x \in \Lambda^{\infty} : x = \lambda y \text{ for some } y \in \Lambda^{\infty}\}.$$

When Λ is finite and strongly connected, we have a canonical measure M on Λ^{∞} , due to an Huef, Laca, Raeburn, and Sims.

When Λ is finite and strongly connected, we have a canonical measure M on Λ^{∞} , due to an Huef, Laca, Raeburn, and Sims.

Theorem (Farsi-G-Kang-Packer, 2015)

Any finite, strongly connected k-graph admits a Λ -SBFS on the measure space (Λ^{∞}, M):

$$D_{v} = Z(v), \quad R_{\lambda} = Z(\lambda), \quad \tau_{\lambda}(x) = \lambda x.$$

When Λ is finite and strongly connected, we have a canonical measure M on Λ^{∞} , due to an Huef, Laca, Raeburn, and Sims.

Theorem (Farsi-G-Kang-Packer, 2015)

Any finite, strongly connected k-graph admits a Λ -SBFS on the measure space (Λ^{∞}, M):

$$D_{v}=Z(v), \quad R_{\lambda}=Z(\lambda), \quad au_{\lambda}(x)=\lambda x.$$

$$\Phi_{\lambda} = \frac{M(Z(\lambda))}{M(Z(s(\lambda)))} \chi_{Z(s(\lambda))}.$$

 $C(\Lambda^{\infty})$ is a subalgebra of $C^*(\Lambda)$: $\chi_{Z(\lambda)} \leftrightarrow s_{\lambda}s_{\lambda}^*$.

 $C(\Lambda^{\infty})$ is a subalgebra of $C^*(\Lambda)$: $\chi_{Z(\lambda)} \leftrightarrow s_{\lambda}s_{\lambda}^*$. So, any representation ϕ of $C^*(\Lambda)$ induces a representation of $C(\Lambda^{\infty})$.

 $C(\Lambda^{\infty})$ is a subalgebra of $C^*(\Lambda)$: $\chi_{Z(\lambda)} \leftrightarrow s_{\lambda}s_{\lambda}^*$. So, any representation ϕ of $C^*(\Lambda)$ induces a representation of $C(\Lambda^{\infty})$.

Definition

A representation ϕ of $C^*(\Lambda)$ is <u>monic</u> if $\phi|_{C(\Lambda^{\infty})}$ admits a cyclic vector.

 $C(\Lambda^{\infty})$ is a subalgebra of $C^*(\Lambda)$: $\chi_{Z(\lambda)} \leftrightarrow s_{\lambda}s_{\lambda}^*$. So, any representation ϕ of $C^*(\Lambda)$ induces a representation of $C(\Lambda^{\infty})$.

Definition

A representation ϕ of $C^*(\Lambda)$ is <u>monic</u> if $\phi|_{C(\Lambda^{\infty})}$ admits a cyclic vector.

Let Λ be a finite k-graph with no sources. A representation ϕ of $C^*(\Lambda)$ is monic iff ϕ is unitarily equivalent to a Λ -projective representation on (Λ^{∞}, μ) where μ is a Borel measure on Λ^{∞} .

Let Λ be a finite k-graph with no sources. A representation ϕ of $C^*(\Lambda)$ is monic iff ϕ is unitarily equivalent to a Λ -projective representation on (Λ^{∞}, μ) where μ is a Borel measure on Λ^{∞} .

Corollary

Any Λ -SBFS on Λ^{∞} gives a monic representation.

Let Λ be a finite k-graph with no sources. A representation ϕ of $C^*(\Lambda)$ is monic iff ϕ is unitarily equivalent to a Λ -projective representation on (Λ^{∞}, μ) where μ is a Borel measure on Λ^{∞} .

Corollary

Any $\Lambda\text{-}SBFS$ on Λ^∞ gives a monic representation. Perhaps more than one.

Let Λ be a finite k-graph with no sources. Suppose we have a Λ -SBFS on (X, μ) . The associated Λ -semibranching representation $\pi : C^*(\Lambda) \to B(L^2(X, \mu))$ is monic iff

 $\{S \subseteq X : \mu(S \Delta R_{\lambda}) = 0 \text{ for some } \lambda \in \Lambda\}$

generates the σ -algebra of X.

Let Λ be a finite k-graph with no sources. Suppose we have a Λ -SBFS on (X, μ) . The associated Λ -semibranching representation $\pi : C^*(\Lambda) \to B(L^2(X, \mu))$ is monic iff

 $\{S \subseteq X : \mu(S \Delta R_{\lambda}) = 0 \text{ for some } \lambda \in \Lambda\}$

generates the σ -algebra of X.

This makes it easy to check when a Λ -SBFS on (X, μ) is equivalent to one on Λ^{∞} .

Let Λ be a finite k-graph with no sources. Suppose we have a Λ -SBFS on (X, μ) . The associated Λ -semibranching representation $\pi : C^*(\Lambda) \to B(L^2(X, \mu))$ is monic iff

 $\{S \subseteq X : \mu(S \Delta R_{\lambda}) = 0 \text{ for some } \lambda \in \Lambda\}$

generates the σ -algebra of X.

This makes it easy to check when a Λ -SBFS on (X, μ) is equivalent to one on Λ^{∞} .

It also answers the question of Bezuglyi and Jorgensen:

Let Λ be a finite k-graph with no sources. Suppose we have a Λ -SBFS on (X, μ) . The associated Λ -semibranching representation $\pi : C^*(\Lambda) \to B(L^2(X, \mu))$ is monic iff

 $\{S \subseteq X : \mu(S \Delta R_{\lambda}) = 0 \text{ for some } \lambda \in \Lambda\}$

generates the σ -algebra of X.

This makes it easy to check when a Λ -SBFS on (X, μ) is equivalent to one on Λ^{∞} .

It also answers the question of Bezuglyi and Jorgensen:

For Cuntz–Krieger algebras, the monic systems which give rise to monic representations are precisely the ones associated to SBFS where the range sets R_i generate the σ -algebra.

Thanks for your attention!